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Abstract
Long term hepatitis B virus (HBV) infection is a major 
risk factor in pathogenesis of chronic liver diseases, in-
cluding hepatocellular carcinoma (HCC). The HBV encod-
ed proteins, hepatitis B virus X protein and preS, appear 
to contribute importantly to the pathogenesis of HCC. 
Both are associated with oxidative stress, which can 
damage cellular molecules like lipids, proteins, and DNA 
during chronic infection. Chronic alcohol use is another 
important factor that contributes to oxidative stress in 
the liver. Previous studies reported that treatment with 
antioxidants, such as curcumin, silymarin, green tea, 
and vitamins C and E, can protect DNA from damage 
and regulate liver pathogenesis-related cascades by re-
ducing reactive oxygen species. This review summarizes 
some of the relationships between oxidative stress and 

liver pathogenesis, focusing upon HBV and alcohol, and 
suggests antioxidant therapeutic approaches.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is one of  the most 
frequent tumor types worldwide. It is the fifth most com-
mon cancer and the third leading cause of  cancer death[1]. 
There are multiple etiological agents that are associated 
with the development of  HCC, the most frequent be-
ing chronic hepatitis B virus (HBV) and hepatitis C virus 
(HCV) infections, and long-term exposure to the myco-
toxin, aflatoxin B1. 

HBV is recognized as a major etiological factor in the 
development of  such diseases as fatty liver (steatosis), 
cirrhosis, hepatocellular adenoma, and HCC[2,3]. The risk 
of  HCC in chronic HBV carriers is more than 100 times 
greater than in uninfected individuals. In the year 2000, 
worldwide new cases of  HCC had increased to 564 300[4]. 
More than 80% of  these cases occur in developing coun-
tries, especially Southeast Asia and sub-Saharan Africa. 
Some 80%-90% of  HCCs develop in cirrhotic liver[5]. Af-
ter 20-30 years of  chronic infection, 20%-30% of  patients 
develop liver cirrhosis. HCC develops at an annual rate of  
3%-8% in HBV-infected cirrhotic patients[6]. 

In the course of  chronic infection, fragments of  HBV 
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DNA integrate randomly into host DNA. Many of  these 
integrated species encode the hepatitis B virus X protein 
(HBx) and truncated preS polypeptides, which contribute 
major steps in hepatocarcinogenesis. HBx binds to the 
DDB1 subunit of  a UV-damaged DNA binding protein[7], 
the latter of  which appears to be important for maintain-
ing the integrity of  DNA repair[8]. HBx has also been 
shown to bind to and functionally inactivate p53[9,10]. 

Therefore, the HBx and HBs proteins represent the 
two potential candidate proteins involved in HBV-related 
hepatocarcinogenesis[11-16]. HCC is also a common compli-
cation of  alcoholic cirrhosis, although ethanol appears to 
not be directly carcinogenic[17].

OXIDATIVE STRESS
Oxidative stress is a disturbance in the oxidant-antioxidant 
balance leading to potential cellular damage. Most cells can 
tolerate a mild degree of  oxidative stress, because they have 
sufficient antioxidant defense capacity and repair systems, 
which recognize and remove molecules damaged by oxida-
tion. The imbalance can result from a lack of  antioxidant 
capacity caused by disturbances in production and distribu-
tion, or by an overabundance of  reactive oxygen species 
(ROS) from other factors. ROS are potential carcinogens 
because of  their roles in mutagenesis, tumor promotion, 
and progression[18]. If  not regulated properly, the excess 
ROS can damage lipids, protein or DNA, inhibiting normal 
function[19]. ROS alterations in different signaling pathways 
may modulate gene expression, cell adhesion, cell metabo-
lism, cell cycle and cell death. These events may induce oxi-
dative DNA damage, which in turn increases chromosomal 
aberrations associated with cell transformation[20]. ROS may 
also activate cellular signal pathways, such as those medi-
ated by mitogen-activated protein kinase (MAPK), nuclear 
factor-κB (NF-κB), phosphatidylinositol 3-kinase (PI3K), 
p53, β-catenin/Wnt and associated with angiogenesis[21-23]. 
Importantly, HBx stimulates the activities of  MAPK, NF-
κB, PI3K, and β-catenin (as well as other pathways) that are 
thought to contribute importantly to the development of  
HCC. Perhaps this is why carriers with chronic liver disease 
(CLD) develop a high incidence of  HCC, while asymptom-
atic carriers do not.

