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Abstract
Inflammatory bowel diseases (IBD) are a complex group 
of diseases involving alterations in mucosal immunity 
and gastrointestinal physiology during both initiation 
and progressive phases of the disease. At the core of 
these alterations are endothelial cells, whose continual 
adjustments in structure and function coordinate vas-
cular supply, immune cell emigration, and regulation 
of the tissue environment. Expansion of the endothe-
lium in IBD (angiogenesis), mediated by inflamma-
tory growth factors, cytokines and chemokines, is a 
hallmark of active gut disease and is closely related to 
disease severity. The endothelium in newly formed or 
inflamed vessels differs from that in normal vessels in 
the production of and response to inflammatory cyto-
kines, growth factors, and adhesion molecules, alter-
ing coagulant capacity, barrier function and blood cell 
recruitment in injury. This review examines the roles 
of the endothelium in the initiation and propagation of 

IBD pathology and distinctive features of the intestinal 
endothelium contributing to these conditions.
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INTRODUCTION
Inflammatory bowel diseases (IBD) include Crohn’s dis-
ease (CD), ulcerative colitis (UC) (and indeterminate coli-
tis), which share several inflammatory characteristics with 
other chronic immune disturbances including immune 
activation, leukocyte infiltration into tissues and increased 
vascular density[1]. In UC, the colon shows a continuous, 
superficial inflammation, while CD occurs as patchy trans-
mural inflammation which may affect any region of  the 
gastrointestinal tract. Genetic susceptibilities may play an 
important role in the development of  IBD[2-6] with poly-
morphisms in CARD15/NOD2 haplotypes (especially in 
Caucasians) and HLA-DR haplotypes (especially in Asian 
IBD) and possible defects in interleukin (IL)-23, IL-2, and 
IL-10 signaling[2,7-10]. IBD is more prevalent in developed 
nations[11], with several mechanisms being considered to 
explain disease pathology including environment, hygiene 
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and altered gut flora[11-13]. These different contributing 
causes may underlie divergent forms and patterns of  IBD, 
which ultimately may lead to a redefinition of  different 
sub forms of  UC and CD. 

While the mechanisms initiating and sustaining IBD 
may differ, both UC and CD may reflect dysfunction 
within antigen-presenting cells (e.g. dendritic cells) or 
excess activation of  CD4+ T-cells (resembling T-cell dis-
turbances in psoriasis). Reduced activation of  T-cells in 
some forms of  CD appear to allow gut microbiota that 
have breached the gut epithelium to trigger microvas-
cular inflammation[1,5,9,14-16]. The activation of  immune 
responses in IBD release inflammatory cytokines [e.g. 
tumor necrosis factor (TNF)-α] and growth factors [e.g. 
vascular endothelial growth factor (VEGF)-A] into gut 
tissues provoking gut inflammation and injury[5,17]. An-
tibodies produced against “normal” gut antigens (e.g. 
anti-colon, anti-mucin, anti-tropomyosin) have been 
found in IBD and are suggested to activate cytotoxic T 
lymphocytes, further increasing inflammation[7]. As IBD 
progresses, cytokine-mediated inflammation and epithe-
lial apoptosis disturb the intestinal barrier, to allow pen-
etration of  gut flora beyond the lamina propria causing 
intense inflammatory responses[18] while also provoking 
endothelial microvascular permeability[19].

 Another key event in IBD progression is the expan-
sion of  the intestinal microvasculature. Angiogenesis in 
IBD sustains inflammation through alterations in the en-
dothelial lining of  these vessels. The endothelium regu-
lates recruitment of  inflammatory cells, tissue damage 
(e.g. vasogenic edema), and production of  inflammatory 
mediators[19-22]. In this review we describe the key roles 
of  the endothelium in mediating and aggravating inflam-
mation in IBD (Figure 1).

ENDOTHELIAL CELLS IN IBD 
Endothelial cells (ECs) are the major constituent of  the 
microvasculature that line blood and lymphatic vessels. 
ECs during IBD undergo rapid and remarkable changes 
in response to elevated levels of  cytokines and growth 
factors often producing injury to gut tissues. Normally 
ECs provide an anti-adhesive and selectively permeable 
exchange barrier[23]. Even though ECs have long been 
recognized as participants in inflammation their roles in 
intestinal inflammation during IBD are not yet clear. The 
unique physiological and molecular characteristics of  gut 
microvessels may help explain several characteristics of  
IBD. The close relationships between gut metabolism, 
tissue perfusion, microvascular expansion and immune 
cell infiltration are unclear but suggest that microvas-
cular alterations may be maladaptive in IBD. Intestinal 
vascular ECs basally exhibit unique properties which 
may contribute to IBD. Haraldsen et al[24] first described 
characteristics of  human intestinal ECs (HIMECs) in 
long-term cultures and differences from ECs of  differ-
ent origin. For example lipopolysaccharide (LPS) only 
transiently increases HIMEC adhesion molecule ex-

pression, while causing long-lasting increases in human 
umbilical vein ECs (HUVECs)[25]. Nilson et al[26] found 
that HIMEC cultures produce different cytokines (IL-1β, 
IL-3 and IL-6) upon stimulation with inflammatory cyto-
kines (e.g. TNF-α, IL-1) compared to HUVECs. Binion  
et al[27,28] have shown distinctive HIMEC properties such 
as constitutive inducible nitric oxide (NO) synthase 
(iNOS) as well as unique adhesive determinants, and that 
these properties were altered in IBD and may underlie 
endothelial dysfunction in IBD development.

ENDOTHELIAL NO IN IBD
Endothelial-derived NO reduces leukocyte and platelet 
adhesion to the endothelium[29,30], mediates flow-depen-
dent and agonist-dependent vasodilatation, and couples 
VEGF-A signaling with NO-dependent permeabil-
ity[31,32]. NO-mediated endothelial permeability involves 
2 separate mechanisms: (1) increased guanylate cyclase 
and phospholipase C activity which increases intracel-
lular Ca2+; and (2) permeability mediated by Erk1/2 via 
Ras/Raf/PKC causing increased actin contractility[29,33,34]. 
Increased p38 mitogen-activated protein kinase (MAPK) 
signaling, Rho-GTPase activity and increased Ca2+ re-
lease mediated by upregulated cytokines and growth 
factors may also represent possible mechanisms for in-
creased endothelial permeability[35-37]. 

