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Abstract
The role of chronic inflammation, acting as an indepen-
dent factor, on the onset of gastrointestinal carcinogen-
esis is now well accepted. However, even if there is an 
increase in the number of elements directly involving 
polymorphonuclear leukocytes (PMNL), as a major ac-
tor in digestive carcinogenesis, the different cellular and 
molecular events occurring in this process are still not 
completely understood. The transepithelial migration of 
PMNL, which is the ultimate step of the afflux of PMNL 
into the digestive mucosa, is a complex phenomenon 
involving sequential interaction of molecules expressed 
both on PMNL and on digestive epithelial cells. Chronic 
inflammatory areas rich in PMNL [so-called (chronic ac-
tive inflammation)] and iterative transepithelial migra-
tion of PMNL certainly evoke intracellular signals, which 
lead toward progressive transformation of epithelia. 
Among these different signals, the mutagenic effect of 
reactive oxygen species and nitrates, the activation of 
the nuclear factor-κB pathway, and the modulation of 
expression of certain microRNA are key actors. Follow-
ing the initiation of carcinogenesis, PMNL are involved 
in the progression and invasion of digestive carcino-
mas, with which they interact. It is noteworthy that dif-
ferent subpopulations of PMNL, which can have some 

opposite effects on tumor growth, in association with 
different levels of transforming growth factor-β and 
with the number of CD8 positive T lymphocytes, could 
be present during the development of digestive carci-
noma. Other factors that involve PMNL, such as mas-
sive elastase release, and the production of angiogenic 
factors, can participate in the progression of neoplastic 
cells through tissues. PMNL may play a major role in 
the onset of metastases, since they allow the tumor 
cells to cross the endothelial barrier and to migrate into 
the blood stream. Finally, PMNL play a role, alone or in 
association with other cell parameters, in the initiation, 
promotion, progression and dissemination of digestive 
carcinomas. This review focuses on the main currently 
accepted cellular and molecular mechanisms that in-
volve PMNL as key actors in digestive carcinogenesis. 
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INTRODUCTION
The link between a chronic active inflammatory process 
(i.e. chronic inflammation rich in neutrophils) and the 
onset of  carcinoma, in association or not with another 
factor such as a pathogen, is now convincingly demon-
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strated with epidemiological, experimental, and molecular 
data obtained for different tissues[1-10]. In particular, this 
relationship is well-established at the gastric and intestinal 
mucosal level[11-18]. Different factors are involved in diges-
tive carcinogenesis, but the association of  these factors 
and their importance in cancer onset are certainly vari-
able from one disease to another and among individuals. 
Thus, predisposing genetic factors, infectious factors and 
inflammatory factors can be involved in digestive carcino-
genesis[19]. Inappropriate innate immunity induces cellular 
infiltration of  the digestive mucosa composed of  poly-
morphonuclear leukocytes (PMNL), dendritic cells, natu-
ral killer cells, and then secondarily, an afflux of  adaptive 
immune cells such as T lymphocytes. The intensity of  
this polymorphous cellular infiltrate varies according to 
the period of  the active phases of  the digestive disease[20]. 
In this regard, inflammatory infiltration can be present at 
variable time periods and at a variable frequency. Among 
the different populations of  cells which migrate into the 
digestive mucosa, the PMNL play a central role in the 
pathophysiology of  inflammatory digestive diseases[21]. 
Thus, previous epidemiological and histological studies 
have convincingly demonstrated a direct link between the 
clinical symptoms (pain and diarrhea) and the presence 
of  PMNL in the digestive mucosa. More particularly, the 
periods of  acute diarrhea certainly correlate with transep-
ithelial migration of  PMNL into the digestive lumen. It is 
noteworthy that during interaction between the intestinal 
epithelial cells (IEC) and PMNL different intracellular 
events are triggered, leading to neoplastic transformation 
of  the digestive epithelia. The molecular phases involved 
in PMNL transepithelial migration are complex, but it is 
crucial to understand these phases to better comprehend 
the initial steps in digestive carcinogenesis. The progres-
sion from an in situ carcinoma to a microinvasive and 
invasive digestive carcinoma is associated with several 
molecular events, in particular, cytoskeleton modification, 
modulation of  adherence molecules and metalloprotease 
production. Among these different events, some directly 
implicate PMNL. Currently, the pros and cons of  the 
role of  PMNL in tumor progression are debatable[22,23]. 
PMNL produce elastases[24], which favor tumor cell ex-
tracellular matrix invasion and release of  pro-angiogenic 
factors, which creates a favorable microenvironment for 
tumor progression[25-30], but also produce defensins, which 
have an anti-tumor effect. Recently, a dual function of  
PMNL, in regard to their action on carcinoma cells, has 
been proposed[31,32]. Thus, two different populations of  
PMNL can be present in tumors, a population that favors 
tumour progression, the tumor-associated neutrophils 
1 (TAN1) and a population that decreases tumor pro-
gression, the TAN2[31,32]. Accordingly to the proportion 
of  TAN1 and TAN2 in a carcinoma the level of  tumor 
progression can vary. This phenomenon can be present 
in colonic adenocarcinomas. Finally, previous studies im-
plicate PMNL in the pathophysiology of  metastases. This 
phenomenon can occur in colonic adenocarcinoma dis-
semination. In particular, PMNL allow transendothelial 

