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Abstract
Many identified and yet unknown factors contribute to 
the pathogenesis of inflammatory bowel disease (IBD). 
The genome-wide association studies clearly support 
the earlier developed concept that IBD occurs in geneti-
cally predisposed individuals who are exposed to distinct 
environmental factors, which together result in dysregu-
lation of the mucosal immune system. Thus, the ma-
jority of previous studies have focused on the immune 
response within the intestinal wall. The present review 
aims to emphasize the contribution of three extralumi-
nal structures to this inflammatory process, namely the 
mesenteric fat tissue, the lymphatics and the microvas-
culature. Broadening our view across the intestinal wall 
will not only facilitate our understanding of the disease, 
but will also us to identify future therapeutic targets.
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INTRODUCTION
The genome-wide association studies in recent years have 
contributed significantly to the understanding of  the patho-
genesis of  inflammatory bowel disease (IBD)[1]. The results 
obtained from these studies have not only confirmed the 
relevance of  earlier characterized pathways, but equally 
have opened novel avenues. One possible hypothesis for 
the etiology of  IBD is that the mucosal immune system is 
hyper-responsive to luminal antigens (e.g. dietary factors, 
commensal bacteria) in genetically predisposed individu-
als[2]. This hypothesis is limited to the intestinal lumen and 
wall. Focusing on Crohn’s disease, the inflammation is not 
restricted to the luminal side of  the intestinal wall. Rather, 
transmural inflammation presents as the dominant pheno-
type, which leads to the question of  whether extraintesti-
nal/extraluminal structures contribute to the inflammatory 
process. In the present overview, three extraluminal struc-
tures are discussed, which have been demonstrated to play 
a role in the regulation of  intestinal inflammation, namely 
the mesenteric fat tissue, microvasculature and lymphatics 
(Figure 1).

MESENTERIC FAT TISSUE
Historic view
Crohn BB himself  provided the first evidence that the 
mesenteric fat tissue might play a role in the pathogen-
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esis of  Crohn’s disease, by describing local hypertrophy 
of  the mesenteric fat adjacent to inflamed intestinal seg-
ments[3]. This phenomenon, which is also called “creeping 
fat” or “fat wrapping” is restricted to Crohn’s disease, 
and is not observed in ulcerative colitis or other forms 
of  chronic intestinal inflammation. 

Anatomical view
The characteristic ‘‘fat wrapping’’ seen only in Crohn’s dis-
ease represents fat hypertrophy that results in partial cover 
of  the intestinal circumference, which is defined as > 50% 
coverage of  the intestinal surface by adipose tissue and oc-
curs in both the large and small bowel. The localization of  
this ‘‘creeping fat’’ correlates with transmural inflammation, 
ulceration, and stricture formation[3]. These observational 
results have been underlined by magnetic resonance imag-
ing that quantified the amount of  intra-abdominal fat in 
relation to total body fat, which indicates that the intra-
abdominal fat but not total body fat increases[4]. Adipocytes 
within this hypertrophied fat are significantly smaller, but a 
fourfold increase in the total number of  adipocytes is pres-
ent in the mesentery of  Crohn’s disease patients as com-
pared to controls[5]. How can we explain this observation 
and what might be the possible contribution to disease?

Adipocytes and chronic inflammation
Each lymph node in our body is in close proximity to adi-
pose tissue. Once the lymph nodes are activated, the num-
ber of  adipocytes increases, which allows for the supply of  
sufficient energy for a functional immune system[6-8]. How-
ever, is the role of  the mesenteric fat tissue restricted to 
energy supply? In the first studies to analyze the expression 
of  pro-inflammatory mediators in fat tissue, an increase of  
tumor necrosis factor (TNF)-α and the adipokine leptin 
was demonstrated in the fat tissue of  Crohn’s disease pa-
tients, in comparison to non-inflammatory controls[4]. In 
addition, adipocytes express C-reactive protein, and there 
is a significant correlation between serum C-reactive pro-
tein levels and increased mesenteric fat density in Crohn’s 
disease[9]. What is the relevance of  these mediators released 
by the adipose tissue?

Adipokines
Various adipokines are released by adipose tissue. The 
relevance of  adipokines in IBD has been summarized 

recently in broad detail[10]. The adipokines characterized 
best with regard to intestinal inflammation are leptin and 
adiponectin, respectively. 