Endothelial nitric oxide synthase (eNOS)-derived NO 
is a radical scavenger not only absorbing O2

- but also gen-
erating the potent oxidant ONOO-. eNOS expression is 
reduced in IBD; eNOS deficiency in IBD is exacerbated 
by arginase-mediated depletion of  substrate as well as 
eNOS uncoupling[38-40]. Decreased eNOS activity in IBD 
reduces endothelium-dependent vasodilation, leading to 
ungoverned oxidant formation, prominent in IBD[41]. De-
letion of  eNOS (eNOS-/-) increases severity of  experimen-
tal IBD[42,43] consistent with protective roles of  NO against 
inflammation. NO may prevent development of  endothe-
lial inflammatory and hyper-adhesive phenotype in IBD 
by suppressing cytokine-induced EC adhesion molecules 
(ECAMs) and matrix metalloproteinases (MMPs)[44]. In-
creased endothelial oxidant stress (e.g. in IBD) also disturbs 
tight junctional organization via p38, p42/44 MAPK[45-47].

Sera from patients with CD reduce, while UC sera in-
crease eNOS in HUVECs; both UC and CD sera increase 
iNOS[48]. This may reflect differences in anatomic origins 
of  the endothelium i.e. venous vs intestinal. HIMEC 
iNOS expression appears to be a unique feature of  gut 
microvessels. In HIMECs, iNOS appears at least as im-
portant a source of  NO as eNOS. Binion et al[30], have 
shown that HIMECs persistently express iNOS, and that 
iNOS-derived NO limits leukocyte adhesion in normal 
HIMECs. Paradoxically iNOS inhibition increases binding 
of  leukocytes. Thus, while leukocyte-derived iNOS may 
drive inflammation, HIMEC expression of  iNOS limits 
the inflammatory responses (leukocyte adhesion, perme-
ability, vasodilatation) in the gut, and decreased endothelial 
iNOS abundance and activity in IBD may represent an 
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underrated basis of  IBD pathology[27,30]. HIMECs derived 
from CD patients also show a persistent loss of  iNOS 
expression[27]. Interestingly, iNOS can be decreased by in-
jury to normal HIMECs (opposite to most tissues which 
mobilize iNOS in response to injury[27]) suggesting that 
during injury, reduced iNOS might trigger inflammatory 
responses. Even with the loss of  endothelial iNOS, there 
is often increased NO in tissues surrounding the area of  
inflammation. Despite decreased endothelial iNOS de-
rived-NO, IBD frequently exhibits increased leukocyte re-
cruitment and activation of  gut epithelial cells to increase 
overall NO production[44]. Krieglstein et al[49] found that 
tissue-derived iNOS, and to some extent leukocyte iNOS, 
mediate colitis injury, but could not specifically distinguish 
between tissue and endothelial contributions of  iNOS in 
colitis. Aoi et al[50] have suggested that iNOS-derived NO 
plays an important role in gut healing after injury through 
induction of  VEGF, necessary for angiogenesis in wound 
healing. We have previously shown that excess NO 
may play an important role in IBD exacerbation. Using 
STAT-6-/- mice (which have high iNOS levels) in dextran 
sulfate sodium (DSS) colitis, we found more severe IBD 
in STAT-6-/- mice correlate with extraordinary NO flux 
suggesting that excess NO may also drive gut injury[51]. 

Despite elevated NO abundance, downstream guanylate 
cyclase signaling appears to be depressed in DSS colitis 
leading to decreased cGMP in the inflamed intestine[52]. 
Under these conditions, cGMP dependent protective NO 
effects may be masked by pro-oxidant effects of  NO me-
tabolites. Conner et al[53] and Grisham et al[54] revealed an 
important role of  the 26S proteasome in the regulation 
of  endothelial nuclear factor-κB (NF-κB) and cumulative 
iNOS NO production and adhesion molecule expression. 
Cumulatively, these studies suggest that intestinal homeo-
stasis is controlled by distinctive and compartmentalized 
NO sources, and that excess NO formation may support 
the pathophysiology of  IBD. 

ENDOTHELIAL TOLL-LIKE RECEPTORS 
AND IBD 
The gut is an organ supporting a high bacterial load; despite 
physical and chemical barriers, some bacterial antigens will 
ultimately penetrate the gut wall to activate gut microvas-
cular ECs through Toll-like receptor (TLR) signaling[18,55]. 
The intestinal microvascular endothelium also differs from 
ECs of  other origins in TLR responses. For example, 
repeated exposure and activation of  TLR4 in HIMECs 
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Figure 1  Inflammation triggers a change in the endothelium of the intestinal vasculature in response to the cytokines, chemokines and growth factors re-
leased by immune cells leading to increased angiogenesis, adhesion molecule expression, leukocyte extravasation, decreased endothelial barrier function 
and increased coagulation. TNF: Tumor necrosis factor; IL: Interleukin; iNOS: Inducible nitric oxide synthase; eNOS: Endothelial nitric oxide synthase; VEGF: Vascular 
endothelial growth factor; MMPs: Matrix metalloproteinases; VCAM: Vascular cell adhesive molecule; ICAM: Intracellular adhesive molecules.
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leads to development of  lipopolysaccharide tolerance; 
however HUVECs lack such a mechanism, indicating the 
importance in controlling endothelial-dependent inflam-
mation and host commensal interactions[25,56,57]. Protease 
activated receptors activate transforming growth factor 
(TGF)-β to induce TLR4 and lead to increased disease 
severity in IBD[58,59]. TLR5 is constitutively expressed in all 
ECs, and is of  particular interest in gut pathophysiology. 
TLR5, a receptor for flagellin[60], is constitutively expressed 
on the basolateral surface of  the gut endothelial (an epi-
thelial) layers[61]. TLR5 signaling induces endothelial inter-
cellular adhesion molecule-1, TNF-α production and leu-
kocyte binding and emigration[61]. Loss of  TLR5 activity 
in murine models leads to the development of  infectious 
as a result of  deficient and improper responses to normal 
flora and pathological microorganisms[61,62]. Conversely, 
endothelial TLR3 has been shown to be protective in the 
DSS model of  acute colitis. This process is mediated by 
interferon (IFN) type 1 induction of  IL-10, a potent anti-
inflammatory cytokine[63]. However, Heidemann et al[64] in 
2007 found that IL-12 expression and its associated gene 
products were also induced by TLR3 signaling in addition 
to increased adhesion and transmigration of  leukocytes 
and TLR functions in the gut remain complex, and re-
quires further study. 