migration of  tumor cells and then their migration into 
the blood stream.

Previous studies and reviews have focused on the role 
of  the immune system during cancer development[33] but 
the impact of  PMNL in the different phases of  the natu-
ral history of  cancer (Figure 1) has been poorly described 
to date. In this review, I describe the role of  PMNL and 
the direct events induced by PMNL in the mechanisms 
of  the different steps in digestive carcinogenesis (cancer 
initiation, progression and dissemination). 

THE BIOLOGY OF THE NEUTROPHIL-
INTESTINAL EPITHELIAL CELL 
INTERACTION
After transendothelial migration, following the crossing of  
the matrix of  the lamina propria, which is mainly induced 
by a gradient of  interleukin (IL) 8[34], PMNL adhere to the 
basal side of  the glandular and crypt cell epithelium, and 
then transmigrate to the digestive lumen. This transepithe-
lial migration is associated with sequential steps and with 
dynamic and transitory interactions between some surface 
molecules that are present on cytoplasmic membranes 
of  PMNL and IEC[35,36] (Figure 2). Studies using in vitro 
models, such as the T84 model, have greatly improved our 
knowledge concerning these different cellular interactions. 
Thus, PMNL transepithelial migration can be induced 
by different stresses on epithelial cells, such as bacteria, 
bacterial products, toxins, or hypoxia[37,38]. Using this T84 
model, the different steps of  PMNL transepithelial migra-
tion and the different mechanisms involved in cell-cell in-
teractions have been described[39-41]. Briefly, PMNL adhere 
to the basal side of  the digestive epithelia through their 
CD11b/CD18 molecules (for which the ligand on epithe-
lia is still unknown), then they migrate using a paracellular 
pathway through an homophilic CD47 interaction, which 
is expressed both on PMNL and IEC[42,43]. A more recent 
study showed that CD47 regulates neutrophil transmigra-
tion through close cross-talk with one toll-like receptor, 
TLR-2[44]. Other interactions occur at the desmosome and 
tight junction levels, which involve JAM and SIRPα[45-47]. 
After crossing the epithelial barrier PMNL interact with 
ICAM1 at the apical membrane through CD11b/CD18. 
During this transepithelial migration, the actin cytoskel-
eton of  epithelial cells is reorganized[48]. Activated PMNL 
release 5’-adenosine monophosphate, which is secondarily 
cleaved by an epithelial membrane ectonucleotidase into 
adenosine, and finally produce chloride secretion on the 
epithelial apical side[49,50]. More recently, other molecular 
mechanisms have been described to occur during interac-
tion between PMNL and the IEC[44,51]. Serine protease-
mediated activation of  epithelial protease-activated recep-
tors has been shown to increase permeability. It has been 
demonstrated that transmigrating PMNL can regulate bar-
rier function through epithelial protease-activated recep-
tor activation[51]. Thus, transepithelial resistance decreased 
significantly after contact of  PMNL with basolateral sur-
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faces of  T84 monolayers or after incubation with PMNL 
elastase and proteinase-3[51]. 

