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Abstract
AIM: To identify and characterize drosophila mothers 
against decapentaplegic (SMAD)3-dependent changes 
in immune cell populations following infection with He-
licobacter hepaticus (H. hepaticus ).  

METHODS: SMAD3-/- (n  = 19) and colitis-resistant 
SMAD3+/- (n  = 24) mice (8-10 wk of age) were in-
fected with H. hepaticus  and changes in immune cell 
populations [T lymphocytes, natural killer (NK) cells, 
T regulatory cells] were measured in the spleen and 
mesenteric lymph nodes (MsLNs) at 0 d, 3 d, 7 d and 
28 d post-infection using flow cytometry. Genotype-

dependent changes in T lymphocytes and granzyme B+ 
cells were also assessed after 28 d in proximal colon 
tissue using immunohistochemistry.

RESULTS: As previously observed, SMAD3-/-, but not 
SMAD3+/- mice, developed colitis, peaking at 4 wk 
post-infection. No significant changes in T cell subsets 
were observed in the spleen or in the MsLNs between 
genotypes at any time point. However, CD4+ and CD8+/
CD62Llo cells, an effector T lymphocyte population, as 
well as NK cells (NKp46/DX5+) were significantly higher 
in the MsLNs of SMAD3-/- mice at 7 d and 28 d post-in-
fection. In the colon, a higher number of CD3+ cells were 
present in SMAD3-/- compared to SMAD3+/– mice at base-
line, which did not significantly change during infection. 
However, the number of granzyme B+ cells, a marker of 
cytolytic lymphocytes, significantly increased in SMAD3-/- 
mice 28 d post-infection compared to both SMAD3+/- 
mice and to baseline values. This was consistent with 
more severe colitis development in these animals.  

CONCLUSION: Data suggest that defects in SMAD3 
signaling increase susceptibility to H. hepaticus -induced 
colitis through aberrant activation and/or dysregulation 
of effector lymphocytes.  
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INTRODUCTION
Individuals with inflammatory bowel disease (IBD), par-
ticularly ulcerative colitis (UC), are at a higher risk of  
developing colon cancer than the general population[1]. A 
meta-analysis of  116 studies indicated that the prevalence 
of  colon cancer in patients with UC is approximately 
3.7% (95% CI: 3.2-4.2), with the cumulative probability 
reaching 18% by 30 years regardless of  disease severity[2]. 
Although the etiology of  UC is poorly understood, there 
are indications that the immune system of  individuals 
with UC reacts abnormally to bacteria in the digestive 
tract. This altered immune response leads to the inflam-
mation-associated pathology of  IBD[3-5]. 

Imbalances in both innate and adaptive immune cells, 
such as natural killer (NK) cells and T cell subsets, includ-
ing CD4+ and CD8+ T cells and CD4/CD25/Foxp3+ T 
regulatory (Treg) cells, are associated with the pathogene-
sis of  IBD[2]. The inflammation and damage caused by in-
creased secretion of  inflammatory cytokines during an ac-
tive disease state is thought to be triggered by cytotoxicity 
against the commensal bacteria[6]. For example, levels of  
NK cytotoxicity in UC are related to the clinical stage of  
the disease[7]. In active disease states, NK cells are present 
in normal numbers, but are functionally defective, whereas 
NK cells exhibit normal cytotoxic activity in an inactive 
disease state[7]. Induction of  inflammatory cytokines can 
also result from the disruption of  the homeostatic balance 
between Treg and effector T helper (Th) cells. Elevated 
levels of  pro-inflammatory CD4+ T cells lead to excess 
cytokine/chemokine production, thereby recruiting ad-
ditional leukocytes and influencing the severity of  the 
inflammatory response[2]. CD8+ T cells are also important 
in the pathogenesis of  UC in humans, as demonstrated by 
extensive CD8+ T cell infiltration within intestinal lesions 
contributing to mucosal damage[8,9].  