IBD-ASSOCIATED CYTOKINES AND 
CHEMOKINES EFFECTS ON GUT ECs
During inflammation there is an increase in plasma levels 
of  inflammatory cytokines, including IL-6, IL-23, IL-12 
and TNF-α, in both human IBD and animal IBD mod-
els[1,2,15]. Kawachi et al[65,66] examined cytokine alterations in 
the adoptive T-cell transfer and the IL-10-/- IBD models 
and found IL-1, IL-6, IL-18 and TNF-α were upregulated 
in both models. Many of  the inflammatory cytokines 
that are upregulated in IBD are pro-angiogenic, the best 
examples being IL-17 (produced by invasive Th17 cells) 
and TNF-α produced by several tissue types, including in-
filtrating immune cells (macrophages and monocytes)[67,68] 
and the endothelium[69]. EC produce inflammatory media-
tors in response to activation by immune cells and altera-
tions in the tissue microenvironment[64,70]. 

TNF-α is one example of  a cytokine with pleiotropic 
effects on the endothelium in IBD, ranging from adhesion 
molecule induction [vascular cellular adhesion molecule 
(VCAM)-1 and mucosal addressin cellular adhesion mol-
ecule (MAdCAM)-1], promoting interaction of  platelets 
with ECs and inducing expression of  pro-angiogenic 
growth factors such as VEGF-A[25,44,71-73]. Defects in the 
activity of  the anti-inflammatory cytokines such as IL-10 
may play a role in the establishment of  some IBD, and 
IL-10 deficient mice (IL-10-/-) develop IBD spontane-
ously, while other animal models of  colitis show reduced 
injury when treated with exogenous IL-10[2,74-76]. Interest-
ingly Oshima et al[19] observed that pretreatment of  ECs 
with IL-10 prevented IFN-γ mediated endothelial barrier 

disruption, indicating that an important role of  IL-10 may 
be to prevent cytokine mediated EC barrier disturbances 
which initiate and exacerbate disease. This is supported 
by the finding that several EC adhesion molecules such as 
intercellular adhesion molecule (ICAM)-1, VCAM-1 and 
MAdCAM-1 are increased in IL-10-/- mouse colitis and 
may mediate leukocyte recruitment in this model[66].

Over 40 chemokines in 4 separate families interact 
with as many as 19 receptors to regulate trafficking of  leu-
kocytes. Of  these, several chemokines may mediate leuko-
cyte trafficking to the gut and colon dysfunction in IBD. 
Papadakis et al[77] showed that CCL2 and CCL5-/- mice 
are protected from colitis. Interestingly, Barcelos et al[78]  
and Wu et al[79] showed that CCL5 and CCL3 can induce 
inflammatory angiogenesis in a murine sponge model and 
promote angiogenesis in murine tumors. Eyman et al[80] 
have also shown that CCL5 upregulates pro-angiogenic 
genes. CCL25 interacting with its receptor on CCR9+ 
leukocytes plays a major role in the early stages of  ex-
perimental IBD pathogenesis[81]. CXCL8 (IL-8) another 
pro-angiogenic chemokine, is known to be stored in 
EC Weibel-Palade bodies, can be rapidly secreted, and 
induces HIMEC proliferation in culture via binding to 
CXCR2[82,83]. Although angiogenesis may support injury 
IBD, IL-8 may be dysregulated in some forms of  IBD. 
IL-8 seems to be downregulated in leukocytes and in the 
endothelium of  patients with CD. There appears to be no 
upregulation in the endothelium of  UC patients, suggest-
ing a possible link to TGF-β1 over expression in IBD[84-86]. 
In contrast, Scaldaferri et al[87,88] found that intestinal 
fibroblasts treated with TNF-α produce IL-8 and mono-
cyte chemoattractant protein-1 via p38/p42/44 mitogen-
activated protein kinase. 

CX3CL1/fractalkine is a chemokine expressed by EC, 
can be upregulated by TNF-α, IL-1, LPS and IFN-γ, and 
is highly upregulated in IBD[89,90]. CX3CL1 can function 
as an endothelial adhesive determinant to recruit a sub-
population of  dendritic cells and macrophages that have 
high CX3CR1 expression. CXCL1 can be shed from the 
surface of  the ECs (in response to increased IL-1β in 
IBD). This form of  CX3CL1 acts as a chemoattractant 
for CD4+ and CD8+ T-cells[90]. Sans et al[91] reported that in 
fact there is enhanced recruitment of  CX3CR1 expressing 
T-cell to the gut via interactions with CX3CL1. CXCR4/
SDF-1α and its ligand CXCL12 is an important che-
mokine/receptor pair in angiogenesis, but have received 
very little attention in IBD. Heidemann et al[92] reported 
that blocking this CXCR4/CXCL12 interaction is suf-
ficient to inhibit migration and proliferation of  HIMECs 
in response to VEGF-A. CXCR4/SDF-1α plays an im-
portant role in the recruitment of  EC precursors to sites 
of  angiogenesis, and may be impaired in IBD, leading to 
the conclusion that this pathway may be interrupted[93-95]. 
Midkine, another chemokine of  great interest is increased 
in serum and is associated with tumor drug resistance and 
poor cancer prognosis[96-98]. Midkine is also upregulated in 
IBD serum, and has prognostic value like VEGF, TNF-α, 
sVCAM and VCAM[20,99-102]. Midkine has a pronounced 
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angiogenic effect, like some other inflammatory factors, 
and also increases the levels of  surface glycosaminogly-
cans on ECs to favor recruitment of  circulating leuko-
cytes in IBD[103].