ROLE OF CHRONIC ACTIVE 
INFLAMMATION IN INITIATION OF 
DIGESTIVE CARCINOGENESIS
Beside these different events, which are associated with 
rapid paracellular migration of  PMNL, different studies 
using the T84 model demonstrated the modulation of  dif-
ferent molecules expressed on epithelial cells, which may 
be potentially involved in the initiation of  carcinogenesis 
in direct or indirect pathways, by inducing an amplified in-
flammatory response rich in PMNL[52,53]. Moreover, para-
cellular migration of  PMNL induced the onset of  apopto-
sis, and, then potentially increases turnover of  epithelium 
regeneration[54]. Thus, there is certainly a tight association 
between this chronic active inflammation and the onset of  
digestive carcinoma. An increased level in oxidative stress 
is present in the mucosa of  inflammatory bowel diseas-
es[55-57]. In this regard, an inflammatory microenvironment 
rich in PMNL can increase the rate of  mutation, in addi-
tion to enhancing the proliferation of  mutated cells[58]. Ac-
tivated PMNL serve as sources of  reactive oxygen species 
(ROS) and reactive nitrogen intermediates that are capable 
of  inducing DNA damage and genomic instability[59]. In-
terestingly, release of  ROS can occur during epithelium 
adhesion, but also during transepithelial migration and 

during post transepithelial migration of  PMNL[60]. Alter-
natively, activated PMNL may use cytokines such as tumor 
necrosis factor (TNF)-α, which is implicated in carcino-
genesis, to stimulate ROS and nitric oxide accumulation 
in neighboring epithelial cells[61,62]. Moreover, nitric oxide 
synthase can activate cyclooxygenase-2 in epithelial cells[63]. 
Different studies focus primarily on the effect of  early 
mediators of  inflammation, such as TNF-α, in stimulating 
tumor cell growth by activating nuclear factor (NF)-κB[64]. 
Conversely, decreased production of  TNF-α in mice can 
reduce digestive carcinogenesis associated with chronic 
colitis[65]. However, chronic inflammation involves many 
other cytokines in the host microenvironment, which may 
also affect tumor growth in an NF-κB-dependent man-
ner. While most inflammatory cytokines are released from 
activated macrophages following stimulus-induced tran-
scription, others are secreted from intracellular pools and 
display later kinetics during the inflammatory response. 
Furthermore, the fact that NF-κB inhibition does not 
completely prevent tumor formation in these studies sug-
gests that cytokines could also promote tumorigenesis via 
alternative pathways[66]. Mutations in p53, caused by oxida-
tive damage, were found in both cancer cells and in a non-
dysplastic epithelium in cancer associated colitis, suggest-
ing that chronic inflammation causes genomic changes[67]. 
Finally, ROS can also cause direct oxidative inactivation of  
mismatch repair enzymes[5]. 

Other mechanisms have been described, which in-
volve PMNL in the early steps of  initiation of  carcino-
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genesis. Using animal models that reproduce digestive 
carcinogenesis linked to colitis, the molecule vanin 1 has 
been recently implicated in the onset of  carcinoma[68]. 
Interestingly, it has been described that protein expression 
of  cyclooxygenase-2 and the hypoxia-inducible factor-1 
is up-regulated and associated with inflammation in early 
steps of  digestive carcinoma[69]. The role of  ROS and 
nitrates, largely suggested by previous studies, has been 
highlighted by different recent studies[70-76]. Interestingly, 
the myeloperoxidase (MPO) released by activated PMNL 
can inhibit nucleotide excision repair in certain epithelial 
cell lines[77]. In this regard, mutagenic products of  MPO 
such as 5-chlorouracil and 5-bromouracil are released into 
inflammatory tissues. Moreover, the role of  PMNL in ini-
tiation of  carcinogenesis is probably more complex[78-80].