OXIDATIVE STRESS EFFECT ON 
CHRONIC LIVER DISEASE AND LIVER 
FIBROSIS
Several in vitro and in vivo observations suggest that oxida-
tive stress and associated damage could represent a com-
mon link between different forms of  chronic liver injury 
and hepatic fibrosis. For example, oxidative stress contrib-
uting to lipid peroxidation is one of  the critical factors in-
volved in the genesis and the progression of  nonalcoholic 
steatohepatitis and liver cancer[24,25]. Viral infection or alco-
hol abuse greatly increased the highly variable miscoding 
etheno-modified DNA like epsilondA [1,N(6)-etheno-2'-
deoxyadenosine] levels by triggering lipid peroxidation. 

Patients with chronic hepatitis, liver cirrhosis, and HCC 
due to HBV infection had more than 20 times higher uri-
nary epsilondA levels[25] compared to uninfected individu-
als with no liver disease.

Among the mechanisms involved in mediating the pro-
cess of  liver fibrosis, an important role is played by ROS[26]. 
During the progression of  liver injury, hepatic stellate cells 
(HSCs) become activated, which produce extracellular 
matrix such as collagen Ⅰ[27]. Collagen Ⅰ gene regulation 
has revealed a complex process involving ROS as a key 
mediator[28-30]. ROS-sensitive cytokines contribute to HSC 
activation during inflammation through paracrine signals 
released from immune cells[31]. The activated HSCs become 
responsive to platelet-derived growth factor (PDGF) and 
transforming growth factor (TGF)-β. PDGF facilitates the 
progression of  hepatic fibrosis in human CLD. It increased 
the accumulation of  hydrogen peroxide in HSCs. Specifi-
cally PDGF-induced increases in collagen deposition and 
liver fibrosis is markedly reduced by treatment with the 
anti-oxidant drug Mn-TBAP[32,33]. TGF-β increases ROS 
production and decreases the concentration of  glutathione 
(GSH)[34]. In this context, it is important to note that HBx 
trans-activation activity is stimulated by ROS. Given that 
HBx is also associated with the development of  HCC in 
both human carriers and in transgenic mice, and that HCC 
is associated with chronic inflammation, this underscores 
the importance of  inflammation in the context of  chronic 
HBV infection to hepatocarcinogenesis.

HBV INFECTION AND OXIDATIVE 
STRESS
Many groups have shown that HBV can induce oxidative 
stress using HBV transgenic mice or HBV DNA transfec-
tion of  cells in vitro, while oxidative stress is also common 
among HBV infected patients with CLD[35-41]. Oxidative 
stress also precedes the development of  HCC in trans-
genic mice that overproduce and accumulate intracellular 
HBsAg. Several studies have found that the total peroxide 
level, a parameter of  oxidative stress, is significantly higher 
in patients with chronic hepatitis compared to asymptom-
atic carriers, and positively correlated with alanine amino-
transferase (ALT) levels, suggesting that oxidative stress 
plays a critical role in hepatic injury. Oxidative stress is also 
associated with the severity of  the disease. Lipid peroxida-
tion and oxidative DNA damage are enhanced in patients 
with HBV infection.

Mitochondria are a major source of  ROS. ROS can 
form through electron leakage from the mitochondrial 
respiratory chain[42]. HBx itself  targets mitochondria and 
directly interacts with voltage-dependent anion channel 3.  
It alters the mitochondrial membrane potential and in-
creases the endogenous ROS level[43-46]. HBx expression 
also induces oxidative stress through calcium signaling and 
activates cellular kinases, leading to the activation of  tran-
scription factors NF-κB, signal transducer and activator 
of  transcription 3, and others via phosphorylation[47,48]. It 
is observed that HBV-induced oxidative stress also stimu-
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lates the translocation of  mitogen-activated protein kinase 
Raf-1 to mitochondria. This activation involves both the 
Src- and the PAK-mediated phosphorylation of  the Raf-1 
activation domain[49]. HBx also induces lipid peroxida-
tion via down-regulation of  SeP expression, resulting in 
increased expression of  tumor necrosis factor-α in the 
human hepatoblastoma cell line, HepG2[50].