INCREASED ENDOTHELIAL ADHESION 
MOLECULE EXPRESSION IN IBD
Inflammation in IBD is characterized by increases in both 
blood and lymphatic vessels in the intestine. This increase 
in endothelial surface area provides a powerful means of  
increasing leukocyte recruitment with the mobilization 
of  ECAMs including selectins[28]. Animal models of  IBD 
(IL-10-/-, IL-2-/-, SAMP1/Yit and T-bet-/-), like human 
IBD, all show ECAM upregulation is linked to disease 
severity[66,104-106], allowing use of  adhesion antagonists in 
IBD therapy[55,102,107]. Endogenous endothelial-derived 
inhibitors of  leukocyte binding (e.g. sVCAM-1) may also 
be downregulated in IBD[21,108-111] and could provide new 
diagnostic or anti-adhesive strategies.

P and E-selectins, glycoproteins expressed on the sur-
face of  platelets and other leukocytes, are also expressed 
on the surface of  activated or inflamed endothelium in IBD. 
P-selectin can interact with ECAMs such as VCAM-1/
ICAM-1, as well as with O-glycans collectively referred to 
as peripheral lymph node addressins (PNAds) containing 
sialyl Lewis X moieties[112,113]. P-selectin at least partially 
mediates rolling and recruitment of  gut-infiltrating leu-
kocytes in IBD, with approximately 50% increase in gut 
P-selectin in UC vs control groups; serum levels of  soluble 
P-selectin, an inhibitor of  selectin binding, are decreased 
in IBD patients[109,114,115]. Increased platelet P-selectin, with 
the enhanced prothrombotic surface of  the gut EC in 
IBD increases thrombus formation and tissue damage by 
ischemic injury[115]. E-selectin, a relative of  P-selectin is 
expressed solely on the surface of  activated ECs during 
inflammation and is a major contributor to leukocyte roll-
ing injury. E-selectin is not stored in Weibel-Palade bodies 
and must be produced in response to inflammatory stimuli 
such as IL-1, TNF-α and VEGF-A[116,117]. In contrast to 
sP-selectin, sE-selectin is not downregulated in IBD and in 
CD, and actually increases in comparison to controls[109]. 

High endothelial venules (HEV) are specialized post-
capillary venules that allow trafficking of  leukocytes be-
tween immune (e.g. Peyer’s patches) and vascular compart-
ments, and are increased in IBD[113]. L-selectin expressed 
on leukocytes (after activation) binds PNAd on HEV and 
recruits leukocytes expressing L-selectin in IBD. The gut 
and brain selective adhesion determinant, MAdCAM-1 is 
also expressed on HEV, and in UC MAdCAM-1 O-glyco-
sylation increases, allowing greater L-selectin binding[118]. 
MAdCAM-1 interacts with α4β7 integrins on the surface 
of  a subset of  naive CD4+ T-cells[119,120]. MAdCAM-1 
induction is found only in chronically inflamed gut endo-
thelium and suggests that in IBD there is a fundamental 
alteration in the phenotype and gene expression pattern 
in the inflamed intestinal EC[28]. Mizushima et al[121] dem-

onstrated that inhibition of  angiotensin-Ⅱ type 1 recep-
tors reduced TNF-α dependent MAdCAM-1 expression 
and reduce the severity of  DSS-induced colitis, possibly 
linking vasoregulation and inflammation. In HIMEC 
MAdCAM-1 is also expressed inversely with cell density, 
with proportionally greater levels of  MAdCAM-1 found at 
low densities. This indicates that in newly formed vessels, 
larger amounts of  MAdCAM-1 may be available to recruit 
leukocytes to these “leaky and permissive” vessels[122,123]. 

ICAM-1, another important ECAM in IBD binds 
LFA-1 (aLb2), Mac-1 (aMb2) and α4β2 integrins, and is 
expressed by inflamed ECs to mediate the firm adhesion 
of  leukocytes to activated ECs[124,125]. ICAM-1 has a unique 
relationship with VEGF-A; Goebel et al[125] reported that 
HIMECs constitutively express ICAM-1, which is signifi-
cantly upregulated following treatment with 50 ng/mL  
VEGF-A, linking inflammation and angiogenesis. In ad-
dition to direct activation and upregulation of  ICAM-1 
by VEGF, Zitterman et al [117] found that VEGF treatment 
also sensitizes cells to TNF-α induced ICAM-1 mobiliza-
tion. Normally ICAM-1 concentrates at EC junctions, but 
is redistributed to apical surfaces of  ECs under inflamma-
tory conditions where it supports firm adhesion of  leuko-
cytes[25]. In the adoptive T-cell transfer model of  murine 
IBD, Ostanin et al[126] found that T-cells that lack LFA-1, 
(a T-cell ICAM-1 ligand), fail to induce disease, reveal-
ing a critical role for EC modulated immune responses. 
ICAM-1 was the one of  the first clinical targets in IBD, 
but an antisense IBD therapy showed limited success[21]. 

VCAM-1, an ECAM highly expressed on the luminal 
surface of  activated ECs in IBD, mediates the adhesion 
of  α4β1 expressing lymphocytes. In HIMECs, the ex-
pression of  VCAM-1 is regulated by the PI3K/NF-κB 
signaling pathway and its stimulation by mediators can be 
inhibited by curcumin[127]. Like ICAM-1, VCAM-1 can 
also up regulated by VEGF-A via NF-κB[117,128]. Studies 
in the picrylsulfonic acid model of  UC using radiolabeled 
anti-VCAM-1 antibodies show that leukocyte infiltration 
and histological damage are proportionate to VCAM-1 ex-
pression in the gut microvasculature[129]. In addition, in the 
DSS model of  UC, there is an upregulation of  VCAM-1 
which if  blocked (by specific antibodies) attenuates dis-
ease activity, while ICAM-1 and MAdCAM-1 blockade do 
not protect in this manner[129,130]. 