Leptin is a 16-kDa peptide predominantly produced by 
adipocytes, which signals the status of  satiety to the hypo-
thalamus[11]. Leptin deficiency or non-function of  the long 
isoform of  the leptin receptor (OB-Rb) is associated with 
massive obesity in mice and humans. From a structural 
point of  view, leptin can be classified as a helical cyto-
kine[12]. Thus, the structure of  leptin suggests a regulatory 
function within the immune system. In humans, leptin de-
ficiency is rare, but results in impaired T-cell proliferation 
and is associated with increased mortality in childhood due 
to infection[13,14]. In mice, leptin deficiency has been associ-
ated with protection from dextran sodium sulfate (DSS)-, 
oxazolone- and trinitrobenzene sulfonic acid (TNBS)-
induced colitis. In addition, results from the transfer model 
of  colitis indicate that leptin serves as crucial T-cell stimu-
lator in intestinal inflammation[15-17]. In addition, leptin 
stimulates the proliferation of  naive CD4+ T cells and af-
fects T-cell polarization[15,18,19]. In Crohn’s disease, increased 
expression of  leptin mRNA as well as protein in the hy-
pertrophic mesenteric fat has been reported[20,21]. Together 
with data from animal studies, a pro-inflammatory role for 
leptin in Crohn’s disease has been suggested.

Adiponectin, a 30-kDa polypeptide, contributes 5- 
10 μg/mL to 0.01% of  plasma proteins, and hence is the 
most abundant adipokine in the circulation[22]. Adipo-
nectin has a high affinity to form trimers that can further 
multimerize to polymers, which results in various high and 
low molecular isoforms. The biological significance of  the 
different high and low molecular forms is not finally un-
derstood. In Crohn’s disease patients, adiponectin mRNA 
and protein release is upregulated in hypertrophied adi-
pose tissue, as compared to normal adipose tissue from 
the same subjects, or mesenteric adipose tissue from ul-
cerative colitis patients and controls[23]. Data concerning 
the effects on disease severity in experimental models of  
colitis are conflicting. Whereas one group has observed 
increased susceptibility to the chemically induced model 
of  DSS colitis[24], another has reported protection against 
DSS- as well as TNBS-induced colitis in adiponectin-
deficient mice[25]. To confuse the issue even more, a third 
study has reported that adiponectin deficiency does not 
affect the outcome of  disease in interleukin (IL)-10-
deficient mice that develop colitis spontaneously[26]. In the 
model of  chronic TNBS-induced colitis in rats, the size 
of  mesenteric adipocytes is decreased, and production 
of  adiponectin, besides other mediators, is increased in 
perinodal mesenteric fat[27]. As a result of  the conflicting 
effects mediated by adiponectin on immune cells, both 
pro- and anti-inflammatory consequences of  altered adi-
ponectin production in IBD are possible. However, adi-
ponectin does seem to modulate immune responses, and 
abnormal production could thus be involved in the altered 
responsiveness of  immune cells that occurs in IBD. 

Recent data from genetic studies have added indepen-
dent support for such dysregulated production of  adipo-
nectin and leptin in Crohn’s disease. In mice, deficiency 
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Figure 1  Extraluminal structures contributing to Crohn’s disease. The figure 
illustrates the potential contribution of the extraluminal structures of mesenteric 
fat tissue, lymphatics and microvasculature to the dysregulation of the mucosal 
immune system.
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of  the autophagy gene Atg16l1 results in upregulation 
of  leptin as well as adiponectin mRNA expression[28]. In 
humans, the ATG16L1 risk allele is associated with an 
increased risk of  developing Crohn’s disease[28,29]. Further 
cross-population studies are needed to ascertain whether 
this mutation is the cause of  the altered leptin and adipo-
nectin production in the hypertrophic fat of  Crohn’s dis-
ease patients. However, so far, it is tempting to speculate 
that the ATG16L1 risk allele and the subsequent altered 
production of  adipokines might contribute to the predis-
position to Crohn’s disease.

The data described above indicate that adipokines are 
able to regulate the acquired immune response and that 
the production of  some is altered in mesenteric fat of  
IBD patients. What kind of  stimulus is required to mod-
ify the production of  these adipokines in patients with 
Crohn’s disease? Translocation of  luminal antigens (e.g. 
bacteria) from the intestinal lumen to the adipose tissue 
could offer this stimulus, presuming that adipocytes and 
pre-adipocytes express innate receptors.

