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Abstract
AIM: To assess the anti-inflammatory effect of the pro-
biotic Bifidobacterium lactis  (B. lactis ) in an adoptive 
transfer model of colitis. 

METHODS: Donor and recipient mice received either 
B. lactis  or bacterial culture medium as control (deMan 
Rogosa Sharpe) in drinking water for one week prior 
to transfer of a mix of naive and regulatory T cells until 
sacrifice.

RESULTS: All recipient mice developed signs of colonic 
inflammation, but a significant reduction of weight loss 
was observed in B. lactis -fed recipient mice compared 
to control mice. Moreover, a trend toward a diminution 
of mucosal thickness and attenuated epithelial damage 
was revealed. Colonic expression of pro-inflammatory 
and T cell markers was significantly reduced in B. lactis -
fed recipient mice compared to controls. Concomitantly, 

forkhead box protein 3, a marker of regulatory T cells, 
was significantly up-regulated by B. lactis . 

CONCLUSION: Daily oral administration of B. lactis  
was able to reduce inflammatory and T cells mediators 
and to promote regulatory T cells specific markers in a 
mouse model of colitis.
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INTRODUCTION
Crohn’s disease (CD) and ulcerative colitis (UC), referred 
to as inflammatory bowel diseases (IBDs), are chronic 
relapsing and remitting inflammatory diseases of  the 
gastrointestinal tract. IBD affects people in the prime of  
their lives, with first diagnosis usually between the ages of  
15 and 25 years, and due to the chronic nature of  IBD, 
patients usually require lifelong treatment. More than one 
million people in the United States and more than four 
million people worldwide suffer from IBD. According to 
the current increase in affected people, IBD medical costs 
will reach approximately 2 billion euros by the end of  
2010. The high cost and limited response to current thera-
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pies prompt research and development of  new treatment 
options. 

IBD is thought to result from an inappropriate, over-
whelming and ongoing activation of  the mucosal immune 
system in genetically susceptible individuals driven by 
antigens originating from the microbiota of  the gastroin-
testinal tract[1]. Some of  the immune-related characteris-
tics of  IBD include over-activity of  effector lymphocytes, 
induction of  pro-inflammatory cytokines, and failure of  
regulatory T cells (Tregs) to control inflammation[2,3]. 

The crucial role of  the intestinal microbiota in the 
induction and progress of  disease has been validated in 
patients and in animal models of  intestinal inflammation 
resembling IBD[4,5]. Indeed, it was demonstrated that in-
testinal inflammation could not be induced under germ-
free conditions[6] and that antibiotic treatment attenuated 
the disease severity[7]. Interestingly, the equilibrium of  the 
intestinal microbiota appears to be perturbed in IBD as 
decreased levels of  Bifidobacterium and Lactobacillus strains 
have been described in fecal samples, whereas raised counts 
of  Enterococcus and Bacteroides species are found in inflamed 
mucosa of  patients[8]. Thus, as probiotics are known to 
have a strong homeostatic impact on the intestinal flora[9], 
it is valuable to consider probiotics as alternative therapies 
for IBD. Hence, although conflicting reports exist, a num-
ber of  studies report the benefits of  probiotic therapy 
in the alleviation of  IBD[10-13]. For example, VSL#3, a 
mixture of  four lactobacilli, three bifidobacteria and a 
streptococcus species, proved to be effective in inducing 
and maintaining remission in UC patients or in preventing 
pouchitis[14-17]. 

While most clinical studies have relied on mixes of  
probiotic strains or on synbiotics to act on IBD, a few 
preclinical or ex-vivo studies have begun to reveal that the 
use of  single probiotic strains, mainly consisting of  Lacto-
bacillus strains, can also be efficient in dampening inflam-
mation[18-21].

The present study reports on the beneficial effects of  
the use of  a single Bifidobacterium strain, Bifidobacterium lactis 
(B. lactis), on intestinal inflammation in a murine model of  
T cell-mediated colitis. This well established Th1-type cyto-
kine-mediated hyper-response model relies on the adoptive 
transfer of  CD4+CD45RBhigh naive T cells in immunode-
ficient mice[22], such as RAG2-/- mice which lack adaptive 
immunity[23]. This cell transfer initiates colitis pathology 
akin to that of  humans[24], which develops as a result of  
the absence of  suppressive regulatory cells in the recipient 
mice. Indeed, co-transfer of  mature CD4+CD45RBlow T 
cells, a source of  Tregs, reduces or even prevents colitis[25]. 
In the present work, naive T cells were adoptively trans-
ferred together with a low proportion of  Tregs. This par-
ticular setting, still permitting the induction of  inflamma-
tion in recipient mice, provided an interesting tool allowing 
the simultaneous analysis of  the impact of  prophylactic 
B. lactis administration on both T cell partners involved in 
the induction (naive T cells) or regulation (Tregs) of  IBD 
pathology. 