CD31/PECAM-1 expressed by ECs and leukocytes 
mediates homophilic binding between activated ECs and 
leukocytes especially during extravasation. CD31 is found 
on the endothelial surface and in endothelial junctions. 
Work by Romer et al[72] found that CD31 is not upregu-
lated in response to inflammatory cytokines but is redis-
tributed from cellular junctions. CD31 blockade inhibits 
leukocyte transmigration, and CD31 inhibition in IBD 
reduced leukocyte rolling and firm adhesion suggesting a 
unique role for CD31 in IBD or in the function of  the gut 
microvasculature[131]. 

Originally considered a mesenchymal stem cell mark-
er[132-134], CD146 is now described as a novel immunoglob-
ulin super family adhesion molecule which is increased in 
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gut tissue of  IBD patients[108]. The function of  CD146 in 
IBD is not completely understood, but has potential roles 
in inflammation since it supports rolling and invasion 
of  natural killer T-cells[135]. The upregulation of  CD146 
in IBD, like ICAM-1 and VCAM-1, may be driven by 
VEGF-A overexpression during IBD[100]. Additionally, the 
soluble form of  CD146, regulates endothelial and leuko-
cyte CD146 interactions with their ligands, and is reduced 
in IBD, enhancing leukocyte extravasation[100,108,135]. Inter-
estingly Tsiolakidou et al[100] determined that new vessels 
formed in IBD are disproportionately CD146+. Inflamed 
ECs from CD and UC patients show an increased ability 
to recruit naïve T-cells and macrophages to the intestinal 
immune compartment after stimulation with several in-
flammatory cytokines, but not with LPS[28,120]. These data 
are consistent with IBD not being initially driven by im-
mune cells, but rather by the endothelial response to an 
increased inflammatory mediatory load. 

PLATELETS AND COAGULATION IN IBD 
Platelet and leukocyte aggregation as well as activation 
of  the coagulation cascade increase during IBD, reflect-
ing loss of  the non-thrombogenic EC phenotype in IBD. 
Thrombi aggravate inflammation by binding of  micro in-
farcts to the endothelial surface often leading to ischemic 
inflammation in the intestinal microvasculature[136]. Mes-
enteric venous thrombosis has been observed in a fraction 
of  IBD cases, and thrombotic processes are being recog-
nized in altered perfusion, inflammation and tissue injury 
in IBD[137]. Indeed, subclinical thrombosis is common in 
IBD, and is a major source of  morbidity in approximately 
25% of  IBD deaths[136]. Increased markers of  coagulation 
include thrombin anti-thrombin complex, tissue factor 
and fibrinopeptide B[55], and can be described early in IBD. 
Factor ⅩⅢa, a fibrin-stabilizing coagulation factor (and 
agonist for VEGFR-2), is increased in IBD, while factor 
ⅩⅢ TT has an increased number of  mutations in IBD 
patients compared to controls suggesting links between 
thrombosis, angiogenesis and inflammation. However, 
Bernstein et al[138], Dardik et al[139] and Vrij et al[140] reported 
that factor ⅩⅢ activity is reduced in IBD patients. 

In addition to increased levels of  coagulation cascade 
proteins in IBD, CD40, CD40L and soluble CD40L are 
increased in IBD. CD40, expressed on several cell types 
(including ECs) is involved in inflammatory and immune 
activation, and interacts with CD40L on T-cells. Danese 
et al[141] suggested that the primary source of  sCD40L 
was from activated platelets. CD40 signaling increases 
production of  pro-inflammatory cytokines and chemo-
kines by ECs and surrounding tissue[142]. CD40L release 
also leads to binding of  platelets and immune cells to 
ECs by increasing tissue factor, ECAM expression and 
pro-thrombotic phenotype in HIMECs[141-143]. Danese 
et al[71] suggested that a possible therapeutic benefit of  
TNF-α blockade was downregulation of  CD40/CD40L 
signaling in IBD. A still unanswered question is whether 
coagulation is a secondary or initiating event in inflam-

mation. It is worth mentioning that individuals with 
coagulation cascade disorders (e.g. hemophilia, factor Ⅴ 
deficiency and von Willebrand disease) rarely develop 
IBD[55]. The opposite of  the previous observation is also 
true; patients with IBD have an increased likelihood of  
having genetic pro-thrombotic disease Factor Ⅴ Lie-
den[144]. This evidence strongly links thrombus formation 
as a possible trigger of  IBD and suggests prognostic 
factors which may increase risk of  IBD development. 

ENDOTHELIAL BARRIER DYSFUNCTION 
IN IBD 
The maintenance of normal vascular barrier supports 
nutrient and O2 exchange, osmotic balance and leukocyte 
abundance in the extracellular compartment. In IBD, 
increased vascular permeability leads to tissue edema 
and damage in both human IBD and animal models of  
IBD[19]. This alteration in solute permeability of  the vas-
culature is not restricted to the gut microcirculation but is 
widespread affecting the vasculature of  other organs in-
cluding the brain[145]. Several classes of  mediators in IBD 
alter both solute permeability and angiogenic balance, 
including angiogenin (an angiogenic peptide with ribo-
nuclease activity), chemokines (e.g. IL-8, IL-10), coagula-
tion factors (thrombin), cytokines (IFN-γ, IL-13), and 
growth factors, most notably VEGF, the most potent and 
important blood vascular angiogenic growth factor and an 
important inflammatory mediator[19,36,37,47,146-148]. Tolstanova 
et al[149] found that VEGF-A inhibition by neutralizing an-
tibodies reduced vessel permeability in the iodoacetamide 
model of  colitis. Downregulation of  anti-inflammatory 
cytokines e.g. IL-10 may play an equally important role in 
increasing endothelial permeability. Oshima et al[19] have 
shown increased vascular permeability in the IL-10-/- 
colitis model due to loss of  IL-10 inhibition of  IFN-γ in-
duced junctional degradation; also IL-10 protects against 
IFN-γ mediated loss of  human microvascular barrier. 

