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Abstract
AIM: To investigate the relationship between late SV40 
�actor (LSF) and Notch signaling in the development 
and progress o� hepatocellular carcinoma (HCC).

METHODS: Liver cancer tissue specimens �rom 25 
patients were analyzed �or Notch-1 and LSF expression 
by immunohistochemistry. The correlation between 
expression and the biological e��ects o� Notch-1 and 
LSF were analyzed using genetic and pharmacological 
strategies in HCC cell lines and human normal cell lines, 
including hepatic stellate cells (HSC) and human em-
bryonic kidney epithelial cells (HEK).

RESULTS: Immunohistochemistry showed that both 
Notch-1 and LSF were significantly upregulated in HCC 
samples (76%, 19/25, P  < 0.0001 and 84%, 21/25, 
P  < 0.0001, respectively) compared with non-cancer 
samples. Activation o� Notch-1 by exogenous trans�ec-
tion o� Notch1 intracellular domain increased LSF ex-
pression in HSC and HEK cells to levels similar to those 
seen in HepG2 cells. Furthermore, blocking Notch-1 

activation with a γ-secretase inhibitor, DAPT, down-
regulated LSF expression in HepG2 cells. Additionally, 
a biological behavior assay showed that �orced overex-
pression o� LSF promoted HepG2 cell proli�eration and 
invasion.

CONCLUSION: LSF is a key mediator o� the Notch 
signaling pathway, suggesting that it might be a novel 
therapeutic target �or the treatment o� HCC.

© 2011 Baishideng. All rights reserved.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the third leading cause 
of  cancer-related death in the world[1]. In China, the in-
cidence of  HCC has nearly doubled over the past 2 de-
cades, and it is now second only to lung cancer in terms 
of  total deaths[2]. The high mortality rate of  HCC is due 
to the fact that no systemic therapy is available for ad-
vanced cases of  the disease[3]. A previous study suggested 
that deregulated Notch signaling plays a crucial role in 
the transformation and neoplastic proliferation of  human 
malignancies[4]. We showed that the transcriptional factor, 
late SV40 factor (LSF), is overexpressed in the liver of  > 
80% of  HCC patients compared with normal liver. How-
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ever, the exact role played by aberrant Notch signaling 
in hepatocarcinogenesis has not been elucidated. Here, 
we identified LSF as a downstream mediator of  Notch1 
signaling and showed that LSF mediates, at least in part, 
Notch1-induced carcinogenesis.

Notch genes encode heterodimeric transmembrane 
receptors, which play a critical role in maintaining the bal-
ance between cell proliferation, differentiation, and apop-
tosis. Aberrant expression of  wild-type Notch receptors, 
ligands and downstream targets has been reported in 
cervical carcinoma[5,6], lung[7], colon[8], head and neck[9] 
and renal carcinomas[10], acute myeloid leukemia[11] and 
Hodgkin’s and large-cell lymphomas[12]. Hence, aberrant 
Notch signaling may contribute to carcinogenesis.

LSF, also known as LBP-1c and TFCP2, is a ubiq-
uitously expressed mammalian transcription factor that 
regulates diverse cellular and viral promoters[13,14]. A 
major cellular target of  LSF is the thymidylate synthase 
gene, which encodes the rate limiting enzyme in the 
production of  dTTP, required for DNA synthesis[15]. De-
regulated LSF expression might facilitate entry into the 
G1/S phase of  the cell cycle, promote DNA synthesis, 
stimulate transformation, and facilitate cancer cell surviv-
al. However, there is little evidence to suggest a potential 
role for LSF in HCC. Moreover, the relationship between 
Notch-1 and LSF in human hepatocarcinogenesis is un-
known. 

In this study, we identified LSF as a novel mediator of  
dysregulated Notch signaling, and showed that activation 
of  Notch-1 in human Ras-transformed cells upregulated 
the expression of  LSF. We also performed a detailed ex-
perimental analysis to elucidate the relationship between 
Notch signaling and LSF expression in hepatocarcino-
genesis and to identify signaling pathways that may be 
targeted for the treatment of  highly aggressive HCC.