MATERIALS AND METHODS
Animals
C57BL/6J mice (8- to 12-wk-old) were purchased from 
Harlan (Oxon, UK). Immunodeficient RAG2-/- mice (8- 
to 12-wk-old)[26] were used from a colony of  RAG2-/- mice 
maintained at the Institute for Labortierkunde, University 
of  Zurich, Switzerland. The RAG2-/- mouse colony was 
derived from a colony from Bern (Switzerland) by embryo 
transfer under gnotobiotic conditions and recolonized 
with an Altered Schaedler Flora[27]. 

Preparation of B. lactis and experimental design
A freshly prepared solution containing Bifidobacteria lactis 
(B. animalis subsp. lactis NCC 2818) from the Nestlé Cul-
ture Collection (Nestlé Research Center, Lausanne, Swit-
zerland) was used for this study. This strain was chosen 
according to in vitro anti-inflammatory properties (data 
not shown). Bacteria were grown for two passages under 
strictly anaerobic conditions in deMan Rogosa Sharpe 
(MRS) broth containing 0.05% cysteine (BD, Switzer-
land). After quantification of  bacteria by serial dilution as 
described for fecal microbiota, 10% glycerol was added 
to the bacteria stock; aliquots were made and stored at 
-80℃ until use. Frozen bacteria were added to drinking 
water each day of  the study at 1 × 109 colony-forming 
units (CFU)/mL leading to a dose approximating 3 × 
109 CFU/d per mouse. Donor and recipient mice were 
supplemented with either probiotic or MRS control solu-
tion (both containing 10% glycerol) according the study 
design (Figure 1). Note that as the settings of  the present 
adoptive transfer model permit a focus on Tregs, probiot-
ics were also given to donor mice in order to potentially 
stimulate these cells as soon as possible. Each group of  
recipient mice consisted of  5 mice.

Induction of colitis in RAG2-/- mice by adoptive transfer
CD4+ T cells from mesenteric lymph nodes (MLNs) were 
isolated from C57BL/6 donor mice by negative depletion 
using MACS technology (Miltenyi Biotec, Germany). The 
negative fraction, enriched for CD4+ T cells, was stained 
using Fluorescein isothiocyanate-conjugated CD45RB 
antibody (mAb) (eBioscience, San Diego, USA) and 
Phycoerythrin-conjugated CD4 mAb (eBioscience, San 
Diego, USA). Subsequently, CD4+ T cells were sorted ac-
cording to the expression of  CD45RB on a FACS Aria 
(BD; Allschwil, Switzerland). Sorted CD4+CD45RBhigh 
and CD4+CD45RBlow T cells were washed, resuspended at 
1 × 106 cells/mL in sterile phosphate buffered saline and 
injected i.p. at the ratio of  9:1 respectively (2 × 105 total 
cells) into each of  the 8- to12-wk-old syngeneic RAG2-/- 
recipient mice. This 9:1 ratio was chosen because it still 
allowed development of  colitis despite the co-injection 
of  regulatory cells. Body weight of  recipient mice was 
measured every three days from day 0 to day 21, and then 
every other day until sacrifice (day 27). Body weights were 
recorded as percentage of  initial body weight.
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Sample collection
Fresh fecal samples (approximately 0.05 g) were collected 
at three time-points during the study: before initiation 
of  B. lactis supplementation (day -7), at the day of  T cell 
transfer (day 0), and at the end of  the study (day 27). They 
were collected into 0.5 mL Ringer’s solution, immediately 
homogenized and snap-frozen, then stored at -80℃ until 
analysis. Blood samples were collected at the same time 
points as fecal samples and frozen at -80℃ until needed. 
At the end of  the experimental period, mice were sacri-
ficed and colon was divided into three parts. The proximal 
and the distal parts were snap-frozen in liquid nitrogen 
for protein and mRNA expression analysis, respectively. 
A smaller sample of  the middle colon was used for histo-
pathological analysis. 