Activity of  the anti-oxidant enzymes CuZn-SOD 
and GSH-Px was found to be the lowest in chronically 
infected patients compared with other groups[51,52]. Detec-
tion of  an increase in MDA levels, which is a product of  
lipid peroxidation in HBV infected groups, indicates that 
oxidative stress is increased in HBV infection[52,53]. After 
treatment with interferon-α and lamivudine, however, 
there was a decrease in the products of  lipid peroxidation 
and an increase in the antioxidant enzymes, such as CuZn-
SOD and GSH-Px, compared with pretreatment[53].

The marker 8-hydroxydeoxyguanosine (8-OHdG) is 
useful in estimating DNA damage induced by oxidative 
stress. Importantly, hepatic 8-OHdG accumulation was 
detected in patients with chronic hepatitis B[39,54]. Further, 
HBV replication causes oxidative stress in HepAD38 liver 
cells, with more than 3 fold increases in the GSSG/GSHtot 
ratio[37].

HuH-7 cells carrying the pre-S mutant (a truncated 
form of  preS/S polypeptide) exhibited enhanced levels of  
ROS and oxidative DNA damage through endoplasmic 
reticulum (ER) stress pathways. Oxidative DNA damage 
has also been observed in livers of  transgenic mice carry-
ing the pre-S mutant[36]. HepG2-HBx cells and the livers 
of  HBx mice also showed increased ROS levels (Figure 1),  
mtDNA deletion, and declines in the mitochondrial mem-
brane potential compared to controls (data not shown). 
Through DNA chip analysis, several ROS-related mol-
ecules, such as members of  the CYP450 families, were 
altered in HBx transgenic mice. The cytochrome p450s 
are a superfamily of  hemeproteins that serve as terminal 
oxidases[55]. A major function of  these p450s is to convert 
compounds into more polar metabolites[56]. Detoxification 
by cytochrome p450 can also produce ROS[57,58]. CYP2E1, 
a member of  the p450 family that oxidizes ethanol, gener-
ates oxidative stress in the mitochondrial compartment 
of  hepatocytes. This has been suggested to play a role in 
hepatotoxicity, as observed in ALD-related patients[59-61]. 
In a mouse model of  nonalcoholic steatosis, CYP2E1 also 
plays key roles in ROS production and contributes to the 
pathogenesis of  liver damage[62,63]. Thus, the involvement 
of  mitochondria in the production of  free radicals result-
ing from ethanol metabolism, and the fact that elevated 
free radical formation stimulates HBx activities, combined 
with the ability of  mitochondria to oxidize ethanol may 
help to explain the apparent synergistic effects of  chronic 
ethanol intake and HBx expression on the pathogenesis 
of  CLD and HCC.

LIVER PATHOGENESIS BY ALCOHOL-
INDUCED OXIDATIVE STRESS
Chronic alcohol consumption has long been associated 

with progressive liver disease[64,65]. The liver is the major 
site of  ethanol metabolism and thus sustains the most in-
jury from chronic alcohol consumption. In alcohol-related 
liver disease, free radicals play a part in the pathogenesis 
of  liver damage. Acute and chronic ethanol treatment in-
creases ROS production, lowers cellular antioxidant levels, 
and enhances oxidative stress in many tissues, especially 
the liver[66,67]. It induces an accumulation of  cysteine, a glu-
tathione precursor/metabolite in the liver, probably due 
to gamma-glutamyltransferase induction[68]. Acetaldehyde 
produced by the oxidation of  alcohol is able to inhibit 
the repair of  alkylated nucleoproteins, to decrease the 
activity of  several enzymes, and to damage mitochondria. 
Acetaldehyde also promotes cell death by depleting the 
concentration of  reduced glutathione, by inducing lipid 
peroxidation, and by increasing the toxic effects of  free 
radicals. Finally, acetaldehyde has been shown to directly 
stimulate proliferation of  HSC and to increase collagen 
synthesis[69-71].

Chronic ethanol treatment has long been known to 
depress mitochondrial function[72-74]. The occurrence of  
DNA fragmentation in peripheral blood lymphocytes re-
flects a direct genotoxic effect of  alcohol, HBV, and/or 
HCV, and suggests that the same genotoxic effect may op-
erate in the liver and contribute to hepatocarcinogenesis[75].