MATERIALS AND METHODS
Tissue specimens
Archived liver cancer specimens were obtained from the 
Department of  Pathology, Nanjing First Hospital, from 
November 2008 to January 2010. Twenty-five patients 
(20 men and 5 women) undergoing surgery for HCC 
were enrolled in the study. All diagnoses were based on 
pathological and/or cytological evidence. Paraffin sec-
tions were tested by histopathological examination and 
immunohistochemistry. Histological classification was 
conducted according to the criteria set out by Edmonson 
and Steiner[16]. Ethical approval was obtained from the 
hospital and informed consent was given by all patients 
prior to sample collection.

Cell lines and drugs 
The human HCC cell lines, HepG2, Bel-7402, and 
QGY-7703 were obtained from the Chinese Academy of  
Sciences (Institute of  Shanghai Cell Biology and Chinese 
Type Culture Collection, China). Human embryonic kid-

ney epithelial cells (HEK), hepatic stellate cells (HSC) and 
hepatocytes (L02 cells) were preserved in our laboratory. 
Cells were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM) (Invitrogen, USA) containing 10% fetal 
bovine serum (FBS) (Wisent, Canada) and maintained in 
humidified air containing 5% CO2 at 37℃ and 95% hu-
midity. HepG2 cells and hepatocytes (negative controls) 
were treated with 50 μmol/L DAPT (Sigma, USA) to 
block Notch signaling.

Construction of the H-Ras-pEGFP-C1, NICD1-pEGFP-C1 

and LSF-pEGFP-C1 recombinant vector and cell 
transfections 
Reverse transcription-polymerase chain reaction (RT-PCR) 
was carried out using human HCC cell RNA as the tem-
plate (Table 1). After incubation with specific restriction 
endonucleases (BamHⅠ and XhoⅠ for hRAS, Takara, Ja-
pan; BglⅡ and HindⅢ for Notch-ICD1, Takara; and BglⅡ  
and HindⅢ for LSF, Takara) the PCR products were 
inserted into the corresponding sites of  the pEGFP-C1 
vector. Notch-ICD1 (bp 5309-7655 bp of  the Notch-1 
intracellular domain), the open-reading frame of  H-Ras, 
and LSF were cloned into pEGFP-C1 (Clontech, Palo 
Alto, California, USA) to generate the H-Ras-pEGFP-C1, 
NICD1-pEGFP-C1, LSF-pEGFP-C1 recombinant vectors 
(for expression of  green fluorescent protein), respectively. 
Transfection efficiency was estimated from the percentage 
of  GFP-positive cells.

Successful construction of  the recombinant vectors 
was confirmed by enzyme digestion and gene sequencing. 
The recombinant vectors were then transiently transfect-
ed into HEK cells and stably transfected to HSC cells us-
ing Lipofectamine 2000 (Invitrogen). NICD1-pEGFP-C1 
and LSF-pEGFP-C1 were stably transfected to HepG2 
cells after screening with 450 mg/L G418 (Sigma).

Western blotting analysis
Immunoblotting of  cellular extracts was performed using 
antibodies to Notch1-ICD (Cell Signaling Technology, 
MA, USA), LSF (Abcam Incorporation, MA, USA), H-Ras 
(Oncogene Research Products, CA, USA) and β-actin 
(Santa Cruz Biotechnology, CA, USA). The secondary 
antibodies used were HRP-conjugated anti-rabbit and 
anti-mouse Ig (Santa Cruz Biotechnology). Cells were 
harvested using NE-PER™ Nuclear and Cytoplasmic 
Extraction Reagents (Pierce, Rockford, USA) and equal 
amounts of  cellular proteins were separated on 8% SDS-
PAGE gels. Proteins were transferred to PVDF mem-
branes, and the blots were probed with primary antibod-
ies to Notch1-ICD (intracellular domain) and LSF. β-actin 
was used as the internal control protein. Blots were 
washed 3 times for 5 min with phosphate buffered saline 
(PBS) containing 0.1% Tween-20, and incubated with the 
HRP-conjugated secondary antibody (1:5000) for 1 h. 
The membranes were washed as described above and the 
bands detected by enhanced chemiluminescence (Pierce, 
Rockford, USA). 