Fecal microbiota
Fecal extracts were diluted in pre-reduced Ringer’s solution 
(0.5% cysteine) to perform serial dilutions (10-2 to 10-6) and 
then plated. Portions (100 μL) of  appropriate dilutions 
were plated onto selective or semi/selective media. Bifidobac-
teria were counted on tomato juice agar medium. Plates for 
the enumeration of  Bifidobacteria colonies were incubated at 
37℃ in anaerobic conditions, in a jar containing Anaerocult 
A tablets (Merck, Germany), for 48 h. After incubation, 
each plate was examined for bacterial colonies. The detec-
tion-limit for the assessed bacteria dilutions was 103. Bacte-
rial counts were expressed as means log10 CFU/g feces 
± SE. Detection of  B. lactis was performed by polymerase 
chain reaction (PCR) using B. lactis-specific primers. 

Histological assessment
Paraffin-embedded colonic tissue sections were scored as 
previously described[28], with minor modifications. Briefly, 
specimens of  the transverse colon of  each animal were 
collected and fixed immediately in 4% buffered paraformal-
dehyde for 16-24 h for subsequent preparation of  paraffin-
embedded tissue blocks. Tissue sections were stained with 
hematoxylin/eosin for subsequent histopathological as-
sessment. Each tissue section was independently evaluated 
by at least two trained pathologists according to a standard 
evaluation sheet in a blinded fashion. Histological assess-
ment was performed using the scoring criteria displayed in 
Table 1. The range of  histopathological scores was from 1 
(no alteration) to 16 (most severe signs of  colitis).

Protein expression
Protein extraction and quantification: Colons were ho-
mogenized in RIPA (Radio Immuno-Precipitation Assay) 
buffer containing 50 mmol/L Tris base 50, 150 mmol/L  
NaCl, 2 mmol/L EDTA (Ethylene Diamine Tetraacetic 
Acid), 2 mmol/L EGTA (Ethylene Glycol Tetraacetic Acid), 
0.5% sodium deoxycholate, 1% Nonidet P-40, 0.1% SDS 
(Sodium Dodecyl Sulfate), 50 mmol/L NaF, 200 μmol/L  
Na3VO4, 0.1% β-mercaptoethanol, 500 μmol/L AEBSF 
[4-(2-AminoEthyl) BenzeneSulfonyl Fluoride hydrochlo-
ride], 20 μmol/L bestatin, 7 μmol/L E-64, 11 μmol/L 
leupeptin, 7.5 μmol/L pepstatin A, and 0.4 μmol/L apro-
tinin. The pH was adjusted to 7.2. The homogenate was 
then centrifuged at 10 000 g for 10 min at 4℃ to remove 
debris. Protein determination was carried out using a 
modified Lowry method, as described by the manufac-
turer (Bio-Rad, USA).

Enzyme-linked immunosorbent assay measurements: 
Interleukin (IL)-6 and tumor necrosis factor (TNF)-α lev-
els were measured in the colon protein extracts by enzyme-
linked immunosorbent assay (ELISA) following the manu-
facturer’s instructions (R&D Systems, England). To avoid 
interference of  the protein lysis buffer with the ELISA 
reaction, four independent dilutions were performed. All 
samples were measured in technical duplicates and the 
concentration calculations were derived from appropriate 
standard curves.

Electrophoresis and Western blotting: 50 μg of  pro-
tein were separated by electrophoresis on a MOPS [3-(N-
MorphOlino)PropaneSulfonic acid] SDS running 4%-12% 
bis-tris gel (Invitrogen, USA). Proteins were then trans-
ferred to a nitrocellulose (NC) membrane by electroblotting 
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Figure 1  Experimental set up. Feeding of Bifidobacterium lactis (B. lactis)-fed donors and recipients mice were started on day -7 (D-7) until D0 for donor mice and 
until D27 for recipients. At D0, donor mice were sacrificed and cell transfer was performed in RAG-/- recipient mice..