MicroRNA have been mainly investigated in oncology. 
However, microRNA are also implicated in inflammatory 
mechanisms, and their deregulation during some inflam-
matory diseases, in particular at the digestive level, could 
be associated with the molecular events that link chronic 
inflammation to cancer development[81-87]. The action of  
PMNL in this process is currently difficult to define, but 
through ROS release, and/or by the production of  differ-
ent enzymes, PMNL probably participate in deregulation 
of  the RNA network in digestive epithelial cells. 

IMPLICATION OF NEUTROPHILS 
IN PROGRESSION OF DIGESTIVE 
CARCINOMA
Recent studies have demonstrated that the presence 
of  intratumoral PMNL can be associated with shorter 
disease specific survival in certain cancer patients[88]. Fol-
lowing the initiation of  digestive carcinoma, processes 
allow the tumor to grow from a single initiated cell into 
a developed primary adenocarcinoma. In this context, 
tumor growth depends on increased cell proliferation and 
reduced cell death, both of  which can be stimulated by 
PMNL-driven mechanisms. This inflammation-induced 
tumor promotion may occur early or late in tumor devel-
opment and leads to activation of  premalignant lesions 
that have been dormant for many years. As for tumor-
associated macrophages[89-91], PMNL probably promote 
tumor growth but the putative mechanisms have not 
yet been determined. However, it has been shown that 
accelerated intestinal epithelial cell turnover caused by 
chronic active inflammation and epithelial damage might 
predispose the mucosa to DNA damage, resulting in an 
elevated risk of  mutation, which is in line with dysplasia 
and carcinoma development in patients with ulcerative 
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colitis[92]. In parallel, the repeated inflammatory process 
could act on COX-2 expression which is down-regulated 
by the adenomatous polyposis coli (APC) gene and up-
regulated by nuclear beta-catenin accumulation, and addi-
tionally implicate the Wnt signaling transduction pathway 
in colon carcinogenesis[93]. 

Secreted PMNL factors, such as human neutrophil 
peptides 1-3 (HNP1-3), have been found to be elevated 
in patients with digestive carcinoma, both in tissues and 
plasma, and to correlate with Dukes’ stages[94]. Other mol-
ecules such as neutrophil gelatinase-associated lipocalin 
or neutrophil elastase are able to suppress or to increase 
the invasion of  carcinoma cells[95-97]. Among the cytokines 
involved in carcinoma progression, Transforming growth 
factor (TGF)-β is certainly one of  the most studied, to 
date. It has been reported recently in a mouse model of  
carcinoma that TGF-β controls maturation of  a sub-type 
of  PMNL, the so-called TAN-2. TANs could function in 
parallel with tumor-associated macrophages (TAMs)[98,99]. 
Conversely, inhibition of  the TGF-β activity leads to the 
differentiation of  PMNL in anti-tumor TAN-1 cells (Fig-
ure 3). While TAN-2 inhibit the cytotoxic response of  
CD8+-T lymphocytes, which infiltrate the intestinal mu-
cosa and thereby allow tumor cells to circumvent immune 
surveillance, TAN-1 enhance the anti-tumor action of  
CD8+ T-lymphocytes. TGF-β blockade not only activates 
CD8+T cells, but also increases the recruitment of  hyper-
segmented neutrophils, their NI polarization (high expres-

sion of  TNF-α, ICAM-1 and FAS) and their anti-tumor 
activity. Moreover, N1 neutrophils produce T cell-attract-
ing chemokines including CCL3, CXCL9 and CXCL10. By 
contrast, TGF-β stimulation polarizes PMNL to the so-
called N2 state with increased expression of  arginase and 
chemokines such as CCL2 and CCL5. N1 are cytotoxic for 
tumors, whereas N2 display pro-tumor properties. 