3421 August 7, 2011|Volume 17|Issue 29|WJG|www.wjgnet.com



Immunohistochemistry
Immunohistochemistry was performed on formalin-fixed, 
paraffin-embedded surgical liver cancer specimens from 
25 patients. Detection of  the antigen-antibody complex 
was performed using the Mouse ABC staining kit (Santa 
Cruz Biotechnology, USA). Staining of  sections was as-
sessed in 10 consecutive fields (× 20 magnification) us-
ing a validated semi-quantitative scale where - denotes 
absence of  staining; +/- denotes occasional, weak hepa-
tocytic staining; + denotes staining of  > 5% hepatocytes; 
++ denotes staining of  6%-30% of  hepatocytes, and 
+++ denotes staining of  > 30% hepatocytes (high ex-
pression).

Luciferase reporter gene assay
LSF DNA sequences between nucleotides (nt) 51 475 800  
and 51 478 000 of  GenBank accession GCF_000001305.13 
were cloned into the pGL-3 vector (Premerger, USA) to 
generate LSF-pGL-3. Transient co-transfection into HSC 
was performed using a control plasmid (pSV-βgal) as an 
internal control in 96-well plates using the Lipofectamine 
2000 transfection reagent. Dual luciferase activity was 
measured after 48 h using a kit from Promega (Madison, 
Wisconsin) and values were normalized for protein con-
tent and transfection efficiency (established from the per-
centage of  GFP-positive cells).

Flow cytometric analysis
The HepG2 cell cycle was assessed by flow cytometric 
analysis. Briefly, HepG2 cells were harvested and imme-
diately fixed in 70% ethanol at 4℃ overnight. Cells were 
then treated with 50 mg/L RNaseA (Sigma) for 30 min 
at 37℃ and stained for 10 min with 50 mg/L PI (Sigma). 
Samples were then analyzed for their DNA content using 
a FACSAria Cell Cytometer (BD Biosciences, San Jose, 
CA, USA). Data were analyzed using Cell Quest software 
(BD Biosciences). 

Cell proliferation and viability assay
To assess cell growth, HepG2 cells infected with LSF-
pEGFP-C (1 × 106 cells/mL) were seeded into 25 cm2 

plates. The cells were cultured for 24 h in the serum-free 
DMEM supplemented with insulin (10 mg/mL) for syn-
chronization. The cells were then washed three times in 
PBS (pH 7.4), digested with 0.25% trypsin, and prepared 
as a single-cell suspension. The cells were then plated into 
96-well plates at a concentration of  2 × 103 cells/mL. The 
cells were cultured at 37℃ in 5% CO2 and 95% humidity 
for 24, 48, 72, and 96 h. A thiazolyl blue test was per-
formed to measure the absorbance at 492 nm. Four hours 
prior to each time point, MTT (20 μL) was added to each 
well at 37℃ for 4 h. After removing the medium, 150 μL 
dimethylsulfoxide was added to each well and the A was 
measured using a microplate reader (Multiskan MK 3, 
Thermo, Germany). 

Colony formation assay
HepG2 cells were pre-treated by infection with LSF-
pEGFP-C1. One thousand cells were seeded into six-well 
plates with 2 mL culture medium containing 10% FBS. 
After culture in DMEM containing 10% FBS at 37℃ 
in a humidified, 5% CO2 atmosphere the colonies were 
counted. Cells were washed twice with PBS, stained with 
Giemsa, and colonies containing > 50 cells were counted. 
The cloning efficiency (%) = (the number of  clones ⁄ the 
number of  seed cells) × 100%. 

