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Abstract
AIM: To investigate cytokine production and cell sur-
face phenotypes of dendritic cells (DC) in the presence 
of epithelial cells stimulated by probiotics.

METHODS: Mouse DC were cultured alone or together 
with mouse epithelial cell monolayers in normal or in-
verted systems and were stimulated with heat-killed 
probiotic bacteria, Bifidobacterium lactis  AD011 (BL), 
Bifidobacterium bifidum  BGN4 (BB), Lactobacillus casei 
IBS041 (LC), and Lactobacillus acidophilus  AD031 (LA), 
for 12 h. Cytokine levels in the culture supernatants 
were determined by enzyme-linked immunosorbent as-
say and phenotypic analysis of DC was investigated by 
flow cytometry.

RESULTS: BB and LC in single-cultured DC increased 
the expression of I-Ad, CD86 and CD40 (I-Ad, 18.51 vs  
30.88, 46.11; CD86, 62.74 vs  92.7, 104.12; CD40, 0.67 
vs  6.39, 3.37, P  < 0.05). All of the experimental probiot-

ics increased the production of inflammatory cytokines, 
interleukin (IL)-6 and tumor necrosis factor (TNF)-α. 
However, in the normal co-culture systems, LC and LA 
decreased the expression of I-Ad (39.46 vs  30.32, 33.26, 
P  < 0.05), and none of the experimental probiotics in-
creased the levels of IL-6 or TNF-α. In the inverted co-
culture systems, LC decreased the expression of CD40 
(1.36 vs  -2.27, P  < 0.05), and all of the experimental 
probiotics decreased the levels of IL-6. In addition, BL 
increased the production of IL-10 (103.8 vs  166.0, P  
< 0.05) and LC and LA increased transforming growth 
factor-β secretion (235.9 vs  618.9, 607.6, P  < 0.05).

CONCLUSION: These results suggest that specific pro
biotic strains exert differential immune modulation me-
diated by the interaction of dendritic cells and epithelial 
cells in the homeostasis of gastrointestinal tract.

© 2012 Baishideng. All rights reserved.
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INTRODUCTION
The gastrointestinal (GI) tract is an immunologic organ 
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with continuous antigen exposure in the form of  food, 
normal bacteria and pathogens. Despite numerous anti-
genic challenges, the complicated mucosal immune sys-
tem maintains GI homeostasis via the concerted actions 
of  the various mucosal immune cells. Dendritic cells (DC), 
dedicated antigen-presenting cells, modulate the immune 
balance in the GI tract[1]. DC can take up antigens directly 
by extending their dendrites into the lumen or indirectly 
after transport of  the antigens by M cells overlying Peyer’s  
patch[2,3]. Antigen-carrying DC may traffic through the 
lymphatics to the mesenteric lymph nodes[4], mediating 
the homing of  activated effector/memory T cells and 
IgA-secreting B cells[5,6] and inducing regulatory T cells 
to produce interleukin (IL)-10 and transforming growth 
factor (TGF)-β[7,8]. These roles depend on the regulation 
of  cell surface expression of  co-stimulatory molecules 
and production of  inflammatory chemokines and cyto-
kines[9-11].

DC can recognize and present microbial components 
using pattern receptor system which includes toll-like-re-
ceptor (TLR). TLR can interact with microorganism-asso-
ciated molecules such as peptidoglycan, lipoprotein, and 
lipopolysaccharide[12-16]. Bifidobacterium and Lactobacillus are 
major components of  the commensal microbes of  the GI 
tract and are frequently used as probiotics[17,18]. Probiotics, 
defined as live microorganisms which, when consumed 
in appropriate amounts in food, confer a health benefit 
on the host[19], exert various host physiological responses 
such as immunomodulatory effect[20]. Recent experiments 
reported that DC could be modulated by probiotics. 
Several Lactobacillus species could regulate DC surface 
expression and cytokine production[21]. In addition, the 
probiotics mixture VSL No. 3 upregulated the expression 
of  major histocompatibility complex (MHC) class Ⅱ and 
co-stimulation molecules[22].

