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Abstract
AIM: To investigate effects of hepatotropic growth 
factors on radical production in rat hepatocytes during 
sepsis.

METHODS: Rat hepatocytes, isolated by collagenase 
perfusion, were incubated with a lipopolysaccharide 
(LPS)-containing cytokine mixture of interleukin-1β, 
tumor necrosis factor-α and interferon-γ to simulate 
sepsis and either co-incubated or pre-incubated with 
hepatotropic growth factors, e.g. hepatocyte growth 
factor, epidermal growth factor and/or transforming 
growth factor-α. Cells were analyzed for glutathione 
levels. Culture supernatants were assayed for produc-

tion of reactive oxygen intermediates (ROIs) as well 
as NO2

-, NO3
- and S-nitrosothiols. To determine cellular 

damage, release of aspartate aminotransferase (AST) 
into the culture medium was analyzed. Activation of 
nuclear factor (NF)-κB was measured by electropho-
retic mobility shift assay.

RESULTS: Rat hepatocytes treated with the LPS-con-
taining cytokine mixture showed a significant increase 
in ROI and nitrogen oxide intermediate formation. AST 
leakage was not significantly increased in cells treated 
with the LPS-containing cytokine mixture, independent 
of growth-factor co-stimulation. However, pretreatment 
with growth factors significantly reduced AST leakage 
and ROI formation while increasing cellular glutathi-
one. Application of growth factors did not result in 
increased NF-κB activation. Pretreatment with growth 
factors further increased formation of NO2

-, NO3
- and 

S-nitrosothiols in hepatocytes stimulated with LPS-con-
taining cytokine mixture. Thus, we propose that, to-
gether with an increase in glutathione increased NO2

-, 
NO3

- formation might shift their metabolism towards 
non-toxic products.

CONCLUSION: Our data suggest that hepatotropic 
growth factors positively influence sepsis-induced he-
patocellular injury by reducing cytotoxic ROI formation 
via  induction of the cellular protective antioxidative 
systems.
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INTRODUCTION
After partial hepatectomy, the remaining liver tissue un-
dergoes rapid regeneration of  its lost mass. Although it 
has been studied for many years, the exact mechanisms 
and interactions of  this regenerative process are still the 
focus of  many investigations[1-4]. Despite advances in sur-
gical techniques and perioperative management, liver fail-
ure occasionally occurs after extended hepatectomy often 
being associated with postoperative infections that lead to 
multiple organ failure and death[5,6].

Although a two-thirds resection of  the liver is not 
fatal, there is increased sensitivity to endotoxin, caused 
by up-regulation of  the toll-like receptor 4, in the period 
following experimental hepatectomy[7]. Thus, intravenous 
injection of  a sub-lethal dose of  lipopolysaccharide (LPS) 
48 h after surgery results in a high mortality in rats[8]. LPS 
directly activates Kupffer cells (the hepatic macrophages) 
to produce the tumor necrosis factor (TNF)-α and other 
inflammatory cytokines[9] through activation of  the tran-
scription factor, nuclear factor (NF)-κB. During liver 
regeneration, however, cytokines as well as hepatotropic 
growth factors have been well demonstrated to be in-
volved in the process of  tissue regeneration[10].

Numerous publications suggest a direct link between 
nitric oxide (NO) production, cellular loss of  glutathione 
(GSH) and reduction of  glutathione reductase activity. 
Thus, depletion of  GSH reduces cellular NO levels while 
increasing superoxide formation, because GSH is an im-
portant cofactor for NO synthase[11-16]. Togo et al [17]suggest 
that NF-κB is the major transcription factor regulating the 
initial steps of  liver regeneration. Growth factors, by differ-
ent mechanisms, play an essential role in cell growth, pro-
liferation, differentiation and DNA synthesis[18-21]. Certain 
interplays between cytokines and growth factors indeed 
seem to exist. Inflammatory cytokines increase the intracel-
lular radical formation if  not being blocked by intracellular 
antioxidative systems, e.g. GSH[22]. Therefore, it might be 
possible that adequate proliferation and regeneration oc-
curs after partial hepatectomy, and the interplay of  growth 
factors and cytokines could be shifted towards protective 
proliferation rather than hepatocellular injury.

Using an experimental model of  sepsis/inflammation, 
we investigated the effects of  hepatotropic growth fac-
tors, hepatocyte growth factor (HGF), epidermal growth 
factor (EGF) and/or transforming growth factor (TGF)-α 
on radical production and glutathione content in rat hepa-
tocytes that were exposed to an inflammatory cytokine 
mixture of  interferon (IFN)-γ, TNF-α and interleukin 

(IL)-1β, including LPS.