Invasion assay
Cell invasion assays were performed in 6.5 mm Tran-
swells (8.0 μm pore size) (Coring Incorporation, USA). 
Prior to each experiment, the polycarbonate filters were 
coated with diluted Matrigel (BD Bioscience). Untreated 
and treated HepG2 cells were added to the coated filters 
(5 × 104 cells/filter) in 200 μL of  serum-free DMEM in 
triplicate wells. DMEM medium containing 10% FBS was 
added to the lower chambers. After 24 h at 37℃ in a 5% 
CO2 and 95% humidity incubator, the non-invading cells 
on the upper surface of  the filter were wiped off  using a 
cotton swab. Invading cells were fixed in 95% alcohol for 
10 min and stained with Giemsa for 12 min. The number 
of  cells in five randomly selected fields was counted un-
der a microscope (× 200 magnification). 
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Table 1  Reverse transcription-polymerase chain reaction primer sequences

Primer Sequence (5’-3’) Product size (bp) Temperature (℃)

Notch1-ICD Forward: CTAAGATCTCCTGAGGGCTTCAAAGTGTC 2375 63
Reverse: GCGAATTCCTTGAAGGCCTCCGGAAT

H-Ras (ORF) Forward: GAGGATCCATGACGGAATATAAGCTGG   668 61 
Reverse: GTGAATTCTCAGGAGAGCACACACTTG

Hes-1 Forward: ATGAACGAGGTGACCCGCTT   443 62 
Reverse: CTGGAAGGTGACACTGCGTT

LSF (ORF) Forward: GGAAAGATCTAGGATGGCCTGGGCTCTGAAG 1547 59 
Reverse: CAAAGCTTGGGCACGAAACGCCGCACTCCT

LSF (promoter analysis) Forward: CTAGGTACCCAACATGGTAAGATCCTGTCTCT 2020 56  
Reverse: GGAGATCTTCTCATCCCTGCTTTCTGTTTCCT

GAPDH Forward: GGTGGAGGTCGGAGTCAACGGA   240 60 
Reverse: GAGGGATCTCGCTCCTGGAGGA

ORF: Open-reading frame; ICD: Intracellular domain; LSF: Late SV40 factor; LSF (promoter analysis): Upstream sequence before start 
code. 
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In vivo tumorigenicity assays 
For the in vivo tumorigenicity assays, SCID/NOD mice 
(Shanghai, China) were housed under specific pathogen-
free conditions. Mice (n = 8) were injected subcutaneous-
ly in the left flank with 3 × 106 HepG2 cells transfected 
with LSF-pEGFP-C1 or with an empty vector. Tumor 
growth was measured every 3-4 d in a 3-dimensional 
fashion using a caliper. All animal studies were conducted 
under IACUC-approved protocols at Southeast Univer-
sity, Nanjing, China.

Statistical analysis
All results were expressed as the mean ± SD or as per-
centages where appropriate. Significant differences were 
tested using SPSS 12.0 (SPSS Inc., Chicago, IL, USA) and 
a 2-tailed t-test or Fisher’s exact test. P < 0.05 was deter-
mined to be statistically significant.

RESULTS
Notch-1 and LSF expression are associated with HCC
Notch-1 interacts with many downstream effectors that 
regulate complex cytoplasmic signaling networks. We 
studied the expression of  Notch1-ICD and LSF in 25 
cases of  human primary HCC using immunochemistry 
(Figure 1). Notch1-ICD was detectable in 19/25 cases 
(Figure 1A and B). Twenty-one out of  25 cancers were 
positive for LSF (Figure 1C and D). Liver cancer speci-

mens stained with hematoxylin and eosin are shown in 
Figure 1E. Normal human liver tissue specimens were 
also labeled with Notch1 and LSF antibodies. The results 
showed negative expression in normal tissue (Figure 1F). 
Tumors positive for Notch1-ICD showed strong, con-
densed nuclear staining for LSF.