Alcohol is also metabolized by mitochondrial CY-
P2E1. Ethanol exposure to VL-17A cells increased CY-
P2E1, decreased the activity of  antigen-trimming enzymes 
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Figure 1  Increased reactive oxygen species in hepatitis B virus X protein 
transfected HepG2 stable cell line and hepatitis B virus X protein trans-
genic mouse hepatocytes. Reactive oxygen species (ROS) was detected by 
FACS caliber using dichlorofluorescein diacetate (DCFA-DA). A: HepG2 cell 
line stably transfected with hepatitis B virus X protein (HBx) showed a higher 
level of ROS compared to control cells; B: ROS production was checked after 4 
wk of male HBx and control mouse hepatocyte growth. HBx mice hepatocytes 
generate more ROS than control mice.
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like proteasome peptidase and leucine aminopeptidase 
(LAP). This defect may potentially result in decreased 
MHC class Ⅰ-restricted antigen presentation on virally 
infected liver cells[68].

Alcohol-induced inflammatory and innate immune 
responses in Kupffer cells, due to elevated gut-derived 
plasma endotoxin levels, increase ROS-induced dam-
age, and profibrogenic factors such as acetaldehyde or 
lipid peroxidation products, contribute to activation of  
HSCs[76]. Following a fibrogenic stimulus such as alcohol, 
HSCs transform into activated collagen-producing cells. 
There is much current interest in the likely synergistic in-
teractions between hepatitis viruses and alcohol, especially 
with respect to generating oxidative stress.

Alcohol exacerbates pathological changes in HBx 
transgenic mice
C57BL/6J (control) and HBx transgenic mice 8 mo of  age 
were fed with water or 25% ethanol liquid diets for 12 wk 
(Table 1). Glutamate oxalate-transferase (GOT) and gluta-
mate-pyruvate-transferase (GPT) levels, both indicators of  
liver damage, were elevated in control and HBx ethanol-
fed groups, but not in the water-fed groups. However, 
HBx mice showed higher levels of  GPT (87.3 ± 35.5 U/L) 
and GOT (193 ± 83.5 U/L) than wildtype mice (GPT: 
61.7 ± 11.5 U/L, GOT: 119 ± 31.9 U/L). This result in-
dicated that HBx transgenic mice developed more severe 
liver damage from ethanol than control mice. This was 
confirmed by histological evaluation of  the liver, which 
showed the development of  more severe liver injury only 
in the HBx transgenic mice. Hyperplastic nodules, found in 
both the water- and ethanol-fed groups of  HBx transgenic 
mice, were more frequent among the ethanol-treated group 

(Figure 2). Control mice fed ethanol showed mild steatosis 
(data not shown), but the alcohol-treated HBx transgenic 
liver had severe steatosis and hepatomegaly compared to 
the untreated controls (Figure 2). Thus, even moderate 
ethanol consumption promoted oxidative stress and liver 
injury in HBx transgenic mice, implying that compromised 
antioxidant defense promotes alcohol liver injury.

ANTIOXIDANT ENZYMES AND THE 
REDUCTION OF OXIDATIVE STRESS
Given that ROS production is a natural process, and that 
persistent, high levels of  ROS could be damaging, the 
human body has developed antioxidant systems aimed at 
their neutralization. A variety of  enzymatic and nonen-
zymatic mechanisms have evolved to protect cells against 
ROS. These include superoxide dismutase (SOD), which 
detoxifies the superoxide ion, catalase and the GSH per-
oxidase system, peroxiredoxins, which inactivate hydrogen 
peroxide (H2O2), and glutathione peroxidase, whose func-
tion is to detoxify cellular peroxides. Further, ceruloplas-
min and ferritin help remove metals, such as iron, that 
promote oxidative reactions. There are also nonenzymatic, 
low-molecular-weight antioxidants, such as GSH, vitamin 
E, ascorbate (vitamin C), vitamin A, ubiquinone, uric acid, 
and bilirubin[77,78].

A CuZn-SOD is present in the cytosol and in the 
space between the inner and outer mitochondrial mem-
branes, while a manganese-containing SOD is present in 
the mitochondrial matrix. Both of  these enzymes are criti-
cal for prevention of  ROS-induced toxicity[79].

Catalase is found primarily in peroxisomes; it catalyzes 
a reaction between two H2O2 molecules, resulting in the 
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Table 1  Serum glutamate oxalate-transferase and glutamate-pyruvate-transferase values of wild and Hepatitis B virus X protein mice

Groups Age (mo) No. of animals Treatment Duration (wk) GOT (U/L) GPT (U/L)

HBx-tg 8 8 25% alcohol 12  193 ± 83.5   87.3 ± 35.5
8 4 Normal water 12    60 ± 13.8   82 ± 19

C57BL/6J 8 8 25% alcohol 12  119 ± 31.9   61.7 ± 11.5
8 9 Normal water 12 42 ± 11 68 ± 6

GOT: Glutamate oxalate-transferase; GPT: Glutamate-pyruvate-transferase; HBx: Hepatitis B virus X protein.