DC are often located close to epithelial cells, populat-
ing the subepithelial dome of  Peyer’s patches, immedi-
ately adjacent to the follicle-associated epithelium and 
the lamina propria[23,24]. Intestinal epithelial cells secrete 
many mediators, including functional peptides such as 
defensins, mucins, chemokines, and cytokines such as 
IL 8[25-27]. TLR5 on the epithelium is a key mediator of  
pro-inflammatory responses to flagella from commensal 
bacteria[28,29]. Flagella also stimulate the maturation of  re-
sponsive DC[30].

Interaction between DC and epithelial cells is integral 
to the intestinal immune system. We hypothesized that 
epithelial cells stimulated by probiotics could regulate the 
maturation of  DC. Accordingly, the present study investi-
gated the pattern of  cytokine production and the surface 
phenotype of  DC in the presence of  epithelial cells polar-
ized by heat-killed probiotic bacteria.

MATERIALS AND METHODS
Preparation of probiotic bacteria
Bifidobacterium bifidum BGN4 (BB) was isolated from heal-
thy infant fecal matter and identified in our laboratory[31]. 
Bifidobacterium lactis AD011 (BL), Lactobacillus casei IBS041 
(LC), and Lactobacillus acidophilus AD031 (LA) were provid-

ed by the Research Institute of  Bifido Co. Ltd. (Hongchun, 
Gangwondo, South Korea). Four probiotic bacteria were 
anaerobically propagated in de Man, Rogosa, and Sharpe 
(Difco, Detroit, MI, United States) broth containing 0.05% 
L-cysteine (Sigma, St. Louis, MO, United States) at 37 ℃
until mid-log phase was reached. Subsequently, probiotics 
were inoculated at 1% and anaerobically cultured in de 
Man, Rogosa, and Sharpe (Difco) broth containing 0.05% 
L-cysteine (Sigma) at 37 ℃. Lactobacillus species were incu-
bated for 16 h, and Bifidobacteirum species were incubated 
for 24 h to late log phase. The bacteria were collected by 
centrifugation at 1000 × g for 15 min at 4 ℃ and washed 
twice with phosphate-buffered saline (PBS). After wash-
ing, the bacteria were resuspended in 1 mL of  PBS and 
incubated at 95 ℃ for 30 min to prepare heat-killed bac-
teria cells. The killed bacteria were collected by centrifuga-
tion at 1000 × g for 15 min and then lyophilized (Combi-
514R, Hanil Science Industrial, Seoul, South Korea).

Generation of CMT-93 monolayers
CMT93 was derived from carcinomas of  C57BL mouse 
large intestine. The cells have an epithelial morphology 
and forms acini, junctional complexes, and microvilli with 
attached glycoprotein[32]. CMT-93 cells were maintained 
in DMEM (Gibco Life Technologies, United Kingdom) 
supplemented with 10% heat-inactivated fetal bovine se-
rum (FBS) (Invitrogen, Paisley, United Kingdom) and 1% 
penicillin/streptomycin (Invitrogen), and were incubated 
at 37 ℃ in a humidified atmosphere of  5% CO2. Mono-
layers were grown in 24-well Corning Costar Transwell 
plates (Corning Inc., United States) with 3 μm pore-size 
filter inserts. In the normal co-culture system, 5 × 105 
cells were seeded into the inserts, and the wells were filled 
with 1 mL medium. In the inverted co-culture system, 
inserts were removed and inverted in tissue culture dishes, 
and the cells of  the same volume were seeded to the ex-
posed filter membrane. The culture dishes were filled with 
enough medium to sink the inserts. The transwell inserts 
were cultured for 3-4 d until CMT-93 established mono-
layers. Confluence of  the cells was confirmed when the 
trans-epithelial electrical resistance (TEER; Millicell ERS 
Ohmmeter, Millipore, Eschborn, Germany) exceeded the 
cut-off  point of  250 Ω/cm2.

JAWS Ⅱ cell preparation
JAWS Ⅱ, mouse bone marrow-derived immature DC[33], 
were maintained in α-MEM (Gibco) supplemented with 
5 ng/mL GM-CSF (Sigma, St. Louis, MO, United States), 
20% heat-inactivated FBS (Invitrogen), and 1% penicil-
lin/streptomycin (Invitrogen). The mixture was incubated 
at 37 ℃ in a humidified atmosphere of  5% CO2. The 
cells were cultured at a 1/2 subcultivation ratio for 5-6 d 
in complete medium.