Next, we investigated the correlation between Notch1-
ICD and LSF expression and HCC stage. As shown in 
Table 2, high expression of  Notch1-ICD and LSF was 
observed during the advanced pathological stages of  HCC 
[Notch1-ICD was positive in 3/8 (37.5%) of  stage Ⅰ/Ⅱ, 
and in 16/17 (94.1%) of  stage Ⅲ/Ⅳ tumors, P = 0.006. 
LSF was positive in 4/8 (50%) of  stage Ⅰ/Ⅱ and in 
17/17 (100%) of  stage Ⅲ/Ⅳ tumors, P = 0.006. Notch1-
ICD and LSF were both positive in 2/8 (25%) of  stage Ⅰ
/Ⅱ stage and 14/17 (82.5%) of  stage Ⅲ/Ⅳ tumors, P 
= 0.01]. However, there was no correlation with patient 
gender, age, histological type and cellular differentiation. 
Although the expression of  Notch1-ICD and LSF was 
more frequent in HCC samples [Notch1-ICD was posi-
tive in 15/25 (60%); LSF was positive in 16/25 (64%); 
and Notch1-ICD and LSF were both positive in 13/17 
(76.5%)] than in the other histological types, no statisti-
cally significant difference was found (P = 0.059, P = 0.081 
and P = 0.359, respectively).

Taken together, these results suggest that activation 
of  Notch-1 signaling and elevated LSF expression play a 
key role in the pathogenesis of  HCC.
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Figure 1  Correlation between late SV40 factor overexpression and aberrant Notch-1 activation in liver cancer. Liver cancer tissue specimens from 25 patients 
were analyzed for Notch-1 and late SV40 factor (LSF) expression by immunochemistry. A: Representative sample showing the strong correlation between Notch-1 
expression and LSF expression; A and B were labeled with Notch-1 antibody (magnification: A × 10 and B × 20); C and D were labeled with an anti-LSF antibody 
(magnification: C × 10 and D × 20); E: Liver cancer specimen stained with hematoxylin and eosin; F: Human normal liver tissue specimen labeled with Notch1 and 
LSF antibodies. Expression is negative (control).
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LSF is upregulated in normal human cells after forced 
overexpression of exogenous Notch1-ICD 
LSF is an important mammalian transcription factor that 
binds cellular promoters modulated by cell growth sig-
nals[13,14]. In this study, we examined the role of  LSF and 
Notch-1 in 2 human H-Ras-transformed cell lines, HSC 
and HEK (Figure 2A). Western blotting with antibodies 
against intracellular Notch-1 revealed one major band 

with an apparent molecular mass of  110kD, correspond-
ing to the intracellular cleavage product, Notch1-ICD. 
Western blotting also detected H-Ras (21kD, Figure 2B). 
Western blotting with antibodies to LSF revealed one 
major band with an apparent molecular mass of  63kD 
(Figure 2C). These results show that cells expressing 
exogenous Notch1-ICD can augment the expression 
of  LSF protein. Furthermore, we observed that LSF 
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Table 2  Association between the activation Notch-1 and late SV40 factor in liver cancer specimens and clinico-
pathological features

Patients n Notch1 LSF2 Notch1 and LSF3 P  value

Gender 0.5621,1.0002, 0.3123

   Male 20 16 17 14
   Female   5   3   4   2
Age (yr) 0.1941, 0.5482, 0.0753

   < 50   7   4   5   2
   ≥ 50 18 15 16 13
Histological type 0.0591, 0.0812, 0.3593

   HCC 17 15 16 13
   Bile duct cell carcinoma   1   0   0
   Nodular hepatocellular carcinoma   6   4   5   4
   Other   1   0   0
Cellular differentiation 0.1371, 0.2942, 1.0003

   Well/moderately 18 12 14 11
   Poor/undifferentiated   7   7   7   5
Stage 0.0061, 0.0062, 0.013

   Ⅰ/Ⅱ   8   3   4   2
   Ⅲ/Ⅳ 17 16 17 14

1Notch1 P value; 2LSF P value; 3Notch1 and LSF P values; Fisher’s exact test. HCC: Hepatocellular carcinoma; LSF: Late SV40 factor. 