Table 1  Summary of assessed criteria to determine histologi-
cal scoring

Criteria Scoring

Infiltration of the colonic lamina propria 0-3
Loss of goblet cells 0-3
Crypt abscesses 0-3
Epithelial erosion 0-2
Hyperemia 0-2
Thickness of the colonic mucosa 1-3
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(30 V for 60 min). Western blot analysis was performed 
with antibodies against murine cyclooxygenase 2 (COX-2) 
(Cayman Chemicals, USA), p38 and phospho p38 (Cell 
Signaling Technology, USA), signal transducer and activa-
tor of  transcription 3 (STAT-3) and phospho STAT-3 (Cell 
Signaling Technology, USA) and β-actin (Sigma, St. Louis, 
MO, USA). Secondary antibodies were from Molecular 
Probes (USA) or Jackson ImmunoResearch Laboratories 
(USA). Relative quantitation of  bands was determined us-
ing the Scion Image Densitometry System (Scion Corp., 
USA), with all quantities normalized to expression levels of  
β-actin.

Immunohistochemistry for Ki-67 on formalin-fixed 
tissue sections: After dewaxing, tissue sections were pre-
treated in 10 mmol/L citrate buffer, pH 6.0, for 7 min at 
1 bar/121℃. Pretreated tissue sections were subsequently 
incubated for 60 min with a primary rat-anti-mouse Ki-67 
mAb (Clone: Tec-3; isotype: rat IgG2a; DakoCytomation, 
USA). After washing, sections were incubated with the bi-
otinylated secondary reagent (rabbit-anti-rat Ig; absorbed 
with mouse Ig (DakoCytomation). Streptavidin-HRP 
complexes with 3,3’-diaminobenzidine as the chromogen 
were used for detection. 

mRNA expression
RNA extraction of  the homogenized tissues was per-
formed using the NucleoSpin RNA Ⅱ Kit (Macherey-
Nagel, Germany). Total RNA was quantified using the 
Ribogreen RNA Quantitation Kit (Molecular Probes, 
USA), and the RNA quality was assessed by Agilent RNA 
6000 Nano LabChip Kit (Agilent Technologies, USA). 
Total RNA (2 μg) was reverse transcribed using Multi-
scribe reverse transcriptase (Applied Biosystems, USA). 
Real-time PCR was carried out using custom design Low 
Density Array (Applied Biosystems, X, USA). The quanti-
tative PCR (qPCR) reactions were performed with 2 ng of  
cDNA on ABI PRISM 7900HT qPCR machine (Applied 
Biosystems, USA) piloted by SDS 2.2 software (Applied 
Biosystems, USA). Results of  target mRNA are expressed 
as the number of  specific copies for 106 GAPDH mRNA 
molecules in the same sample.

Statistical analysis
Statistical analysis was performed using the two-tailed 
Mann-Whitney U test. Differences were considered statisti-
cally significant when P < 0.05. All data are shown as me-
dian ± interquartile-range (IQR) except for the body weight 
analysis.

RESULTS
Detection of B. lactis in fecal samples
In order to control the probiotic intake, detection of   
B. lactis in fecal samples was performed using PCR detec-
tion. No B. lactis was identified in the feces prior to admin-
istration of  this strain in donor C57BL/6J and recipient 
RAG-/- mice. All donor animals receiving the treatment 
were positive for B. lactis on the day of  cell transfer (day 0, 

data not shown). In the recipient animals, supplemented 
with the probiotic strain, approximately 1 × 108 CFU of   
B. Lactis/g fecal content could be measured at day 0 and 
day 27 (sacrifice day).

Effect of B. lactis on body weight loss
As already described in other studies[29,30], control recipi-
ents of  CD4+ T cells started to lose body weight from day 
9 after adoptive cell transfer. Thereafter they continuously 
lost weight and on the day of  sacrifice (day 27), their body 
weight was lower than on the day of  initial T cell transfer 
(Figure 2). In contrast, B. lactis-fed recipient mice showed 
a marked delay of  onset of  body weight loss, starting only 
at day 18. Thereafter B. lactis-fed recipients also continued 
to lose weight until the day of  sacrifice (day 27). At the 
end of  the experimental period, body weight of  B. lactis-
fed recipients of  CD4 T cells was comparable to the initial 
body weight at the time of  colitis induction by adoptive T 
cell transfer (Figure 2).

Effect of B. lactis on colon histopathology
Histopathology scores, ranging from 0 (no colitis) to 16 
(most severe colitis) (Table 1), were based on the analysis 
of  6 criteria as described in the methodology section. At 
sacrifice, the total colitis scores of  B. lactis-treated and 
-untreated recipient groups were not significantly differ-
ent (data not shown). When each of  the histopathology 
criteria was assessed individually, differences between the 
two groups of  recipients were nonetheless observed at the 
level of  mucosal thickness; B. lactis-treated recipient mice 
showing a tendency for an attenuated mucosal thickening 
compared to control recipient mice (Figure 3B), resulting 
in a lower colitis score as shown in Figure 3A. 