Leukocytes, e.g. neutrophils and monocytes, can de-
grade endothelial junctions through protease secretion 
and upregulation. Cytokines and growth factors also 
induce MMP-9, MMMP-3 and MMP-1[150,151], resulting in 
degradation of  junctional and matrix targets[152]. Neutro-
phil elastase is elevated in IBD and can degrade vascular 
endothelial cadherin, important in maintaining junctional 
apposition, adhesion and barrier function[153-156]. Endo-
thelial junctional adhesion molecule-A is also dysregu-
lated in IBD, and is closely linked to disease activity in 
DSS colitis[37,157]. 

ANGIOGENESIS IN IBD
Angiogenesis (increased blood vessel density) in IBD 
increases the area of  endothelium available for exchange, 
but also for extravasation of  blood constituents into sur-
rounding tissue to increase disease severity in IBD[158]. 
Increased vessel formation in IBD may represent recruit-
ment of  endothelial progenitor cells, vascular intussuscep-
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tion (splitting) and extension from existing vessels[159]. In-
creased angiogenesis is observed in animal (2,4,6-trinitro-
benzene sulphonic acid (TNBS), DSS and iodoacetamide) 
colitis models and in human colitis. However, inflamma-
tory angiogenesis in IBD does not simply match increased 
tissue mass. Vessels formed during inflammation are dif-
ferent from those formed during normal development. 
These vessels are immature, lacking investment with peri-
cytes. They express ECAMs, leak, are hypoperfused, often 
stenose and are hyperthrombotic, with an elevated ability 
to respond to growth factors[160-163] actively supporting 
IBD progression[149,164-168]. Spalinger et al[158] and Maconi 
et al[169] concluded that there is an increased blood vessel 
density in the intestines of  CD and UC patients and that 
increased vascular density in IBD was directly correlated 
with increased IBD disease severity. This is also true in 
animal models of  IBD like TNBS- and DSS-induced coli-
tis models[166,170]. 

Growth factors, especially VEGF-A, dramatically 
alter several aspects of  the colon microvascular endo-
thelial phenotype, resembling a de-differentiation (loss 
of  maturity) of  the vessels which can reflect changes 
in vascular support cells, e.g. pericytes/smooth muscle, 
that surrounds the capillaries. Inflamed tissues display 
increased vascular density resulting from the formation 
of  new vessels during angiogenesis. These changes result 
in decreased perfusion, increased solute permeability 
(via cytokines and VEGF-A induced junction remodel-
ing) and contractility, as well as increased leukocyte and 
platelet adhesiveness[161,171,172]. Ganta et al[163] have dem-
onstrated that in angiotensin-2 knockout mice (using the 
DSS model of  UC), loss of  the pericytes around vessels 
resulted in diminished angiopoietin-1 signaling that de-
stabilized the endothelial layer, increased leukocyte re-
cruitment to the tissue, increased vessel permeability and 
induced vessel hyper-proliferation. Blood and lymphatic 
vessels are hyperstabilized by angiopoietin-2 deficiency, 
and show diminished inflammatory remodeling as well 
as decreased capacity to recruit leukocytes suggesting a 
link between maturity and inflammatory capacity[163].

ENDOTHELIAL CELL AND ANGIOGENIC 
GROWTH FACTOR INTERACTIONS IN 
IBD
VEGF-A is the first described and best known VEGF, 
which controls developmental angiogenesis, wound healing 
and pathology[173,174]. Bousvaros et al[175], Kapsoritakis et al[101]  

and Ozawa et al[176] all found elevated VEGF-A levels in 
plasma and tissue during active human and animal IBD, 
often twice normal[101,109,166,175,176]. However, Chidlow et al[166] 
have reported that DSS diminishes levels of  VEGF-A 
as well as VEGF-C and VEGF-D, suggesting complex, 
concentration-dependent and inhibitor-regulated effects 
of  VEGF in different animal models of  IBD. Danese  
et al[177] and Scaldaferri et al[167] have shown that inhibition 
of  VEGF signaling can attenuate disease activity in the 
DSS model of  UC while overexpression of  VEGF-A in-

creases disease severity in the same model[167,177]. VEGF-A 
is released by several cell sources (e.g. neutrophils, platelets, 
macrophages, pericytes, fibroblasts, ECs, and colonic epi-
thelial cells) and is transcriptionally activated by hypoxia 
through hypoxia inducible factor 1α, and message stabili-
zation via eukaryotic translation initiation factor 4e[70,178-183]. 
Interestingly Birmingham et al[184] have shown that activated 
colonic epithelium represents an important source of  
VEGF-A, and injury or inflammation of  the colon epithe-
lium may provide a local stimulus for blood vessel growth. 
Invasive leukocytes, specifically neutrophils, granulocytes, 
macrophages and platelets, are increased in tissue during 
active IBD, and are also important sources of  VEGF-A in 
inflamed tissues[178,179,185-187]. Salivary secretions also contain 
high levels of  VEGF-A and VEGF-C, which have been 
suggested as important sources of  these growth factors in 
IBD[188] released site-specifically during denudation. Apart 
from VEGFs, other angiogenic growth factors, e.g. basic 
fibroblast growth factor (bFGF), TGF-β and platelet-
derived growth factor (PDGF) are upregulated in IBD and 
may be of  clinical relevance[86,189].