Figure 2  Late SV40 factor expression is increased in human normal cells showing forced overexpression of exogenous Notch1-ICD. A: Transient transfec-
tion of H-Ras and/or NICD1 and stable transfection of H-Ras and/or NICD1 into hepatic stellate cells (HSC); B: Western-blotting analysis of H-Ras and NICD1 from 
human embryonic kidney (HEK) cells and human HSC; C: Late SV40 factor (LSF)-dependent expression correlates with Notch1-ICD protein levels in human normal 
cells after forced overexpression of exogenous Notch1-ICD. Co-expression of H-Ras and Notch1-ICD significantly increases LSF levels.
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was robustly up-regulated in both HSC and HEK cells 
after co-transfection of  H-Ras-pEGFP-C1 and NICD1-
pEGFP-C1. This suggests that LSF is involved in Notch 
signaling and establishes a regulatory role for LSF in the 
pathogenesis of  HCC. 

LSF, a new mediator of deregulated Notch signaling in 
HCC
We next explored the relationship between Notch-1 and 
LSF in HCC cell lines from human primary tumors us-
ing pharmacological and genetic approaches. Western 
blotting analysis of  Notch1-ICD and LSF expression 
in 3 HCC cell lines showed that Notch1-ICD and LSF 
levels were upregulated (hepatocytes were used as a nega-
tive control, Figure 3A). HepG2 cells were then treated 
with DAPT, which blocks endogenous Notch-1 activa-
tion. This resulted in decreased expression of  Notch1-
ICD and downregulation of  LSF (Figure 3B). Next, 
NICD1-pEGFP-C1 was transfected into HepG2 cells 
expressing constitutively activated Notch-1 (Figure 3B). 
LSF-pEGFP-C1 was also introduced into HepG2 
cells (Figure 3C). The expression levels of  Notch-ICD 
and LSF protein were both elevated (Figure 3B-E). 
Hes-1 mRNA levels were also increased in NICD1-
pEGFP-C1/HepG2 cells compared with that in the con-
trols (untreated HepG2 cells) (Figure 3F and Table 1).  
We determined that perturbed Notch signaling signifi-
cantly upregulated LSF expression in the HCC cell lines. 
We confirmed these results by stably introducing Notch1-
ICD into HSC cells and by transient transfection in HEK 
cells as described above. Activation of  LSF-dependent 
transcription is an indicator of  LSF activity. The promoter 
assay showed that LSF reporter activity in HSC trans-
fected with NICD1-pEGFP-C1 was directly correlated 
with LSF protein levels (Figure 3G), showing an approxi-
mately 60-fold increase above that in the controls. Taken 
together, these data show that LSF is a novel mediator of  
dysregulated Notch signaling in HCC.

LSF stimulates cell proliferation and promotes cell cycle 
progression and invasion of HepG2 cells in vitro
We next explored the biological role of  LSF in the pro-
gression of  HCC. As cell proliferation is closely linked to 
progression through the cell cycle, we analyzed the cell 
cycle of  cultured cells by flow cytometry (Figure 4A). We 
first looked at the cell cycle in HepG2 cells transfected 
with LSF-pEGFP-C1. The data showed a decreasing pro-
portion of  cells in G0/G1 and an increasing proportion 
of  cells in S phase compared with the controls (Figure 4B,  
P < 0.01). No obvious differences were observed at 
G2/M in any of  the groups. The MTT assay showed that 
forced overexpression of  LSF promoted proliferation and 
growth above that in untreated HepG2 cells (Figure 4C, P 
< 0.01), while there was no statistical significance between 
the growth of  HepG2 cells and pEGFP-C1/HepG2 cells. 
However, the colony formation assay showed that the 
number of  HepG2 cell clones overexpressing LSF was 
significantly increased compared with that in the controls 

(Figure 5A-D, P < 0.05); a similar result was shown when 
calculating the clone efficiency (Figure 5E, P < 0.05). 
However, in this study, the invasion assay showed that the 
invasive ability of  LSF-transfected HepG2 cells was in-
creased compared with that of  the controls (Figure 6, P < 
0.05). Taken together these observations suggest that LSF 
accelerates the development and progression of  HCC.