Co-culture experiment model
The co-culture experiment model is shown in Figure 1. 
JAWS Ⅱ cells were harvested, washed, and resuspend-
ed in RPMI1640 complete medium (Gibco) containing  
5 ng/mL GM-CSF (Sigma), 10% heat-inactivated FBS 
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(Invitrogen), and 1% penicillin/streptomycin (Invitrogen). 
A total of  1 × 106 JAWS Ⅱ cells were added into lower 
chambers, and the normal and inverted cultured CMT-93 
monolayer inserts were placed in the JAWS Ⅱ seeded 
transwell plates. One hundred μg/mL of  the experimen-
tal bacteria or 10 μg/mL of  LPS (Sigma) were added to 
the CMT-93 monolayer inserts. For comparison, JAWS Ⅱ 
cells were also plated at the same concentration in 24 well 
tissue culture plates (Corning Inc.), and the same amount 
of  the bacteria or LPS were added to the cells. The single- 
or co-cultured cells were incubated with 1 mL RPMI1640 
complete medium at 37 ℃ in a humidified atmosphere of  
5% CO2 for 12 h.

Flow cytometry analysis
Incubated JAWS Ⅱ cells were harvested and washed three  
times in cold FACS buffer (Dulbecco’s PBS; Gibco, 
2% FBS) and then stained with the appropriate mono-
clonal antibodies: PE-conjugated anti-I-Ad, anti-CD80, 
anti-CD86, and anti-CD40 at a final concentration of   
10 μg/mL for 30 min at 4 ℃ in the dark. Isotype control 
antibodies were hamster IgG2 k, rat IgG2a k, and mouse 
IgG2b. The stained cells were analyzed immediately by 
FACSCalibur (Becton Dickinson, San Diego, CA, United 
States). All of  the antibodies used in this flow cytometry 
analysis were purchased from Pharmingen (San Diego, 
CA, United States).

Cytokine measurement
JAWS Ⅱ cell supernatants were harvested from the lower 
chamber of  the Transwell or from the JAWS Ⅱ cultured-
alone plate following incubation, and were assayed for 
levels of  IL-6, IL-10, IL-12p70, tumor necrosis factor 
(TNF)-α and TGF-β using enzyme-linked immunosor-
bent assay . Briefly, Nunc-Immuno-Maxisorp plates (Nunc, 
Roskilde, Denmark) were coated with 2 μg/mL of  rat 
anti-mouse IL-6 and TGF-β capture antibodies in coating 
buffer (1.6 g/L Na2CO3, 7.1 g/L NaHCO3), pH 9.5, or  
2 μg/mL of  rat anti-mouse IL-10, IL-12p70, and TNF-α 
capture antibodies in coating buffer (11.8 g/L Na2HPO4, 
16.1 g/L NaH2PO4), pH 6.5, overnight at 4 ℃. After 

washing and blocking, 100 μL of  1:100 diluted (IL-6) 
or undiluted (IL-10, IL-12p70, TNF-α and TGF-β) su-
pernatant was added to individual wells and incubated 
overnight at 4 ℃. Plates were washed, and biotinylated rat 
anti-mouse IL-6, IL-10, IL-12p70, TNF-α and TGF-β 
monoclonal antibodies (2 μg/mL) and HRP-conjugated 
streptavidin were added to the plates for cytokine de-
tection for 1 h at room temperature. The reactions were 
developed with the 3,3’,5,5’-tetramethylbenzidine substra-
te (Fluka, Neu-Ulm, Switzerland) for 30 min at room 
temperature. The color reactions were stopped with 2 N 
H2SO4 and analyzed at 450 nm. Equivalent levels of  IL-6, 
IL-10, IL-12p70, TNF-α and TGF-β were measured for 
comparison with a reference curve generated using stan-
dards of  these cytokines.

Statistical analyses
Data are presented as the mean ± SE, indicated by bars 
in the figures. All statistical analyses were performed us-
ing SPSS 12.0K for Windows (SPSS Inc., Chicago, IL, 
United States). Differences between the single culture and 
co-culture were determined by Student’s t-test, and differ-
ences between cytokine levels were analyzed by analysis 
of  variance followed by Duncan’s multiple range test. The 
P values < 0.05 were considered to be statistically signifi-
cant.