We may speculate that this mechanism is universally 
found in carcinomas arising in different organs. Finally, 
it is noteworthy that the prognostic value of  a high num-
ber of  PMNL in different carcinomas correlates with 
poor outcome in previous studies[100]. 

In addition to TGF-β, other cytokines produced by 
PMNL may be involved in carcinoma progression. Thus, 
TNF-β secreted by PMNL can stimulate a positive loop 
of  inflammation by inducing production of  chemokines 
such as IL8 and Groα by epithelial tumor cells and prob-
ably inducing renewed recruitment of  PMNL[101]. More-
over, other mechanisms may exist such as carcinoma cell 
stimulation of  PMNL to produce oncostatin M[102]. 

Although it is not yet established, we can speculate 
that some miRNA expressed by PMNL, in particular 
mir-223, may also play a crucial role in modulating pro-
gression of  digestive tumors. Mir-223 was found to pos-
sess a crucial role in regulating neutrophil proliferation 
and activation[103]. Moreover, the expression of  mir-223 
may be modulated by some cytokines released by tumor 
cells and may influence the phenotype of  TAN-1 or 
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TAN-2. In this regard, different molecules have recently 
been reported as markers and/or promoters of  inflamma-
tion-associated cancers[104]. Thus, we can speculate that the 
level of  expression of  mir-223 in carcinoma might be a 
marker of  tumor progression. 

THE NEUTROPHIL AS AN ACTOR OF 
THE PATHOBIOLOGY OF DIGESTIVE 
CARCINOMA METASTASIS
Inflammation is a key actor of  metastasis onset[105]. In this 
regard, different studies have demonstrated the role of  
PMNL in tumor metastasis through different steps[106,107]. 
PMNL can participate in the transendothelial migration of  
adenocarcinoma cells, as well as their dissemination into 
the blood (Figure 4)[108,109]. Cytokines produced by PMNL 
can increase vascular permeability and upregulation of  cer-
tain adhesion molecules located on endothelial cells[110]. In 
addition, PMNL are important sources of  proteases that 
degrade the extracellular matrix and may alter the vascular 
barrier allowing entry of  tumor cells into the blood stream. 
Interestingly, in a model of  invasive colon cancer, CCR1+ 
myeloid cells, the recruitment of  which is driven by the 
chemokine CCL9 produced by cancer cells, promote inva-

siveness through secretion of  the matrix metalloproteinases 
MMP2 and MMP9[111]. It has been demonstrated that extra-
cellular ATP can be released by activated PMNL[112]. This 
release of  ATP occurs through a conformational opening 
of  membrane Cx43 hemichannels in response to PMNL 
activation[113]. Moreover, the extracellular ATP released by 
activated PMNL may act both on epithelial cells, through 
activation of  some purinergic receptors expressed by epi-
thelial cells[53], and on endothelial cells[112]. More specifically, 
ATP released by activated PMNL is auto-hydrolyzed to 
AMP through CD39 on the surface of  PMNL. CD39 may 
function as an immunomodulatory control point, requir-
ing a close and special relationship with CD73-positive 
cells, such as endothelial cells. In addition to regulating the 
endothelial barrier function, a role for PMNL-dependent 
ATP release in directed movement of  PMNL has been 
reported[114]. ROS released by activated PMNL can gener-
ate mitochondrial DNA mutations that regulate tumor cell 
metastasis[115]. 