Transforming growth factor (TGF)-β is a multifunc-
tional cytokine that plays an important role in epithelial 
and immune cell homeostasis[10,11]. TGF-β mediates many 
diverse biological functions on different cell types through 
receptor-mediated phosphorylation and activation of  the 
drosophila mothers against decapentaplegic homolog 
(SMAD) family proteins, notably SMAD2 and SMAD3, 
which migrate to the nucleus and induce transcription of  
a targeted set of  genes[12,13]. Dysfunctions in one or more 
components of  TGF-β signaling are commonly observed 
in human IBD and during colon cancer development. For 
example, loss of  expression of  the TGF receptor type 
Ⅱ is observed in 90% of  microsatellite instable colon 

cancers, leading to loss of  growth regulation in epithelial 
cells[14]. Additionally, although the TGF-β1 isoform is 
overexpressed in the colon of  individuals with IBD[15], 
nuclear signaling is impaired due to increased levels of  
SMAD7[16]. SMAD7 normally inhibits TGF-β signaling by 
blocking activation of  SMAD2/3 in response to receptor-
ligand binding. Normalizing SMAD7 expression restores 
TGF-β signaling through SMAD3 and inhibits proinflam-
matory cytokine production by lamina propria mono-
nuclear cells[16].  

Impairments in one or more components of  the TGF-β 
signaling pathway are implicated in intestinal inflammation 
in rodent models. For example, homologous knockout 
of  the TGF-β1 gene in mice causes an excessive inflam-
matory response in multiple organs, including the heart, 
lungs, and intestinal tract leading to premature death[17,18]. 
Additionally, Maggio-Price et al[19] have demonstrated that 
disruption of  the transcription factor SMAD3 modulates 
colitis susceptibility following infection with certain Helico-
bacter spp. Among these, Helicobacter hepaticus (H. hepaticus) is 
a Gram-negative spiral bacterium that colonizes the lower 
intestine and the hepatobiliary tract of  mice[20]. Although 
generally asymptomatic, infection can lead to hepatic and 
intestinal inflammation in certain strains of  immunode-
ficient mice[21-24]. In the complete absence of  SMAD3 
signaling, H. hepaticus induces a moderate inflammatory 
response in the cecum and colon, eventually leading to 
mucinous adenocarcinoma formation after 15-30 wk[19]. 
It is generally accepted that chronic low levels of  inflam-
mation lead to cancer promotion and progression[25-28], 
therefore, the SMAD3 mouse model is very similar to the 
development of  specific human cancers where pathogen-
induced inflammation is necessary (but not sufficient) to 
cause dysplasia and tumor formation.  

Using this model, the focus of  the current study was 
to investigate the effect of  SMAD3 deficiency on changes 
in local and systemic immune cell populations following 
infection with H. hepaticus. We hypothesized that colitis 
susceptibility in SMAD3-/- mice induced by H. hepaticus is 
associated with altered immune cell populations compared 
to colitis resistant SMAD3+/- mice. The aims of  this study 
were to: (1) characterize the colitis induced by H. hepaticus 
in colitis-sensitive SMAD3-/- vs resistant SMAD3+/- mice; 
(2) compare the immune cell population changes in the 
spleen and mesenteric lymph nodes (MsLNs); and (3) 
compare local immune cell changes by immunohisto-
chemistry in the colon.

MATERIALS AND METHODS
Murine model
SMAD3+/- and SMAD3-/- (129-Smad3tm1Par/J) mice were 
bred in-house. Homozygous males and heterozygous 
females were mated to obtain both SMAD3+/- and 
SMAD3-/- pups. Genotypes were confirmed by poly-
merase chain reaction (PCR). Animals were housed un-
der specific pathogen-free (SPF) conditions in 60 square 
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inch plastic cages (maximum of  five adult mice per cage) 
with microisolator lids in an Association for Assessment 
and Accreditation of  Laboratory Animal Care-approved 
facility at Michigan State University. SPF conditions were 
assured through quarterly serology testing by Charles 
Rivers (Wilmington, MA, United States) and in-house 
testing for ectoparasites, endoparasites and fecal Helico-
bacter species (PCR). Full necropsies (including culture 
and sensitivity) were performed at least yearly on rodent 
breeding colonies. Animal rooms were maintained at 23.3 
± 2.2 ℃ with a 12-h light/dark cycle. Mice were fed Har-
lan Teklad 7913 rodent chow and sterile water ad libitum. 
Animal protocols were approved by the Michigan State 
University Institutional Animal Care and Use Committee. 