TGF-β is an important regulator of  the cell cycle and 
apoptosis, especially in mucosal immune cells. The expres-
sion of  TGF-β and its 2 receptors (TGFR1 and TGFR2) 
are increased in IBD, specifically UC; however, it appears 
that the levels are decreased in CD[190]. In IBD either tachy-
phylaxis develops for TGF-β (UC), or the lack of  TGF-β 
(CD) allows mucosal immune cells to proliferate when 
they would have undergone apoptosis[190,191]. Early studies 
on the role of  TGF-β in IBD indicated a protective role; 
more recent studies may point to a pathological role of  
TGF-β signaling in IBD[191,192]. In fact, TGF-β is important 
in the formation of  fibrosis in the colon of  IBD patients 
by stimulating the transition of  many cell types to fibro-
blasts[193]. Over one-third of  the fibroblasts responsible for 
inflammatory fibrotic injury may actually originate from 
the transformation of  ECs to fibroblasts (not counting 
contributions of  pericytes to fibroblast formation). There-
fore the vasculature may provide a significant proportion 
(if  not the majority of  fibroblasts) and associated fibrosis 
in IBD[194,195]. bFGF, a potent mitogen for the cells of  
mesodermal origin, stimulates EC proliferation, activates 
MMPs resulting in proteolysis of  extracellular matrix, and 
increases cellular motility[191]. Even though levels of  bFGF 
are elevated in IBD there is no correlation with the stage 
or severity of  the disease. However, the contribution of  
bFGF in the initiation or maintenance of  IBD should not 
be discounted[196]. PDGF is a close relative to VEGF and 
is upregulated in IBD. PDGF is predictive of  both oxida-
tive stress and angiogenesis in the intestine[189]. PDGF 
is released in response to inflammatory and thrombotic 
stimuli. PDGF increases P-selectin expression on ECs and 
induces histamine secretion which induces other effects 
such as increased vascular leakage[197,198]

ENDOTHELIAL PROGENITOR CELLS AND 
VESSEL SPROUTING IN IBD
Recruitment of  endothelial progenitor cells (EPCs) may 
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contribute to angiogenesis in IBD, although reduced num-
bers of  VEGFR2+, CD34+, CD133+ cells (endothelial, 
bone marrow, and stem cell markers) have been reported 
in IBD[199], and EPCs from IBD have reduced antigenic ac-
tivity[95]. These findings suggest that recruitment of  EPCs 
is unlikely to be a source of  increased vessels, however, 
these findings are from patients with established disease 
as initial angiogenesis in early stages of  IBD may rely on 
EPCs. Apart from EPC recruitment, angiogenic sprouting 
is active in IBD; sprouting ECs referred to as “tip” cells, 
are highly motile with distinct gene expression compared 
to that in quiescent ECs[200]. VEGF-A induces the tip cell 
phenotype and also guides vessel sprouting, indicating that 
in IBD, VEGF might induce new vessel formation in this 
way[201]. Normally, not all sprouts survive, many undergo-
ing apoptosis, (vessel “pruning”) suggesting that high 
levels of  VEGF prevent endothelial apoptosis resulting in 
increased numbers of  surviving sprouts in IBD[201].

INHIBITORS OF VASCULAR ENDOTHE-
LIAL EXPANSION IN IBD
While increased pro-angiogenic growth factors increase 
angiogenesis, reductions in anti-angiogenic factors (seen 
in the DSS model of  colitis) may be as important for 
permitting expansion of  the vascular endothelium[166,167]. 
Angiopoietin-1 a competitive inhibitor of  Ang-2, binds 
to the Tie-2 receptor and inhibit vascular remodeling. 
Angiopoietin-2 is upregulated during inflammation and 
angiogenesis[163,202] and competes with angiopoietin-1, 
to allow ECs to maximally respond to cytokines and 
growth factors. Work by Ganta et al[163] found that angio-
poietin-2 signaling also appears to be necessary for neu-
trophil infiltration, and blood and lymphatic vessel pro-
liferation in DSS colitis. Interestingly angiopoietin-2 can 
be upregulated by both bFGF and VEGF, potent pro-
angiogenic growth factors also upregulated in IBD[203-205].

Angiostatin, a fragment of  plasminogen generated by 
MMPs has anti-angiogenic and anti-proliferative effects on 
ECs and blocks vessel maturation[206]. During IBD, levels 
of  MMPs are elevated and generate angiostatin[153]. In fact 
2 models of  experimental colitis (iodoacetamide, TNBS) 
show increased angiostatin, and may represent a feedback 
control for angiogenesis[207]. Interestingly, the effect of  
angiostatin hinges less on inhibition of  EC proliferation, 
but more on inhibiting final vessel maturity[208]. Much like 
angiostatin, endostatin results from the cleavage of  col-
lagen type ⅩⅧ yielding an anti-angiogenic fragment that 
is upregulated in experimental colitis[207,209]. Endostatin 
reduces EC migration and proliferation; however like 
angiostatin, endostatin fails to block angiogenesis in the 
TNBS model, but may play a role in disease progression 
and maintenance by impairing vessel maturity and tissue 
healing by antagonizing VEGF-A induced tissue repair[207]. 
Interestingly Deng et al[210] showed mesalamine treatment 
of  iodoacetamide colitis restored levels of  endogenous 
angiogenesis inhibitors, endostatin and angiostatin helping 
reduce disease severity. 

Soluble VEGF receptors (sVEGFRs) are truncated 
forms of  VEGFR1 or VEGFR2 genes[211] that under nor-
mal physiological conditions maintain tissue avascularity (e.g. 
in the cornea) and might be dysregulated in IBD. During 
inflammation, sVEGFR1 inhibition seems to be lost (e.g. in 
the case of  an alkali burn)[211,212]. sVEGFR2 seems to plays 
an important role in the inhibition of  lymphangiogenesis 
compared to sVEGFR1, but sVEGFR2 blocks transplant 
rejection which points out its greater immunomodulatory 
effect[213]. Additionally, Scaldaferri et al[167] found that over 
expression of  sVEGFR1 reduced disease severity in the 
DSS model of  colitis, suggesting that loss of  this mol-
ecule in IBD would be detrimental. Interestingly the anti-
angiogenic VEGFs, alternate splice variants of  VEGFs, 
are downregulated in several inflammatory diseases, and 
are linked to the alteration of  the cytokine milieu in the tis-
sues[214-217]. These inhibitory VEGFs make up a majority of  
the VEGF load in the normal intestinal micro-environment 
with approximately 20 times greater levels in the healthy 
gut[217]. Currently, the levels of  these inhibitory VEGFs are 
unknown in IBD, but may provide a new avenue for anti-
angiogenic therapies, we are pursuing this possibility which 
is currently showing great promise (unpublished data). 