MATERIALS AND METHODS
Isolation, culture and treatment of primary rat hepatocytes
Rat hepatocytes were isolated from healthy Sprague-
Dawley rats with a body weight between 250 and 300 g (Fa. 
Harlan-Winkelmann, Borchen, Germany) in accordance 
with the institutional guidelines of  the Charité (Berlin, 
Germany) by collagenase P (Boehringer, Mannheim, 
Germany) digestion as described previously[23]. Hepa-
tocytes were separated from non-parenchymal cells by 
differential centrifugation at 50 g. Cells were further puri-
fied by density gradient centrifugation using 30% Percoll 
(Pharmacia, Piscataway, NJ, USA). Hepatocyte purity, 
assessed by microscopy, was > 95% and viability, exam-
ined by trypan blue exclusion method, was consistently > 
90%. Immediately after isolation, hepatocytes were plated 
onto gelatin-coated culture dishes (5 × 104 cells/cm2) in 
Williams medium E (0.5 mmol/L L-arginine, 1 μmol/L 
insulin, 15 mmol/L HEPES, 2 mmol/L L-glutamine,  
100 U/mL penicillin, 100 μg/mL streptomycin and 10% 
fetal calf  serum). The next day, experiments were per-
formed in serum-free medium. To imitate inflammation, 
cells were stimulated with a cytokine mixture (CM) consist-
ing of  100 U/mL IFN-γ, 500 U/mL TNF-α, 10 U/mL 
IL-1β and 10 μg/mL LPS (Escherichia coli 111:B4) for 24 h.  
To investigate the effect of  growth factors on inflamma-
tion, cells were either co-stimulated or pretreated (12 h) 
with 20 ng/mL HGF, 30 ng/mL EGF and/or 20 ng/mL 
TGF-α.

Measurement of NO2
-, NO3

- and S-nitrosothiols
Culture supernatants were assayed for the stable end 
products of  NO oxidation (NO2

- and NO3
-) and S-nitro-

sothiols using modified procedures based on the Griess 
reaction as described previously[24].

Aspartate aminotransferase measurement
In order to evaluate cellular damage, culture supernatants 
were measured for aspartate aminotransferase (AST) 
leakage using commercially available reaction kits (Roche 
Diagnostics, Mannheim, Germany).

Determination of cellular GSH levels 
To evaluate total cellular GSH levels [GSH + oxidized 
glutathione (GSSG)] cells were suspended in 1 mL meta-
phosphoric acid (3%) and centrifuged at 1000 g for 5 min. 
Supernatants were adjusted to pH 7.5-8.0 with K2CO3. 
Total cellular GSH was assayed, using an enzymatic recy-
cling procedure, as described previously[22]. Reduced GSH 
was sequentially oxidized by 5,5’-dithiobis-(2-nitrobenzo-
ic-acid) (DTNB) to GSSG. The rate of  DTNB formation 
was monitored at 412 nm and glutathione content was 
determined from a standard curve. To determine GSSG, 
GSH was masked with 2-vinylpyridine. Then, GSSG was 
reduced by NADPH to GSH in the presence of  glutathi-
one reductase to react again with DTNB. Oxidized and 
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reduced GSH that may be released in the supernatant 
were measured in the same way. All data were normalized 
to total protein content determined from cell pellets.

Determination of superoxide (O2
-)

Release of  O2
- into culture supernatant was measured by 

monitoring the superoxide dismutase-dependent reduc-
tion of  160 μmol/L ferricytochrome c at 550 nm and 
37℃, where 1 mol O2

- reduces 1 mol ferricytochrome c[14].