Beyond criteria used for histopathology scoring, epi-
thelial proliferation is considered to be strongly associated 
with a gastrointestinal inflammatory status[31]. In order to 
evaluate these criteria, paraffin-embedded colon sections 
were stained for Ki67 expression by immunohistochemical 
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Figure 2  Bifidobacterium lactis feeding significantly delayed weight loss. 
Weight curves for control-fed and Bifidobacterium lactis (B. lactis)-fed recipient 
mice following adoptive T cell transfer. Every three days or every other day follow-
ing T cell transfer, body weight (BW) of control-fed and B. lactis-fed recipient mice 
was recorded. Results are expressed as the mean ± SE (n = 5 mice per group) 
and statistical significance is indicated (aP < 0.05).
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labeling reaction to determine the proportion of  proliferat-
ing cells in the colonic epithelium in colitic mice, treated or 
not with B. lactis (Figure 3B). Colonic epithelium from all 
recipient mice showed a high proliferation rate in the lower 
two-thirds of  the colonic crypts (Figure 3B), whereas prolif-
eration was only restricted to crypts in healthy controls (data 
not shown). Nevertheless, epithelial hyper-proliferation ap-
peared markedly reduced in B. lactis-treated recipient mice 
(Figure 3B).

Effect of B. lactis on colonic pro-inflammatory markers
The effect of  B. lactis feeding on the expression of  well 
known proinflammatory markers, such as COX-2, IL-6 
or TNF-α, in the colon of  recipient mice was assessed. 
COX-2 is an enzyme known to be strongly induced in in-
testinal epithelial cells upon inflammatory conditions. Upon 
disease induction and in absence of  treatment (control 
recipient group), the protein expression of  COX-2 was 
strongly detected in two out of  five samples and slightly 
in a third one (Figure 3C). Conversely, in the B. lactis-fed 
group, only one out of  five samples had slight COX-2 pro-
tein expression (Figure 3C). Relative densitometric quanti-
fication of  the bands clearly revealed a significant decrease 
of  COX-2 expression in the B. lactis-fed group compared to 
control mice (Figure 3C).

Feeding with B. lactis also resulted in a significant de-
crease of  IL-6 and TNF-α protein production in the co-
lon of  recipient mice compared to the non-treated recipi-
ent mice (Figure 4A and C). Accordingly, phosphorylation 
of  the transcription factors STAT-3 and p38, associated 

with the signaling pathways of  these two cytokines, was 
also diminished by B. lactis feeding (Figure 4B and D).

Effect of B. lactis on dendritic cell markers
It is now well established that co-stimulatory interactions 
between antigen-presenting cells and cells of  the adaptive 
immune system, such as the CD40/CD40 ligand (CD40L) 
and OX40/OX40 ligand (OX40L) (CD134/C134L) path-
ways, play a crucial role in colitis induction and severity of  
disease[32,33]. mRNA expressions of  these four molecules 
were thus assessed in colon tissue samples of  recipient 
mice. Whereas they were all induced in recipient mice in 
comparison to healthy controls (Figure 5A-D), B. lactis 
feeding significantly down-regulated the expression levels 
of  CD40L and OX40/OX40L when compared to non-
treated colitic controls (Figure 5B-D). Expression of  
CD40 only showed a tendency to be down-regulated by  
B. lactis feeding. 

Effect of B. lactis on colonic T cell markers
Colitis induction in the transfer model of  colitis critically 
depends on the expansion and preferential differentia-
tion of  transferred T cells into Th1 T cells. Hence, T cell-
related gene transcripts interferon (IFN)-γ, CD3γ and 
T-bet were measured in colonic tissue samples in both 
groups of  recipients. All of  these T-cell transcripts, highly 
expressed in colitic animals when compared to healthy 
control mice, were significantly decreased in B. lactis-fed 
mice (Figure 6A-C). In order to gain insight into regula-
tory functions of  T cells, mRNA expression of  forkhead 
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box protein 3 (Foxp3) in colon samples was also quanti-
fied and showed that Treg cells were significantly potenti-
ated by feeding with the probiotics, as a 9.2-fold increase 
of  the expression of  Foxp3 was observed in B. lactis-fed 
mice when compared to control colitic mice (Figure 6D).