Adipocytes as cells of the innate immune system
The release of  free fatty acids by adipocytes following li-
popolysaccharide (LPS) stimulation, and hence responsive-
ness of  fat cells to bacterial components, was first detected 
over 30 years ago[30]. In line with these historic data, the 
expression of  toll-like receptor (TLR)4 and TLR2 was 
described in adipocytes generated from the 3T3-L1 cell 
line[31]. Furthermore, our group and others have demon-
strated that adipocytes and their precursors from mice and 
humans express TLR1-TLR11 and that specific stimulation 
induces secretion of  immune regulatory mediators[32-34]. 
In addition, data from our group indicate expression of  
functional nucleotide oligomerization domain (NOD) pro-
teins-1 and -2 on pre-adipocytes[35]. Expression of  these 
NOD proteins in adipocytes and pre-adipocytes is further 
regulated by TNF-α or LPS (NOD2), respectively, IFNγ 
(NOD1)[35]. This observation is of  particular interest, since 
mutations in the NOD2 gene have been associated with 
an increased risk of  developing Crohn’s disease[36-38]. Thus, 
adipocytes and pre-adipocytes share functional properties 
of  immune cells, which suggest an active role in defense 
against bacterial and viral antigens in vivo. Hence, adipo-
cytes and pre-adipocytes could represent a yet ignored 
population of  innate immune cells.

A working model could be that primary increased pro-
duction of  pro-inflammatory mediators in the mesenteric 
fat due to genetic predisposition might contribute to the 
development of  Crohn’s disease. Additionally, the massive 
cytokine production in the inflamed colon, in addition to 
translocalizing bacteria, could further induce the produc-
tion of  pro-inflammatory mediators in the adjacent adi-
pose tissue, thus inducing a vicious cycle, in which inflam-
matory conditions in the intestine and the mesenteric fat 
support each other.

LYMPHATICS
The lymphatic system is closely connected to and within the 
intestine, and is a neglected structure. In 2008, Van Kruiningen  

et al[39] reminded us of  their presence in a concise review. 
They reviewed the pathological descriptions of  Crohn’s 
disease in the era before antibiotic, corticosteroid, immu-
nomodulatory and biological therapy. These pathologists 
described lesions in the basal portion of  the lamina pro-
pria, in the superficial and deep submucosa, and in the sub-
serosa, which suggested lymphatic disease. These lesions 
comprised lymphocytic thrombi within the lymphatics and 
multiple large aggregates of  lymphocytes with or without 
multi-nucleated giant cells, a picture consistent with chronic 
lymphangitis[39]. The granulomas of  Crohn’s disease appear 
to be in and around the very thin-walled lymphatics that 
are found adjacent to small vessels[40]. This further supports 
the idea that lymphatics might directly contribute to the 
pathogenesis of  this disease. 

Almost more intriguing are the rat and pig models 
in which regional lymphatics of  the small intestine were 
obstructed with sclerosing agents[41,42]. These animals 
subsequently developed segmental intestinal disease that 
was characterized by many of  the alterations that occur in 
Crohn’s disease, including lymphocytic and granulomatous 
changes. Remarkably, enteroenteric as well as enterocuta-
neous fistulas developed in these models, which are not 
seen in animal models routinely used today[41,42]. Addi-
tional observations have pointed out that the distribution 
and character of  these lesions represent obstructive lym-
phocytic lymphangitis[43]. In these older studies, the con-
nection between the shorter segments of  Crohn’s disease 
in the jejunum and the longer segments in the ileum, with 
the shorter vasa recta of  the jejunum and the longer lym-
phatic collecting ducts of  the ileum, was emphasized[39,43]. 

Very recent work by Vetrano et al[44] has provided fur-
ther experimental data underlining the relevance of  lym-
phatics in IBD[44]. They have concentrated on the expres-
sion of  D6, a promiscuous decoy receptor and scaven-
ger for CC chemokines that plays a non-redundant role 
in the control of  the inflammatory response in various 
organs. Vetrano et al[44] have demonstrated upregulation 
of  D6 in human colitis. The expression could be local-
ized to lymphatic vessels and leukocytes in the mucosa. 
D6-deficient mice showed an increased susceptibility to 
experimental colitis when compared to wild-type mice. 
Via bone-marrow chimeras, the regulatory function of  
D6 in colitis has been tracked to the stromal/lymphatic 
compartment, and a contribution of  hematopoietic cells 
could be excluded. Thus, these data further emphasize 
the regulatory role of  the lymphatic system in intestinal 
inflammation. 

In line with these observations, Van Kruiningen et al[39] 
have suggested recently to focus again on the lymphatic 
damage in Crohn’s disease, and the identification of  pos-
sible harmful agents that cause lymphangitis and lesions 
in the lymphatic endothelium. Although the lymphatics 
are not completely separated from the intestine, they rep-
resent the second structure that should be reevaluated in 
Crohn’s disease.

MICROVASCULATURE
In similar close proximity to the intestinal wall is the 
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microvasculature that is embedded in the mesenteric fat 
tissue, which thus provides an additional link as outlined 
below.