Measurement of NF-κB activation
The NF-κB binding activity was analyzed by electro-
phoretic mobility shift assay (EMSA). Nuclear extracts 
were prepared from cells that were homogenized in su-
crose buffer (2.1 mol/L sucrose, 10 mmol/L HEPES,  
1 mmol/L MgCl2, 5 mmol/L NaF, 0.5 mmol/L Leupep-
tin, 0.5 mmol/L pepstatin, 5 mmol/L aprotinin, 1 mmol/
L DTT, and 0.1 mmol/L PMSF). Nuclei were separated 
by centrifugation (35 000 g, 3 h, 4℃) and washed twice in 
sucrose washing buffer. Nuclei were resuspended in high-
salt buffer (20 mmol/L HEPES at pH 7.9, 1.5 mmol/L 
MgCl2, 440 mmol/L NaCl, 0.2 mmol/L EDTA, 25% 
glycerin, 5 mmol/L NaF, 0.1 mmol/L PMSF, 0.5 mmol/L  
leupeptin, 0.5 mmol/L pepstatin, 5 mmol/L aprotinin, 
and 1 mmol/L DTT). After incubation on ice for 50 min, 
nuclei were spun down (14 000 g, 15 min, 4℃). Following 
quantification, protein extracts were stored at -70℃. NF-
κB binding activity was performed as described previous-
ly[25]. The DNA probe used for EMSA corresponded to 
the high-affinity kB sequence found in the mouse κ light 
chain enhancer. Two oligonucleotides (sense 5'-AGCTT-
GGGGACTTTCCACTAGTACG-3', antisense 5'-AAT-
TCGTACTAGTGGAAAGTCCCCA-3') were annealed 
to generate a double-stranded probe. Labeling was ac-
complished by the Klenow fragment of  DNA polymer-
ase I in the presence of  dGTP, dCTP, dTTP and α[32P] 
dATP. After labeling, the probe was added to 5 μg nu-
clear protein and 5 μg poly-dI-dC (Pharmacia Biotech 
Enzyme GmbH, Freiburg, Germany). Binding reactions 
were carried out in 10 mmol/L Tris-HCl (100 mmol/L 
NaCl, and 4% glycerol, pH 7.5) for 30 min on ice. DNA-
protein complexes were resolved by electrophoresis in 
a 4% non-denaturing polyacrylamide gel. Monoclonal 
antibodies raised against various NF-κB subunits (p50, 
p52, rel A/p65, C rel, and rel B; Santa Cruz Biotechnol-
ogy, Heidelberg, Germany) were used to confirm the 
nature of  the DNA-protein complex. Competition assay 
was performed using unlabeled κB probe in 10- 50- and 
100-fold concentrations[25].

Statistical analysis
Results are expressed as mean ± SE of  at least five inde-
pendent experiments (N = 5) measured in triplicates (n = 
3). Data sets were compared by Kruskal-Wallis followed 
by Dunn’s multiple comparison test (GraphPad Prism 
software; El Camino Real, Sunnyvale, CA USA). P < 0.05 
was taken as minimum level of  significance.

RESULTS
Measurement of AST leakage in rat hepatocytes pre- and 
co-treated with growth factors
Incubation of  primary rat hepatocytes (N = 5, n = 3) 
with LPS-containing CM led to a slight increase in AST 
levels in the culture supernatant (30.0 ± 8.0 to 36.0 ±  
5.6 U/L and 45.0 ± 6.0 to 50.0 ± 8.0 U/L). Co-incuba-
tion with growth factors (20 ng/mL HGF, 30 ng/mL 
EGF and/or 20 ng/mL TGF-α) individually or in com-
bination did not reduce AST leakage (Figure 1, empty 
bars). However, preincubation with growth factors sig-
nificantly reduced AST leakage in cells treated with LPS-
containing CM (Figure 1, grey bars).

Determination of reactive oxygen intermediate levels in 
rat hepatocytes co-treated with growth factors
Incubation of  primary rat hepatocytes (N = 5, n = 3) 
with the LPS-containing CM slightly increased reac-
tive oxygen intermediate (ROI) production (63.0 ± 6.7 
to 80.0 ± 9.0 pmol O2

-/min every 105 cells), while the 
intracellular glutathione levels were not notably affected 
as compared to untreated controls. Co-incubation with 
all growth factors combined slightly reduced ROI levels 
(Figure 2A and B, empty bars). 

Determination of cellular GSH from rat hepatocytes 
pretreated with growth factors
Rat hepatocytes (N = 5, n = 3) were pretreated with 
growth factors 12 h prior to incubation with LPS-
containing CM. As observed before, LPS-containing CM 
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Figure 1  Pre-stimulation with growth factors significantly reduces cel-
lular damage induced by lipopolysaccharide-containing cytokine mixture. 
Primary rat hepatocytes (N = 5, n = 3) treated with lipopolysaccharide (LPS)-
containing cytokine mixture (CM) for 24 h showed a slight increase in aspartate 
aminotransferase (AST) leakage into the culture supernatant. Co-incubation 
with the hepatocyte growth factor (HGF), epidermal growth factor (EGF) and 
transforming growth factor (TGF)-α, individually or in combination, did not re-
duce AST leakage significantly (empty bars). However, preincubation with these 
hepatotropic growth factors resulted in a significant reduction in AST leakage 
(grey bars). aP < 0.05, bP < 0.005 vs corresponding rat hepatocytes treated with 
LPS-containing CM alone.
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slightly increased ROI production (65.0 ± 6.7 to 70.0 ± 
7.0 pmol O2

-/min every 105 cells) without a notable effect 
on intracellular glutathione levels (Figure 2A and B, grey 
bars). However, pretreatment with growth factors, both 
individually or in combination, significantly reduced ROI 
production by subsequent stimulation with LPS-contain-
ing CM. At the same time, intracellular glutathione levels 
were significantly increased. This goes along with the 
reduction in AST leakage observed with growth-factor-
pretreated cells (Figure 1, grey bars). Combination of  all 
three growth factors did not further decrease ROI pro-
duction or increase intracellular glutathione compared to 

treatment with single growth factors. Pretreatment with 
HGF alone was not able to reduce ROI production by 
subsequent stimulation with LPS-containing CM.