DISCUSSION
The exact etiology of  chronic IBD is still unknown but 
seems complex and multifactorial. From human studies 
and animal models of  experimental colitis, increasing evi-
dence has been generated that the resident intestinal flora 
play a critical role in the development of  the intestinal 
inflammation in genetically susceptible individuals. In-
deed, on given genetic backgrounds, such as in IL-2- and 
IL-10-knockout mice or in HLA-B27 transgenic rats, as 
well as in the present colitis model, colitis develops when 
animals are raised under specific pathogen-free condi-
tions, but almost no disease can be observed under germ-
free conditions[34-36]. With regard to the importance of  the 
quality of  the microflora in colitis, clinical and preclinical 
observations have demonstrated beneficial effects of  
probiotic microorganisms in the treatment of  IBD in hu-
mans[11,12,14,15] and in experimental models of  colitis[20,37-39]. 

While most reports in the literature describe effects 
of  mixes of  probiotic strains or of  synbiotics, only a few 
papers have investigated the beneficial potential of  the use 
of  single probiotic strains, and moreover of  Bifidobacterium 
probiotic strains, to alleviate intestinal inflammation. As 
a preclinical model of  IBD, the CD4+CD45RBhigh naive 
T cell transfer model of  colitis[29,30] was exploited in this 

study. This widely used model of  colitis allows the study 
of  the Th1 cell-mediated immune events leading, without 
treatment, to an irreversible colonic inflammation charac-
terized by a massive influx of  mononuclear cells into the 
colonic mucosa, an elevated level of  pro-inflammatory 
cytokines, appearance of  crypt abscesses and epithelial cell 
erosions[40]. Noteworthy, as for experimental models using 
genetically modified animals, the composition of  the in-
testinal flora is also clearly known to affect the kinetics and 
the severity of  the colitis in this particular model[41]. More-
over, in the present study, the fact that CD4+CD45RBlow T 
cells were also transferred to recipient mice permitted us 
to also study the role that Tregs play in suppressing or lim-
iting the onset and/or regulation of  inflammation. Thus, 
for all the above mentioned reasons, this is to our knowl-
edge one of  the few studies that shows the preventive 
effects of  a Bifidobacterium strain on the development of  
IBD in the CD4+CD45RBhigh T cell reconstituted RAG-2 
deficient mouse model with insights on Tregs.

Hence, it was demonstrated in the present study that  
B. lactis actually possesses in vivo immuno-modulatory 
properties and was able to improve the inflammatory 
status of  treated mice. Indeed, it was revealed that supple-
mentation of  mice with B. lactis, one week before and 
during onset of  colitis, resulted in a diminished colitis-
induced weight loss (Figure 2), a reduction of  mucosal 
thickness (Figure 3), a decreased expression of  pro-
inflammatory cytokines and related transcription factors 
(Figure 4), a diminution of  T cell infiltration (Figure 5) 
and an increase of  regulatory T cell markers (Figure 6) 
when compared to non-supplemented control animals.
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Follow-up analysis of  the weight of  mice showed that 
B. lactis treatment significantly delayed the body weight loss 
observed in control recipient mice (Figure 2), revealing a 
major impact of  the B. lactis supplementation on the over-
all metabolism of  treated mice. After some gain of  weight 
due to normal growth of  the mice, weight loss was already 

visible at day 9 in the control recipient mice whereas this 
only started at day 18 in the B. lactis-fed mice. In this latter 
group, no real weight loss was even observed at the end 
of  the study, the mice having reached their starting weight. 
Whether this weight loss would continue under the start-
ing weight should be tested in future studies. 
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Concerning histopathological analyses of  the colons 
at sacrifice, even if  the benefit observed regarding weight 
loss was not visible on total score, among all criteria in-
vestigated mucosal thickness was particularly improved 
by probiotic supplementation, suggesting a diminution 
of  cellular infiltration in the mucosa (Figure 3A). 