A B

Figure 2  Chronic ethanol consumption caused liver damage in hepatitis B virus X protein transgenic mice. Ethanol fed hepatitis B virus X protein (HBx) tg 
mouse liver (B) showed severe liver damage, hepatocyte enlargement and fatty changes compared with water fed HBx (A). Original magnifications 100 ×.
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formation of  water and O2. In addition, catalase can pro-
mote the interaction of  H2O2 with hydrogen donors so 
that the H2O2 can be converted to one molecule of  water, 
and the reduced donor becomes oxidized (peroxidatic ac-
tivity of  catalase).

The Prx family has the capacity to decompose H2O2 
in vivo and in vitro. All Prx enzymes contain a conserved 
Cys residue that undergoes a cycle of  peroxide-dependent 
oxidation and thiol-dependent reduction during catalysis. 
Mammalian cells express six isoforms of  Prx (Prx Ⅰ to Ⅵ), 
which are classified into three subgroups (2-Cys, atypical 
2-Cys, and 1-Cys) based on the number and position of  
Cys residues that participate in catalysis. Prx Ⅰ to Prx Ⅳ 
are members of  the 2-Cys Prx subgroup. Prx Ⅰ and Prx Ⅱ  
exist in the cytosol. Prx Ⅲ, which is synthesized with a mi-
tochondrial targeting sequence, is imported into and ma-
tures within mitochondria. Prx Ⅳ is a secreted protein[80-83]. 
Prx V is expressed ubiquitously; it localizes to mitochon-
dria and peroxisomes[84] and possesses antioxidant activity 
equivalent to that of  catalase[85]. All peroxiredoxins have 
two cysteine residues, but Prx Ⅵ has only one at position 
47. Prx Ⅵ is the only peroxiredoxin whose target is gluta-
thione rather than thioredoxin. It is mostly cytosolic.

ANTIOXIDANT THERAPY FOR CHRONIC 
LIVER DISEASE
As discussed above, oxidative stress plays a central role 
in HBV- and alcohol-induced liver damage. There are 
several possible strategies for preventing this stress[34]. 
Among them is the addition of  antioxidant agents to an-
tiviral drugs for patients with chronic hepatitis B. 

Curcuminoids
For example, curcuminoids, the main yellow pigments 
in Curcuma longa (turmeric), have been used widely and 
for a long time in the treatment of  sprains and inflamma-
tion[86]. Curcumin is the main component of  turmeric, and 
two minor components are also present as curcuminoids. 
Curcuminoids possess antioxidant activity[87]. They pro-
tect DNA against oxidative attack, thereby lowering the 
risk for mutations and other genetic damage[88,89]. They 
also activate detoxification enzymes such as glutathione 
S-transferase[90]. Curcumins can down-regulate NF-κB, a 
nuclear transcription factor and critical upstream regula-
tor of  genes that control acute and chronic inflamma-
tion cascades[91,92]. Curcumin exerts beneficial effects in 
animal models of  liver injury and cirrhosis[93,94]. Curcumin 
prevents alcohol-induced liver disease in rats by block-
ing activation of  NF-κB[95] and by induction of  HO-1[96]. 
Curcumin inhibits the fibrogenic progression of  murine 
steatohepatitis[97]. It inhibits extracellular matrix formation 
by enhancing HSC matrix metalloproteinase expression 
via PPARγ and suppresses connective tissue growth factor 
expression[98]. CLL extract also represses HBV replication 
by enhancing the level of  p53 protein[99].

Silymarin
Silymarin is a purified extract from milk thistle [Silybum 

marianum (L.) Gaertn], composed of  a mixture of  four 
isomeric flavonolignans: silibinin (its main, active compo-
nent), isosilibinin, silydianin, and silychristin. This extract 
has been used as a remedy for almost 2000 years[100] and 
continues to be used as a medicine for many types of  
acute and chronic liver diseases. Silybin is an effective anti-
oxidant, conserving GSH in liver cells while stabilizing the 
liver cell membranes against oxidative attack[100,101].