Determination of NO2
-, NO3

- and S-nitrosothiol formation 
in rat hepatocytes pretreated with growth factors 
Incubation of  hepatocytes (N = 5, n = 3) with the LPS-
containing CM led to a significant increase in NO pro-
duction as compared to untreated controls. Formation of  
stable end products of  NO oxidation (NO2

- and NO3
-) 

and S-nitrosothiols was even more increased in hepato-
cytes pretreated with growth factors when subsequently 
stimulated with LPS-containing CM. Pretreatment with 
HGF alone did not further increase NO2

-, NO3
- and S-ni-

trosothiols compared to stimulated cells without pretreat-
ment (Figure 3). This was in accordance with the lack of  
reduction of  ROIs under the same conditions.

Determination of NF-κB activation in rat hepatocytes 
stimulated with LPS-containing CM pretreated with or 
without growth factors
Rat hepatocytes, with and without pretreatment with 
growth factors, were stimulated with LPS-containing 
CM. NF-κB activation was measured at 0.5, 1, 2, 3 and 
6 h after stimulation by EMSA. NF-κB was markedly 
increased 6 h after stimulation with LPS-containing CM 
(Figure 4A). Pretreatment with the combined or indi-
vidual growth factors did not further increase NF-κB 
activation (Figure 4B). Moreover, growth factors alone 
(without LPS-containing CM) were not able to cause 
NF-κB expression (Figure 4B). The competition assay 
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Figure 2  Increased oxidative stress in rat hepatocytes treated with 
lipopolysaccharide-containing cytokine mixture. A: Treatment of primary rat 
hepatocytes (N = 5, n = 3) with lipopolysaccharide (LPS)-containing cytokine 
mixture (CM) for 24 h caused a slight increase in O2

- production. B: Cellular glu-
tathione levels were not significantly affected by this treatment. Co-incubation 
with single hepatocyte growth factor (HGF), epidermal growth factor (EGF) or 
transforming growth factor (TGF)-α did not reduce reactive oxygen intermediate 
(ROI) production significantly. Co-incubation with the hepatotropic growth factor 
mixture alone was able to reduce ROI production significantly. Furthermore, co-
incubation with the growth factors did not alter cellular glutathione levels (empty 
bars). On the other hand, preincubation with these growth factors, individually 
or in combination, significantly reduced ROI production (except for pretreatment 
with HGF alone). Preincubation with the different growth factors increased cel-
lular glutathione significantly (grey bars). aP < 0.05, bP < 0.001 vs correspond-
ing rat hepatocytes treated with LPS-containing CM alone.
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Figure 3  Hepatotropic growth factors increase nitric oxide formation 
in primary rat hepatocytes. NO2

- plus NO3
- (empty bars) and RSNO (grey 

bars) levels demonstrated a significant increase after hepatocyte (N = 5, n = 3) 
pretreatment with growth factors and subsequent stimulation with lipopolysac-
charide (LPS)-containing cytokine mixture (CM), if compared to treatment with 
LPS-containing CM alone [except for pretreatment with hepatocyte growth fac-
tor (HGF) alone]. aP < 0.05, bP < 0.005, cP < 0.001 vs corresponding untreated 
rat hepatocytes; dP < 0.05, eP < 0.005, fP < 0.001 vs corresponding rat hepato-
cytes treated with LPS-containing CM alone. NO: Nitric oxide; EGF: Epidermal 
growth factor; TGF: Transforming growth factor.
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using an excess of  unlabeled κB probes demonstrated 
the specificity of  the signal (Figure 4C).