In line with this reduction of  colonic thickness, a 
strong decrease of  the reparative proliferative activity of  
colonic epithelial cells, assessed by immunostaining using 
the proliferative marker Ki-67, was observed in the mice 
fed with B. lactis. Indeed, colonic inflammation induces 
strong epithelial erosion due to uncontrolled apoptosis[42]. 
This increased level of  apoptosis, which contributes sig-
nificantly to the IBD pathology[1], is presumably due in 
part to a strong increase of  inflammatory cytokines such 
as TNF and IFN-γ as observed in our study; cytokines 
known to be able to induce apoptosis directly by suppress-
ing anti-apoptotic signals in the epithelium[43,44]. Hence, 
since in our experimental setting mice were sacrificed at a 
late time point relative to onset of  inflammation, repara-
tive proliferation was the more relevant parameter to be 
investigated here rather than apoptosis.

The role of  pro-inflammatory cytokines in IBD pa-
thology has been firmly established[45]. Dysregulation of  
the intestinal immune system both at humoral and cellular 
level constitutes an important element in the multifacto-
rial pathogenesis of  IBD. A strongly elevated expression 
of  pro-inflammatory mediators, most notably IL-6 and 
TNF-α, has been identified in IBD patients and experi-
mental models of  colitis in mice[46]. In cases of  acute 
inflammation, IL-6 synthesized mainly by macrophages 
first binds to the IL-6 receptor (IL-6R); this complex then 
associates with gp130, inducing dimerization and the ini-
tiation of  signaling through STAT-3. In the present study, 
the decrease of  colonic IL-6 expression and STAT-3 
phosphorylation induced by B. lactis strongly suggest that 
the probiotic could act, at least in part, on the IL-6 trans-
signaling pathway and could by this process dampen the 
inflammation. Indeed, previous studies performed in both 
animal models and humans clearly described that abroga-
tion of  IL-6 pathway activation was associated with an 
improvement of  colonic inflammation[47-49].

Moreover, analysis of  p38 phosphorylation has con-
firmed the beneficial impact of  B. lactis feeding on inflam-
mation. Indeed, p38 kinase regulates the production of  
key inflammatory mediators, including TNF-α or IL-1β. 
In addition, p38 also acts downstream of  cytokines such 
as TNF-α, mediating some of  their effects[50]. Hence, the 
significant diminution of  p38 phosphorylation observed 
in this study upon B. lactis feeding (Figure 4) revealed the 
broad range of  potential effects of  the probiotic treatment 
on colitis.

B. lactis feeding also modulated COX-2 protein ex-
pression in the colon of  mice (Figure 3C). COX-2, an 
enzyme responsible for formation of  important biological 
mediators called prostanoids (including prostaglandins, 
prostacyclin and thromboxane), has been shown to be 
specifically induced in epithelial cells under IBD condi-
tions[51]. Among the prostanoids related to COX-2 activity, 

prostaglandins represent one of  the most important com-
ponents of  mucosal defence in the small intestine and co-
lon. The weight of  evidence collected so far suggests that 
prostaglandins derived from COX-2 are important in pro-
moting the healing of  mucosal injury, in protecting against 
bacterial invasion, and in down-regulating the mucosal im-
mune system. Suppression of  COX-2 in a setting of  gas-
trointestinal inflammation and ulceration has been shown 
in experimental models to result in impaired healing and 
exacerbation of  inflammation-mediated injury[52-55]. Hence, 
at the intestinal level, expression of  COX-2 is a natural 
response of  the organism to prevent tissue damage due 
to inflammation and is sustained by this inflammation. In 
this way, COX-2 expression represents a good marker of  
the actual disease activity[56]. In the present study, the ob-
served attenuated COX-2 expression upon B. lactis feeding 
strongly indicates an anti-inflammatory effect of  this pro-
biotic bacterium. 

Colitis, in the T-cell adoptive transfer model, is accom-
panied by the accumulation of  dendritic cells (DCs) in the 
MLN as well as locally in the colon[57]. DCs in the MLN 
express an activated phenotype with increased expression 
of  CD40 and the TNF-like molecule OX40L[58]. Indeed, 
activated T cells express the cell-surface costimulatory 
molecules CD40L and OX40. CD40L binds to CD40 on 
antigen-presenting cells (APCs) inducing OX40L expres-
sion, and leading to the transmission of  further activatory 
signals to both the T cell and the APC[59,60]. The CD40-
CD40L and OX40L-OX40 pathways play functional roles 
in the inflammatory response in this model, as blockade of  
either pathway inhibits colitis[58,61,62]. The overall decrease in 
these four costimulatory partners observed upon B. lactis 
feeding (Figure 5) thus revealed a diminished activity of  the 
immune system in sustaining the adaptive inflammatory 
reactions. The diminution in the number of  T cells present 
in the colonic mucosa of  B. lactis-treated mice compared 
to control animals, as revealed by the measurement of  the 
relative expression of  CD3γ mRNA (Figure 6B), might be 
considered as a partial consequence of  this dampening of  
the costimulatory activity.