LSF increases the growth of tumors derived from HepG2 
cells in vivo
In light of  the pro-proliferative effects of  LSF in vivo, we 
tested whether LSF could promote the proliferation of  
HCC cells in vivo. The tumorigenicity of  HepG2 cells was 
examined in eight mice inoculated with either the empty 
vector or with the exogenous LSF expression vector. Rep-
resentative tumor growth curves are shown in Figure 7A. 
The mean tumor volume was significantly larger in LSF-
transfected nude mice than in those transfected with the 
empty vector (Figure 7B, P < 0.01).

DISCUSSION
HCC is a highly aggressive cancer for which there is no 
currently available effective treatment and it is the third 
most frequent cause of  cancer deaths[17,18]. Therefore, 
identifying signaling pathways that could be targeted to 
enhance the sensitivity of  a therapy is of  great impor-
tance. Mounting evidence shows that constitutively ac-
tive Notch receptors induce proliferative activity[19-22] and 
that deregulated expression and/or activity of  wild-type 
Notch receptors occurs frequently in human malignancies, 
including T-cell acute lymphoblastic leukemias[11,12,21-28], 
HCC[22,28], non-small cell lung cancer[29], breast cancers[30], 
colon cancer[8], and Hodgkin’s and large-cell lympho-
mas[12]. However, the possible molecular mechanisms un-
derlying deregulated Notch signaling and its involvement 
in the development and progress of  human HCC are 
unknown. Immunohistochemistry of  liver cancer tissue 
specimens showed that Notch-ICD1 (76%, 19⁄25), LSF 
(84%, 21/25) and both LSF and Notch1-ICD (76.5%, 
13/17) were abundantly expressed in HCC, but were 
either undetectable or only very occasionally expressed 
in non-tumor liver tissues. This suggests that their over-
expression may be linked to cancer development and/or 
progression. Western blotting showed that cell lines de-
rived from HCCs spontaneously overexpressed Notch-1 
and LSF compared with normal hepatocytes. We also 
found increased LSF protein expression in HepG2 cells 
transfected with NICD1-pEGFP-C1. We used a γ-secretase 
inhibitor, DAPT, to block Notch signaling and found that, 
when Notch signaling was inhibited in HCC cell lines, 
LSF protein levels decreased in a time dependent man-
ner. These observations suggest that overexpression of  
Notch1-ICD protein plays an important role in human 
hepatocarcinogenesis. However, we also observed a new 
phenomenon: that the expression of  LSF increased along 
with upregulated Notch1-ICD protein levels in HepG2 
cells. So, we investigated the relationship between LSF and 
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the Notch signaling pathway. We first performed a series 
of  experiments involving 2 human tumor cell lines (HSC 
and HEK cells) expressing the human telomerase reverse 
transcriptase subunit and oncogenic H-Ras to explore the 
relationship between them. First, we determined that LSF 

expression was upregulated in NICD1-transformed hu-
man normal cell lines (such as HEK and HSC). Next, we 
showed that forced overexpression of  exogenous Notch1-
ICD in Ras-transformed cells robustly increased LSF 
expression. Furthermore, a promoter assay showed that 