DISCUSSION
Recovery after partial hepatectomy requires an adequate 
interplay between hepatotropic growth factors and cy-
tokines, as both factors are markedly involved and obvi-
ously well-balanced in the process of  residual liver tissue 
proliferation and regeneration[26,27]. In this context, it has 
been reported that IL-6 plays a crucial role for regenera-
tion, because it is supposed to prime remnant hepato-
cytes, in a way that they can fully respond to growth fac-
tors and enter a pre-replicative phase (G1)[26-28]. However, 
in our earlier studies, we have found that addition of  IL-6 
to hepatocyte cultures does not alter ROI or nitrogen ox-
ide intermediate production in the presence of  other in-
flammatory cytokines. When using the mentioned growth 
factors, there was also a lack of  significant alterations in 
ROIs, and intracellular glutathione was seen. This sug-
gests that growth factors have no direct impact on radical 
formation, cellular injury and/or cellular antioxidative 
protection systems.

Under septic or inflammatory conditions, as in the 
case of  any infectious post-operative complication, when 
both plasma HGF and inflammatory cytokine levels are 
increased[29-31], cytokine and growth factor compositions 
might be different. Indeed, increased cytokine levels 
and protein--protein interactions may have positive and 
negative effects on liver regeneration[32,33]. Thus, IL-1β is 
markedly expressed during inflammation, and acts as a 
very potent inhibitor of  hepatocyte proliferation[34]. Clini-
cally observed, severe infections may seriously affect the 
post-operative course after liver resection, which results 
in an increased incidence of  liver insufficiency and pa-
tient loss[6,35,36].

Obviously, cytokines and growth factors act in a well-
balanced process under normal regenerative conditions. 
To gain a better understanding of  the avoidance of  the 
deleterious effects of  postoperative infectious complica-
tions following liver resection, the interplay of  growth 
factors and cytokines was a focus or our attention.

As cytokine reduction is hard to achieve if  inflamma-
tion has already occurred, we focused our analysis on the 
effects of  hepatotropic growth factor (pre)treatment in he-
patocytes exposed to an inflammatory LPS-containing CM.

In the present study, we could demonstrate that 
growth factors, namely HGF, EGF and/or TGF-α may 
positively influence influenced cytokine-induced hepa-
tocellular injury. In pre-treated hepatocytes, we found 
increased NO levels, while the expression of  NF-κB was 
comparable to untreated controls. Our results confirm 
the study of  Kaido et al[37] who have reported on success-
ful prevention of  post-operative liver failure in cirrhotic 
rats by continuous HGF supply. They have shown that 
rats with HGF-secreting fibroblasts (genetically modified 
to secret rat HGF and implanted in syngeneic rat spleen 
7 d prior to exposition exposure of  to hepatotoxins) 
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showed a dramatic resistance to carbon tetrachloride- and 
LPS-induced liver injury, which resulted in a significantly 
improved survival rate (80% vs 20%). In the same line of  
evidence, Kosai et al[38] have shown that HGF treatment 
6 h and 30 min before and 3 h after intra-peritoneal LPS 
administration resulted in a significant increase of  survival 
in mice (75% vs 0%). Although not focusing on patho-
physiological interactions of  HGF and cytokines, they 
clearly described HGF-related hepatic protection in case 
of  severe endotoxemia[37,38]. 

Although several mechanisms may lead to hepatocyte 
injury, oxidative stress with increased radical formation 
as a consequence of  inflammation, sepsis or ischemia-
reperfusion, plays an important role. Intracellular antioxi-
dative systems, e.g. p38-mitogen activated protein kinase 
or p21 may protect the cells, but they also decrease the 
hepatocyte proliferation rate by inhibiting hepatic DNA 
synthesis during the late G1 phase[39,40]. Other intracellu-
lar antioxidative systems include upregulation of  enzymes 
e.g. heme oxygenase-1 by NF-κB[41]. We hypothesize 
that increased glutathione synthesis reduces the amount 
of  cytotoxic radical formation. As further mechanisms 
improve oxygen supply, subsequent NO-dependent va-
sodilatation may contribute to the growth-factor-related 
protection of  rat hepatocytes during sepsis. This could 
explain the results of  Seto et al[42] who have observed that 
HGF pretreatment attenuates LPS-induced sinusoidal en-
dothelial cell injury and intra-sinusoidal fibrin deposition.

However, further studies are required because this kind 
of  cell protection was present only in hepatocyte pretreat-
ment. Indeed, direct stimulation of  rat hepatocytes with 
growth factors had no impact on intracellular ROI levels, 
glutathione content or AST levels under septic conditions.

Nevertheless, this aspect could provide new thera-
peutic options in case of  partial hepatectomy. Pretreat-
ment with hepatotropic growth factors may potentially 
decrease the incidence of  postoperative liver insufficiency 
in patients undergoing extended liver resection, and sub-
sequent infectious complications by shifting the postop-
erative course towards growth-factor-related liver tissue 
proliferation rather than cytokine-related cellular injury.
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