RESULTS
Development of stable CMT-93 epithelial cell monolayers
To obtain stable CMT-93 intestinal epithelial cell mono-
layers, we monitored the culture every day for TEER 
using a Millicell-ERS ohmmeter for a period of  7 d. On 
day 3, normal insert monolayer integrity was obtained at 
300-500 Ω/cm2, and inverted insert monolayer integrity 
was obtained at 250-350 Ω/cm2. In addition, the genera-
tion of  epithelial cell monolayers was observed on the 
surface of  the inserts by microscope (data not shown). 
Monolayers between day 3 and 4 were used for co-culture 
experiments. After co-culture with DC for 12, the integri-
ty of  CMT-93 monolayer was evaluated by TEER. There 
was no difference between before and after co-culture in 
terms of  the resistances within the margin of  error.

Dendritic cells phenotype modulation during co-
culturing with epithelial cells
DC surface phenotypes were compared in the presence 
and absence of  epithelial cells. The expression of  MHC 
class Ⅱ I-Ad on the normal and the inverted co-cultured 
DCs was upregulated compared with that of  the single-
cultured DC (single culture, 18.51 ± 2.86; normal co-
culture, 39.46 ± 2.53; inverted co-culture, 52.03 ± 2.41; 
Figure 1). Co-culture with epithelial cells did not alter the 
DC surface expression of  CD80, CD86 and CD40 (data 
not shown).

Effect of probiotics on the expression of major histocom-
patibility complex class Ⅱ and costimulatory molecules
We performed flow cytometery analyses to examine the 

Figure 1  Effect of non-stimulated intestinal epithelial cells on surface 
phenotype of dendritic cells. Fluorescence activated cell sorter analysis of 
dendritic cells (DC) cultured alone or co-cultured with non-stimulated epithelial 
cell monolayers for 12 h showing DC surface phenotype by staining with I-Ad. 
Data are shown as the mean fluorescent intensity (MFI) ± SEM of three repre-
sentative experiments. Significant difference between the single culture and co-
culture as determined by Student’s t-test (P < 0.01).
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effects of  BL, BB, LC, LA, LPS and control on single- or 
co-cultured immature DC surface phenotypes. In the DC 
single culture, the expression of  MHC class Ⅱ I-Ad was 
significantly increased by stimulation with BL, BB, and LC 
compared with the control (Figure 2). In the normal co-
culture, the expression of  I-Ad was significantly decreased 
by the stimulation of  LC and LA compared with the con-
trol. In the inverted co-culture, none of  the experimental 
probiotics modulated the expression of  I-Ad.

BL and LA significantly downregulated the expression 
of  CD80 in the single-cultured DC. However, none of  
the experimental probiotics regulated CD80 in the normal 
and inverted co-cultured DC (Figure 3A). 

BB and LC upregulated the expressions of  CD86 and 
CD40 in the single-cultured DC, whereas none of  the ex-
perimental probiotics regulated the expression of  CD86 
in the normal or inverted co-cultured DC (Figure 3B). 
LC significantly downregulated the expression of  CD40 
in the inverted co-cultured DC compared with medium 
alone (Figure 3C).

Cytokine profiles in dendritic cells supernatant by co-
culturing with epithelial cells
The levels of  IL-6, IL-12p70, TNF-α and TGF-β from 
the co-cultured system were significantly reduced com-
pared with those from the single-cultured DC (Figure 4A 
and C-E); however, the production of  IL-10 showed no 
decrease in the co-cultured DC.

Effect of probiotics on the cytokine production in the co-
culture system
We quantified the cytokine levels in the single- and co-
cultured DC supernatants to investigate the effect of  the 
experimental probiotics on the production of  cytokines. 
LPS was used as a stimulator control to compare with 
non-treated naïve control. In the single-cultured DC, 
stimulation with the experimental probiotic bacteria mark-
edly increased the production of  IL-6 and TNF-α com-
pared with the control (Figure 4A and D). In the normal 
co-cultured DC, the levels of  IL-6 stimulated by BB and 
LC and the level of  TNF-α stimulated by LA were lower 
than those of  non-stimulated control. In the inverted co-
cultured DC, all of  the experimental bacteria significantly 
decreased the production of  IL-6 compared with the 
control, but had no significant effect on the production 
of  TNF-α.