IBD THERAPIES 
It is increasingly clear that IBD therapies affect the mi-
crovasculature, and that the microvasculature is a central 
target in IBD, coordinating cell infiltration, solute perme-
ability, cytokine/chemokine production and gut immu-
nological responses. An increasing number of  drugs that 
show efficacy in treating IBD have now been found to 
affect the endothelium. Accumulating evidence suggests 
inhibition of  angiogenesis as a secondary mechanism of  
action for many IBD therapies including anti-TNF-α an-
tibodies, and some immunosuppressive agents (cyclospo-
rine A)[218-220]. Scaldaferri et al[87] found TNF-α mediated 
lymphocyte adhesion and chemotaxis across intestinal 
microvascular ECs depends on expression of  ICAM-1, 
VCAM-1 and fractalkine in the affected ECs mediated 
by p38 MAPK, p42/44 MAPK and JNK. Danese et al[71] 
found that anti-TNF-α therapies can reduce thrombus 
formation and adhesion to the endothelium by interfer-
ing with CD40/CD40L signaling. Integrin-blocking anti-
bodies have been used in the treatment of  IBD, but not 
without a controversial side effect. Natalizumab (Tysabri), 
an α4-integrin blocking monoclonal antibody originally 
developed for use in the treatment of  multiple sclerosis, 
but has recently been approved for the treatment CD[21,221]. 
AJM300, a peptide blocker for α4 integrins, successfully 
blocked α4 -VCAM-1 and MAdCAM-1 adhesion and 
prevented exacerbation in IBD models[20,21]. However, 
recent preclinical trials using AJM300 failed to inhibit 
disease progression[20,21]. Rafiee et al[222] found that 2 drugs 
used in IBD, thalidomide and cyclosporine-A, are anti-an-
giogenic; thalidomide targets TNF-α and VEGF-A, while 
cyclosporin-A targets VEGF-A alone[222,223]. Studies by 
Ogawa et al[224] determined that HIMEC expression of  the 
inflammatory mediators IL-6 and cyclooxygenase (COX)-2 
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by LPS were inhibited by butyrate, and that butyrate also 
inhibited HIMEC angiogenesis[224-226]. Despite its anti-
inflammatory properties[223,227,228], cyclosporin-A increases 
leukocyte binding, unlike thalidomide which reduces leu-
kocyte binding to HIMECs[227,228]. 

IBD-INDUCED ANGIOGENESIS AND 
COLORECTAL CANCER 
The risk of  developing cancer is elevated by inflamma-
tion, and the link between IBD and colorectal cancer 
(CRC) is convincing[229-231]. Inhibition of  angiogenesis in 
CRC by bevacizumab (anti-VEGF monoclonal antibody) 
improves clinical outcomes, revealing the importance of  
angiogenesis in the progression from IBD to CRC[232]. As 
stated before, IBD in human disease and animal models 
is associated with an increase in vascular density, and it is 
possible this vascular endothelial expansion may enable 
CRC[158,163,169]. CRC incidence may depend on COX expres-
sion (seen in adenomatous polyposis coli, pre-cancerous le-
sions enriched in COX[233-235]. COX-2 is increased in human 
IBD and IBD models, and may promote CRC through 
angiogenesis[236,237]. COX-2 promotes EC proliferation by 
prostaglandin induction of  VEGF-A, important for tumor 
angiogenesis[237,238]. Chan et al[239] reported that the regular 
use of  aspirin, a non-selective COX inhibitor, significantly 
reduced the risk of  COX-2+ CRC, which constitutes ap-
proximately 67% of  human CRC[239,240]. Additionally 
COX-2 inhibition reduces tumor growth and increased 
tumor apoptosis, and is associated with reduced tumor an-
giogenesis[238,241,242]. Conversely, Ishikawa et al[243] found that 
COX-deficient animals were not protected from tumor 
formation in azoxymethane (tumor promoter)-induced 
colorectal cancer, and concluded that COX expression was 
not a major determinant of  tumor formation in UC. While 
COX expression may not be not necessary for tumor for-
mation in UC, COX-2 upregulation is only one mechanism 
for increased angiogenesis in IBD[86,166,189]. VEGF-A and 
other angiogenic factors are upregulated independent of  
COX-2 in IBD; therefore, while COX-2 may be important 
in CRC in the absence of  IBD, expansion of  the vascula-
ture in IBD through other mechanisms may contribute to 
the development and growth of  CRC[166,244].

CONCLUSION
A unique combination of  genetic and environmental fac-
tors may contribute to development of  IBD. ECs are now 
recognized as central and fundamental elements in IBD 
pathophysiology. ECs are indirectly affected by many IBD 
medications, which are increasingly targeting ECs directly. 
As treatments for IBD are developed and refined there 
will be an increased interest in inhibiting functions of  
ECs in IBD such as immune cell recruitment and inflam-
matory angiogenesis, and improving beneficial lymphatic 
function. Use of  endogenous inhibitors of  leukocyte 
binding (sVCAM) and peptides (AJM300) may become 
novel therapies which supplement or replace current anti-

adhesion treatments. Additional studies on the interac-
tions between the gut microvasculature, platelets and their 
regulation of  inflammatory angiogenesis may provide new 
avenues for treatments that not only reduce thrombosis 
but also several clinical manifestations of  IBD. Inhibition 
of  inflammatory growth factors, cytokines and chemo-
kines that promote angiogenesis by the use of  “traps” or 
decoy receptors, alone or in combination, in addition to 
current treatments could provide greater anti-inflammato-
ry effects by reducing endothelial expansion in IBD. More 
importantly, work in our laboratory suggests that endog-
enous angiogenic inhibitors (VEGF164b) have great po-
tential in the treatment of  IBD. Future studies promoting 
therapeutic intervention by combining anti-angiogenic, 
anti-immune and anti-inflammatory agents as treatment 
options focusing on the endothelium as core/vital for 
IBD pathogenesis will provide greater specificity and ef-
ficacy for treating CD and UC patients.
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