Whether increased vascularization as assessed by mes-
enteric angiography or Doppler ultrasound reflects Crohn’s  
disease activity is disputed[45]. Recent evidence for angio-
genesis playing a role in IBD pathogenesis has prompted 
interest in anti-angiogenic therapies for IBD[46,47]. Remark-
ably, angiogenesis plays a crucial role in various chronic 
inflammatory disorders such as artherosclerosis, rheuma-
toid arthritis, peptic ulcer, IBD, psoriasis, and Alzheimer’s  
disease[48]. Growth of  new blood vessels is intrinsic to 
inflammation and is associated with structural changes, 
including activation and proliferation of  endothelial cells 
and capillary and venule remodeling, all of  which result 
in an expansion of  the tissue microvascular bed[49-51]. As 
inflammation evolves, vessels expand to supply nutrients 
that sustain the accumulation of  activated immune cells, 
and in the chronic phase, local immune cells overproduce 
endothelial cell growth factors[49]. 

This expansion of  the vascular network facilitates 
several mechanisms. The influx of  inflammatory cells 
increases the nutrient supply that allows the metabolically 
active immune response to take place, and the activated 
endothelium contributes to the local production of  cy-
tokines, chemokines, and matrix metalloproteinases[52,53]. 
In chronic inflammatory disorders, infiltration by mac-
rophages and lymphocytes, tissue damage and repair oc-
cur concurrently, and the newly formed vessels become 
permanent[51,54]. The anatomical expansion and increased 
activation of  the remodeled microvascular bed foster fur-
ther influx of  immune cells, and angiogenesis and inflam-
mation become co-dependent processes[55]. Both innate as 
well as adaptive immune responses promote angiogenesis.

Thus, the endothelium, and more specifically, the en-
dothelial cells of  the microvasculature seem to assume a 
central function, because they are not only capable of  gen-
erating a range of  mediators, but also display distinct ad-
hesive molecule patterns, to activate a unique sets of  genes 
and form capillaries[56-58]. In addition, endothelial cells act 
depending on the body compartment heterogeneity[56,59-61]. 
An example is the expression of  mucosal addressin cellular 
adhesion molecule-1 by Peyer’s patches and high endothe-
lial venules to recruit α4β7 homing receptor-positive naïve 
lymphocytes[62]. Similarly, endothelial cells from brain, liver, 
and other organs express distinct surface markers, protein 
transporters, and intracellular enzymes[61-63]. This hetero-
geneity becomes of  particular interest when considering 
the regulation of  organ-specific inflammation; in our case, 
intestinal inflammation. The distribution and infiltration 
of  leukocytes is tightly regulated by numerous homing and 
adhesion molecules on the surface of  microvascular and 
immune cells[64]. At inflamed sites, endothelial cells still 
control the type and number of  immune cells that extrava-
sate into the interstitium in a dysregulated fashion[65,66]. 

An additional cell population has been identified to 
play a crucial role in the process of  cell infiltration via the 
endothelium in areas of  inflammation, namely platelets. 
They normally circulate without attaching to the endotheli-

um, but do so when the endothelial cells become activated, 
and platelet adherence triggers inflammation[67]. Activated 
platelets produce massive amounts of  pro-inflammatory 
mediators and interact with various other cell popula-
tions[68,69]. In inflamed areas, the microvasculature can re-
cruit leukocytes through a platelet-dependent mechanism, 
but at the same time, platelet recruitment is leukocyte 
dependent[70]. The details of  this crucial interaction have 
been summarized by other reviews[71].

A number of  animal studies have proven that the pro-
cess of  angiogenesis can be taken advantage of  as a 
therapeutic approach. Hence, in models of  DSS-induced 
inflammation, as well as spontaneous colitis in IL-10-
deficient mice, angiogenesis occurs. However, when this 
angiogenesis is inhibited, clinical severity and the signs 
of  histological inflammation decrease significantly[47]. 
Furthermore, vascular endothelial growth factor A that 
induces angiogenesis has been recently shown to be up-
regulated in samples from patients with IBD, and in mice 
with colitis. The overexpression of  VEGF-A in mice 
exposed to DSS was followed by deterioration of  disease 
and an additional increase in angiogenesis when com-
pared to DSS-exposed wild-type mice[72]. 

PERSPECTIVE
Considering the factors that contribute to intestinal in-
flammation, particularly in Crohn’s disease, we should 
avoid restricting ourselves to the luminal site and immune-
cell infiltration, but rather include the extraluminal struc-
tures discussed in this review. This broadened view might 
help us in understanding the disease, and more impor-
tantly, in identifying novel therapeutic targets.
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