Inhibition of  liver fibrogenesis in clinical trials, and 
promotion of  liver regeneration[102,103] have been inconsis-
tent with these treatments. In clinical trials among patients 
with viral hepatitis[104], alcoholic liver damage[105], and/or 
other liver diseases, silymarin and silybin lowered liver en-
zymes and (at times) improved antioxidant status, but did 
not consistently improve symptoms[104,105]. It is routinely 
used in the clinic as a hepatoprotectant. Silymarin exerts 
beneficial effects on the early stages of  chronic liver dis-
ease, preventing and delaying the onset of  HBV-related 
liver carcinogenesis[106-110].

Mechanistically, the anti-inflammatory and anticancer 
effects of  silybin and the other flavonolignans are related 
to the potent inhibition of  NF-κB. Silybin is a potent 
inhibitor of  NF-κB activation, as induced by a variety of  
anti-inflammatory agents[111].

Green tea
Green tea, a product of  the plant Camellia sinensis (family 
Theaceae), contains polyphenols, specifically catechins of  
the flavan-3-ol class and their gallate derivatives. They are 
potent antioxidant and anti-inflammatory agents[112]. The 
flavan-3-ol structure makes them efficient scavengers of  su-
peroxide, singlet oxygen, nitric oxide, and peroxynitrite[113]. 
They up-regulate antioxidant and other detoxifying enzymes 
and protect DNA from oxidative damage[114-116]. Like other 
flavonoids, the green tea catechins can down-regulate NF-
κB and AP-1, both of  which may promote chronic inflam-
mation and carcinogenesis when abnormally activated[117].

When treated with natural green tea extract, cells 
supporting HBV replication had reduced virus gene ex-
pression and reduced cell growth[118].

Vitamins C and E
Vitamin C is essential to a healthy diet as well as a highly 
effective antioxidant. It is a substrate for ascorbate peroxi-
dase. Vitamin E is a fat-soluble antioxidant that is the ma-
jor antioxidant found in lipid-phase membranes. It blocks 
the production of  ROS formed when fat undergoes oxida-
tion[119]. Several studies have clearly shown that serum lev-
els of  vitamin E are significantly reduced in patients with 
alcoholic liver disease[120,121]. Vitamin E levels also negative-
ly correlate with production of  oxidative stress products 
and directly correlate with the extent of  liver damage[122]. 
Therefore, maintenance of  normal concentrations of  
vitamin E seems to be essential to prevent lipid peroxida-
tion induced by alcohol consumption. Works from several 
laboratories have indicated that mitochondrial damage may 
present a common early event in cell injury[123]. Mitochon-
drial damage was prevented by vitamin E[124]. Vitamin E 
or C alone or in combination can facilitate scavenging free 
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radicals generated in liver tissue[125]. Pretreatment with vi-
tamin C against imidacloprid-induced oxidative liver stress 
in mice is better than post-treatment administration[126]. 
Pretreatment with vitamin E reduced the degree of  oxida-
tive stress[90], although this vitamin produced only slight 
changes in hepatic injury[127]. In the mouse model, vitamin 
E supplementation restored alcohol-induced redox status, 
reduced apoptosis, and prevented oxidative stress[128]. In 
addition, vitamin E in doses of  600 mg daily was effective 
in suppressing HBV replication and normalizing ALT in a 
significant proportion of  chronically infected patients with 
CLD[129]. In this context, it will be important to determine 
whether anti-oxidants reduce HBxAg expression and/or 
function in cultured cells, or promote the resolution of  
CLD in human carriers and/or among human carriers 
with CLD who are also chronic alcoholics. If  so, then anti-
oxidant treatments may reduce the risk for progressive 
CLD lesions ultimately resulting in HCC, and/or eliminate 
the synergy between HBV and chronic alcoholism in the 
pathogenesis of  alcoholic liver disease.

CONCLUSION
In summary (Figure 3), HBV and alcohol-induced liver 
injury are multi-step processes involving several mecha-
nisms. The ability of  HBV and alcohol to induce oxidative 
stress and the role of  ROS in HBV- or alcohol-triggered 
liver damage is an important area of  research, particularly 
because that information could be of  major therapeutic 
value in protecting the liver. As basic information continues 
to emerge regarding the role of  oxidative stress in disease 
development and the mechanisms underlying ROS-related 
cellular toxicity, these findings will lead to more rational an-
tioxidant therapeutic approaches. 
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