Figure 3  Aberrant Notch-1 activation upregulates late SV40 factor levels in hepatocellular carcinoma cells. A: Western-blotting analysis of Notch1 and late 
SV40 factor (LSF) expression in 3 hepatocellular carcinoma (HCC) cell lines. Notch1 and LSF levels are upregulated (hepatocytes were used as the negative control); B: 
Inhibition of Notch-1 signaling by 50 μmol/L DAPT (a γ secretase inhibitor). Notch1-ICD and LSF levels are significantly decreased compared with those in untreated 
HepG2 cells; C: Overexpression of exogenous LSF in HepG2 cells. LSF levels are significantly increased compared with those in untreated HepG2 cells. Representa-
tive blots are shown from three independent experiments with identical results. β-actin was used as an internal control for equal loading of samples and the relative 
ratios of each band were normalized to β-actin; D: The mean ± SE of 3 experiments analyzing the relative expression of Notch1-ICD (DAPT group: aP < 0.05, Notch-
ICD1 group: bP < 0.05); E: DAPT group: cP < 0.05, Notch-ICD1 group: dP < 0.05; F: Hes-1 mRNA expression levels were determined by semi-quantitative reverse 
transcription-polymerase chain reaction and mRNA levels were normalized to those of GADPH. Results represent the mean ± SE of 3 independent experiments (DAPT 
group: eP < 0.05, NICD1 group: fP < 0.05); G: Promoter assay showing an approximately 60-fold increase in LSF reporter activity in hepatic stellate cells (HSC) trans-
fected with NICD1-pEGFP-C1 compared with controls.
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Figure 5  Exogenous late SV40 factor expression increases the proliferation of HepG2 cells. A: Colony formation assay for uninfected HepG2 cells; B: HepG2 
cells transfected with pEGFP-C1; C: HepG2 cells transfected with late SV40 factor (LSF)-pEGFP-C1; D: Colony data represent the mean ± SE (aP < 0.05); E: Clone 
efficiency data (mean ± SE; bP < 0.05).
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LSF reporter activity in HSC transfected with NICD1-
pEGFP-C1 was directly correlated with LSF protein lev-
els. Thus, we speculate that LSF is a key mediator of  the 
Notch signaling pathway. 

LSF is directly targeted in diverse cell types by the 
MEK/ERK kinase pathway, which is central to growth 
factor signaling[31-33]. Recent data show that LSF acts as an 
oncogene in HCC[34]. However, any relationship between 
LSF signaling and its biological and tissue-specific func-
tions is largely speculative at present. Our data suggest 
that LSF participates in dysregulated Notch signaling 
in human hepatocarcinogenesis. As described above, 

our observations also indicate that constitutively active 
Notch-1 increases LSF expression in liver cancer and 
in human HCC cell lines, such as HepG2. In fact, the 
exogenous Notch-1 activation we observed in normal 
human cells with upregulated LSF might underlie the 
molecular mechanisms involved in the pathogenesis of  
human HCC. In this study, the biological behavior assay 
suggested that LSF plays an important role in hepatocar-
cinogenesis. LSF is essential for cell cycle progression at 
the G1/S transition after reentry of  quiescent cells into 
the cell cycle[13,14]. Our data suggest that LSF plays an im-
portant role in DNA synthesis and cell survival. Forced 
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Figure 6  Effects of exogenous late SV40 factor expression on cell invasiveness. A: Matrigel invasion assay using uninfected HepG2 cells; B: HepG2 cells trans-
fected with pEGFP-C1; C: HepG2 cells transfected with late SV40 factor (LSF)-pEGFP-C1; D: Data represent the mean ± SE (aP < 0.05). 
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overexpression of  LSF in HepG2 cells resulted in highly 
aggressive tumors in nude mice. Our results also showed 
that pathological activation of  Notch signaling and el-
evation of  LSF is necessary for neoplastic proliferation, 
which facilitates entry into G1/S phase of  the cell cycle, 
promotes DNA synthesis, and functions as an anti-apop-
totic factor. These observations indicate the need for de-
tailed investigations into the role of  Notch signaling and 
LSF and Ras mutations, increased expression of  wild-
type Ras isoforms, and other mechanisms involved in the 
formation of  human HCC. 

Plausible mechanisms that perturb Notch signaling 
mediated by LSF effects in human hepatocarcinogenesis 
involved in growth promotion and inhibition of  apop-
tosis. Further study of  how LSF affects Notch signaling 
pathways should be performed in deficient mice and/or in 
cell cultures in which signaling is knocked down. It would 
be highly informative to tease out the distinct contribu-
tion of  Notch signaling to the overall function of  LSF. In 
further studies, we will investigate the role of  LSF in dys-
regulated Notch signaling in HCC in more detail. 

The results of  this study indicate that LSF is a novel 
mediator of  Notch signaling and plays a crucial role in 
the neoplastic proliferation, invasion, development and 
progression of  human HCC. Our observations place 
LSF among the key mediators of  Notch-1 signaling, and 
suggest that it might be a novel therapeutic target for the 
treatment of  highly aggressive HCC.
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