Beyond the intensity of  the DC-T cell interaction,  
B. lactis feeding could interfere with the outcome of  the 
interaction in the mucosa. Indeed, B. lactis was also able to 
significantly decrease T-bet and IFN-γ mRNA expression 
compared to untreated animals (Figure 6A and C). IFN-γ 
is the hallmark Th1 cytokine and T-bet is a critical factor 
for both the initiation and perpetuation of  Th1-mediated 
colitis. Indeed, in another type of  adoptive transfer model, 
T-bet-deficient CD4+CD62L+ T cells failed to induce Th1-
mediated colitis in immunodeficient hosts, whereas T-bet-
overexpressing CD4+CD62L+ T cells induced a more rapid 

onset of  colitis[63]. The observed diminution of  the IFN-γ 
mRNA expression is fully in line with the decrease of  T-bet, 
revealing a functional impact on activated T cells by B. lactis.

Development of  colitis following transfer of  CD4+ 

CD45RBhigh T cells into immunodeficient recipients can be 
modulated or even abrogated by cotransfer of  cells from 
the antigen-experienced CD4+CD45RBlow population[24], a 
potential source of  Tregs. In the present study, as a small 

Philippe D et al . B. lactis  reduces experimental colitis



467 January 28, 2011|Volume 17|Issue 4|WJG|www.wjgnet.com

proportion of  such cells have been actually cotransferred, 
we performed a quantification of  mRNA expression for 
Foxp3 in colon samples of  recipient mice. This marker has 
been identified as being necessary for both the develop-
ment and function of  Tregs[64-66]. It appeared that B. lactis 
feeding significantly potentiated the presence of  these par-
ticular cells in the inflamed mucosa as treated mice showed 
a strong augmentation of  Foxp3 mRNA expression com-
pared to control mice (Figure 6D) whereas total number 
of  T cells decreased in a converse fashion (Figure 6B). 
Moreover, while the dampened expression of  all analyzed T 
cell-related proinflammatory markers might be a direct con-
sequence of  the diminution in T cell number in the colonic 
mucosa of  B. lactis-fed animals, the fact that Foxp3 mRNA 
expression was up-regulated indicates a strongly increased 
prevalence of  Tregs in the inflamed tissues. This increase 
of  Treg cells may be one of  the key players in the allevia-
tion of  the colitis observed in this study. 

Despite the fact that mechanisms of  action remain 
unclear, two different options could be hypothesized to ex-
plain the effect of  probiotics on the Tregs. The classical one 
will be that probiotics in the colon generated antigenic pep-
tides or molecules able to inhibit or modulate DC activation 
responsible for uncontrolled T cell proliferation which leads 
to colitis development, as supported by the diminished ex-
pression of  the CD40-CD40L and OX40L-OX40 costimu-
latory partners. More recently, a new hypothesis could be 
proposed to explain the probiotic effect, involving the toll-
like receptor (TLR) pathway. Indeed, it has been revealed 
that TLR molecules that recognize a vast range of  micro-
bial products, thought to be only restricted to cells of  in-
nate immunity, are also expressed by Tregs[67]. Interestingly, 
a recent study demonstrated a role of  the TLR2 pathway 
in the control of  expansion and function of  Tregs[68]. Such 
a direct effect of  TLR ligands on Tregs thus opens a new 
way to consider the impact of  probiotics in the regulation 
of  colitis. Future investigations on the impact of  B. lactis on 
Tregs will provide interesting pieces of  information regard-
ing how and when probiotics exert their effect, as the pres-
ent study does not allow discrimination as to whether Tregs 
are potentiated already in donor mice or only in recipient 
mice upon induction of  inflammation.

In conclusion, it was shown in the present study that 
B. lactis is a Bifidobacterium probiotic strain able to provide 
anti-inflammatory properties in an adoptive cell transfer 
model of  IBD. Mechanisms of  actions are not completely 
elucidated and need further investigations, but a clear ef-
fect on Tregs may be suggested as a key influence. 
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