 In the single-culture, the level of  IL-10 in DC stimu-
lated by BL, LC,and LA was higher than that in the con-
trol DC (Figure 4B). The levels of  IL-10 from the normal 
co-cultured DC stimulated by BL, BB and LC were lower. 
IL-10 from the inverted co-cultured DC stimulated by BL 
was higher than that from the control.

 In the single-cultured DC all of  the experimental 
probiotics decreased the production of  IL-12p70. In the 
normal co-cultured DC only BL increased the production 
of  IL-12p70. In the inverted co-cultured DC the levels of  
IL-12p70 stimulated by all of  the experimental probiotics 
were similar to that of  control.

 BL, BB and LC in the single-cultured DC decreased 

the production of  TGF-β. The levels of  TGF-β in all of  
the treated groups in the normal co-culture system were 
similar to that from the non-stimulated control but in the 
inverted co-cultured system LC and LA significantly in-
creased the production of  TGF-β (Figure 4C and E).

DISCUSSION
The modulatory effect of  probiotics on the host immune 
system was reported in in vivo experiments and clinical 
trials[34]. However, the exact mechanism of  the immuno-
modulatory effect of  probiotics, especially with respect to 
the interaction between DC and epithelial cells in the pres-
ence of  probiotics, has not been well elucidated. In the 
present study, we investigated the effect of  heat-killed BL, 
BB, LC and LA on the modulation of  JAWS Ⅱ (DC) us-
ing an in vitro co-culture model. In vitro, live bacteria grown 
by geometric progression exhausted culture nutrients, 
produced various acid metabolites, and induced necrosis 
of  the cultured animal cells within a few hours. Therefore, 
the treatment of  the host cells with live bacteria was inap-
propriate. The adhesive properties of  heat killed bacteria 
might be differentially modified by the heat treatment 
depending on the specific strain of  the experimental 
bacteria. However, a previous study reported that oral ad-
ministration of  heat-killed and lyophilized BB could sup-
press the occurrence of  allergy by the immune regulatory 
actions in the mouse allergy model[35], which implied that 
heat-killed and lyophilized bacteria could maintain their 
immunomodulatory effects.

To simulate the interaction between DC and epithelial 
cells in the intestinal environment, we used a transwell co-
culture system with CMT93 epithelial cell lines[32]. CMT93 
was derived from the same mouse origins as JAWS Ⅱ, 
C57BL mouse, and forms junction complexes. A previ-
ous study reported that there was a gap junctional com-
munication between murine lymphocytes and CMT93 
epithelial cells, and gap junctional communication might 
regulate cell functions[36]. Nonpathogenic intestinal bac-
teria can induce DC migration into the epithelial layer 
and recruit DC uptake of  bacteria and apoptotic frag-
ments derived from apoptotic epithelial cells to maintain 
peripheral self-tolerance[2,37]. In the normal co-culture 
system, there was an insert membrane and a gap of  1 mm 
between JAWS Ⅱ and CMT93. On the other hand, an in-
verted co-culture model was established by the generation 
of  a CMT93 monolayer on the underside of  the inverted 
insert. A previous study demonstrated that DCs directly 
interacted with luminal bacteria using CX3CR1-mediated 
trans-epithelial dendrites[38]. 

DC interact with microbes and distinguish gram posi-
tive, negative, or closely related organisms using TLR and 
present the processed antigens through MHC class Ⅱ[12,16,39]. 
DC then mediate T cell activation, which is regulated by 
MHC class Ⅱ molecules, co-stimulatory molecules such 
as CD80 and CD86, and cytokines[40].

 In the single-cultured systems BB and LC upregulated 
the expression of  MHC class Ⅱ I-Ad, CD86, and CD40, 
while all of  the experimental probiotics attenuated IL-

Kim JY et al . Probiotic modulation of co-cultured DC
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12p70 secretion. IL-12 directed the differentiation of  T 
cells to a Th1 phenotype[41]. Nier reported that Bifidobacte-
rium bifidum enhanced the expression of  CD86 and MHC 
class Ⅱ in human neonatal DC, which led in turn to the 
polarization of  IFN-γ-producing T cells[42]. Mohamadza-
deh et al[43] showed that Lactobacillus gasseri, Lactobacillus 
johnsonni, and Lactobacillus reuteri upregulated the expres-
sion of  MHC class Ⅱ, CD40, CD80 and CD86 in human 
myeloid DC and increased the level of  IL-12p70 which 
induced the polarization from CD4(+) and CD8(+) T 
cells to T helper 1 and Tc1 cells. Meanwhile, Drakes et al[22]  
showed that probiotic products containing Lactobacillus 
and Bifidobacterium upregulated the expression of  MHC 
class Ⅱ, CD40, CD80 and CD86, and did not induce 
the production of  IL-12p70 in mouse DC. Additionally, 
mouse bone marrow-derived DC treated with Lactobacillus 
reuteri induced Th2 immune response[21]. Taken together, 