Once metastatic cells enter the circulation, they need 
to survive in suspension and resist detachment-induced 
cell death or anoikis. The survival of  circulating cancer 
cells is affected by inflammatory mediators released by 
immune cells in response to cancer-derived stimuli[116]. 
In the same way, the presence of  a variety of  cytokines 
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released by activated PMNL present in the tumor micro-
environment, including TNF-α, can promote the survival 
of  circulating metastatic seeds[117]. PMNL can also favor 
the circulation in the blood of  tumor cells, in a similar way 
to that of  platelets or blood macrophages which can be 
physically linked to cancer cells, allowing them to travel to-
gether through the circulation[118]. Thus, single circulating 
tumor cells (CTC), which are no longer present in an im-
munosuppressive environment, may be targeted again by 
immunosurveillance. In this regard, the interaction of  cir-
culating cancer cells with PMNL may protect them from 
cell death, thereby overcoming immunosurveillance[119]. 
The journey of  CTC ends upon integrin-dependent arrest 
on the endothelium, followed by extravasation. In this re-
gard, systemic inflammation enhances attachment of  CTC 
to endothelial cells, and this process is governed by neu-
trophil-dependent upregulation of  adhesion molecules[120]. 
Thus, the production of  high levels of  proinflammatory 
cytokines by the PMNL can upregulate expression of  cer-
tain adhesion molecules on endothelial cells and thereby 
increase the probability of  metastatic cell attachment and 
potentialize the passage of  tumor cells from the circula-
tion into the extracellular space and then to develop mi-
crometastases[90,105]. 

CONCLUSIONS AND PERSPECTIVES IN 
THERAPIES TARGETING NEUTROPHILS
Different proinflammatory molecules and inflamma-
tory cells have been suggested to be potential candidate 
targets for therapeutic strategies for cancer[99,121,122]. One 
study has shown that different drugs that prevent in-
flammation can inhibit carcinogenesis[123]. 

The role of  PMNL in the onset and progression of  di-
gestive carcinoma, in particular those occurring in inflam-
matory bowel diseases, is complex. However, recent stud-
ies highlight new aspects of  the pathophysiology of  the 
PMNL-epithelial cells interaction, in particular, the effect 
of  ROS release by activated PMNL on digestive epithelial 
cells at the molecular level or the effect of  different TAN 
on tumor progression. Interestingly, these novel findings 
on the role of  PMNL in the initiation and progression 
of  carcinogenesis open up therapeutic avenues for the 
treatment of  digestive cancers[124]. It is noteworthy that im-
munotherapy against cancer has been explored as a coad-
juvant and has been based mostly on the properties of  the 
adaptative immune system (i.e. B and T lymphocytes, den-
dritic cells) and of  some components of  the innate system 
(macrophages, NK cells, or complement proteins)[125,126]. 
PMNL have been rarely considered as a weapon against 
cancer. However, studies highlighting the anti-tumor ef-
ficacy of  PMNL have been published. For example, sup-
pression of  the secreted protein acidic and rich in cystein, 
which is associated with the capacity of  tumor cells to 
migrate and invade tissues, in malignant cells, led to the 
promotion of  PMNL recruitment and induced tumor 
rejection[127]. However, the mode of  action of  PMNL that 
leads to the killing of  tumor cells is not fully understood. 

It probably depends on the maturation of  PMNL since 
in an animal model of  lung tumors, only a subpopulation 
of  PMNL i.e. TAN2 had an anti-tumor effect[31]. PMNL 
produce cytotoxic agents such as proteases, ROS, and de-
fensins, all of  which can directly damage the target cells. 
However, the cytotoxic effect of  PMNL on tumors is 
greatly enhanced in the presence of  target-specific anti-
bodies. Finally, another strong argument for the anti-cancer 
effect of  PMNL comes from studies using animal models 
in which tumor cells were genetically engineered to release 
immunoregulatory molecules (cytokines and chemokines). 
These molecules did not affect the proliferation of  the 
tumors directly, but activated a host immune reaction that 
was strong enough to overcome their oncogenic capacity. 
For instance, G-CSF-releasing colon adenocarcinoma cells 
were found to lose their tumorigenic activity through the 
massive attraction of  PMNL to the tumor injection site[128]. 
These PMNL distinguished between G-CSF-producing 
and nonproducing cancer cells. Moreover, tumor inhibi-
tion in vivo was accompanied by intimate physical contact 
between PMNL and G-CSF-producing tumor cells[129]. 
However, future research should be done in order to bet-
ter target the different subpopulations of  TAN, since only 
one population of  PMNL would have an anti-tumor effect 
and should be considered.
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