the results of  these earlier studies suggested that probi-
otics upregulated the expression of  MHC class Ⅱ and 
differently modulated co-stimulatory molecules such as 
IL-12p70 and T cell polarization, depending on the DC 
origin and the strain of  probiotics. 

 Interestingly, in the present study the effects of  pro-
biotics on cytokine production and the surface phenotype 
in co-cultured DC with epithelial cells were markedly 
different from those in single-cultured DC. All of  the ex-
perimental probiotics induced the production of  pro-in-
flammatory cytokines, IL-6 and TNF-α, in the single cul-
tured DC. TNF-α mediated various immune responses[44], 
and over-production of  TNF-α could play a role in tissue 
damage and intestinal pathologies[45,46]. In contrast with 
the results from the single system the experimental pro-
biotics reduced or did not affect the expression of  I-Ad, 
CD86 and CD40 or the production of  IL-6, IL-12p70 

Figure 4  Effect of probiotics on the production of cytokines from single- or co-cultured dendritic cells. Supernatants were obtained from probiotic-treated 
dendritic cells (DC) cultured in the presence or absence of intestinal monolayers for 12 h. Levels of interleutkin (IL)-6 (A), IL-10 (B), IL-12p70 (C), tumor necrosis fac-
tor (TNF)-α (D), and transforming growth factor(TGF)-β (E) were determined by enzyme-linked immunosorbent assay. Data are shown as mean ± SE of three repre-
sentative experiments. Different letters indicate significant differences among the control, lipopolysaccharides (LPS), and probiotics determined by Duncan’s multiple 
range test (P < 0.05). Significant difference between the single culture and co-culture as determined by Student’s t-test (P < 0.05). BL: Bifidobacterium lactis AD011; 
BB: Bifidobacterium bifidum BGN4; LC: Lactobacillus casei IBS041; LA: Lactobacillus acidophilus AD031.
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and TNF-α in inverted co-cultured DC. These findings 
suggest that epithelial cells are essential components of  
the immune system to be considered in assessing the ef-
fects of  probiotics on the regulation of  the gastrointesti-
nal immune system. Consequently, previous studies which 
employed only DC cells without epithelial cells might 
have provided only partial pictures or sometimes mislead-
ing information about the interaction of  the probiotics 
with DC cells. 

 Previously, Haller et al[47] showed that Lactobacillus johnsonii 
increased the production of  TGF-β in human epithelial 
cell lines co-cultured with leucocytes. In our study, BL, 
LC and LA induced IL-10 secretion from single-cultured 
DC. In an inverted co-culture system, BL increased IL-10 
secretion, and LC and LA increased TGF-β secretion. 
IL-10 was known to activate regulatory T cells[48]. TGF-β 
which is an important factor in enhancing the differentia-
tion of  regulatory Th3 cells was reported to have wide-
ranging immunomodulatory properties[49,50]. Th3 cells sup-
press Th1 and other immune responses and maintain oral 
tolerance[40,50,51]. Conceivably, enhanced secretion of  IL-10 
or TGF-β observed in the co-culture systems by BL, LC 
and LA might contribute to the activation of  regulatory 
T cells in the intestinal tracts. The present study is novel 
since we assessed the effect of  probiotics on immune-
modulation in a co-culture model. We suggest that a co-
culture model better reflects the environmental status 
of  the in vivo immune system. Our model supports the 
hypothesis that the interaction of  DC and epithelial cells 
stimulated with probiotics may help maintain intestinal 
homeostasis by downregulating the production of  inflam-
matory cytokines and expression of  MHC class Ⅱ in DC.
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intestinal tract by mediating the activation of different subsets of T cells. The 
functions and differentiation of the DCs may be modulated by probiotics. To 
better understand the role of the probiotics in the intestinal immune system the 
interactions of probiotics in the context of epithelial cells and DCs need to be 
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