Bacterial culture and infection
The wild-type H. hepaticus strain 3B1 (ATCC 51488) 
was utilized for these experiments. Isolates were asepti-
cally streaked onto sheep blood agar and incubated at 
37 ℃ for 24-48 h inside GasPak™ gas generating pouch 
systems (BD Diagnostic Systems, Sparks, MD, United 
States). Mice were infected as previously described[19]. 
Briefly, bacteria were collected and resuspended in tryptic 
soy broth at A600 nm ≥ 1.8. Animals were then gavaged 
with 0.3 mL doses of  fresh bacterial suspension on two 
consecutive days. Previously, Maggio-Price et al[19] have 
shown that Helicobacter infection is localized primarily in 
the cecum and proximal colon, and that bacterial DNA is 
still present in the tissue and luminal contents of  the ce-
cum at 12 wk post-infection. Bacterial presence was con-
firmed in the current study via DNA isolation at 3 d post-
infection using a commercial kit (QIAGEN tissue kit; 
Valencia, CA, United States) as previously described[24].

Experimental design
In study 1, SMAD3-/- mice (n = 30) at 8-10 wk of  age 
were infected with H. hepaticus to determine onset and 
duration of  colitis. At the time of  necropsy, mice were 
asphyxiated with CO2 and exsanguinated via cardiac 
puncture. Intestinal tissue was collected and processed 
for histopathology at 2-8 wk post-infection. In study 
2, SMAD3+/- (n = 24) and SMAD3-/- mice (n = 19) at 
8-10 wk of  age were infected with H. hepaticus once per 
day for two consecutive days. At select time points after 
infection (0, 3, 7 and 28 d), the spleen and MsLNs were 
collected and processed for lymphocyte isolation as 
described below. Colon and cecum tissue was collected, 
fixed, and processed for immunohistochemistry.  

Histopathology
The colon and cecum were removed and flushed with 
phosphate-buffered saline (PBS). Tissues were fixed in 
10% formalin overnight, embedded in paraffin, then 
sectioned and stained with hematoxylin and eosin (HE). 
Longitudinal sections were graded for inflammation 
and epithelial dysplasia/neoplasia by a pathologist us-
ing a blinded scoring system adapted from Maggio-
Price et al[29]. Cecum and colons were scored on a 1 to 4 

scale both for inflammation (1, no inflammation; 2, mild 
inflammation; 3, moderate inflammation; 4, marked in-
flammation) and dysplasia (1, no dysplasia; 2, low-grade 
dysplasia; 3, high-grade dysplasia; 4, high-grade dysplasia 
with invasion/adenocarcinoma). The two scores for co-
lon and two scores for cecum tissue in each animal were 
combined such that a score of  4 indicated no inflam-
mation or dysplasia and a score of  16 reflected maximal 
inflammation and neoplasia.

Immunohistochemistry was performed on paraffin-
embedded colon sections. Antibodies specific for CD3 
and granzyme B were purchased from Abcam (Cam-
bridge, MA, United States). Colons were sectioned at 5 
µm, mounted on coated slides, deparaffinized in xylene, 
and rehydrated through graded ethanol-water baths. 
Antigen retrieval was performed using citrate buffer (10 
mmol/L, pH 6.0) and a vegetable steamer. Tissues were 
incubated in 3% hydrogen peroxide to block endog-
enous peroxidase activity and then incubated overnight 
at 4 ℃ in primary antibody. On the following day, tissues 
were washed in Tris-buffered saline containing Tween-20 
(0.05%), then incubated with biotinylated secondary an-
tibodies followed by streptavidin horseradish peroxidase 
for 45 min each at room temperature (Dako, Carpentar-
ia, CA, United States). After extensive washing, antigen-
bound horseradish peroxidase was detected using the 
chromagen 3,3’-diaminobenzidine (0.5 mg/mL; Sigma-
Aldrich, St. Louis, MO, United States) dissolved in PBS 
(10 mmol/L, pH 7.2). Identification of  cellular infiltrate 
in the colons of  mice was performed by a pathologist. 
CD3+ and granzyme B+ cells were identified under a 
light microscope using a 20 × objective. The occurrence 
of  positively stained cells was scored in proximal colons 
of  mice in five fields using a 1-cm2 grid reticle as fol-
lows: 0 = average of  0 cells/grid, 1 = average of  ≤ 1 
cell/grid, 2 = average of  2-10 cells/grid, 3 = average of  
11-20 cells/grid, 4 = average of  > 21 cells/grid. Final 
values represent mean ± SE per group (n = 3-5/group).

Lymphocyte isolation
Spleens and MsLNs were removed and placed in ice-
cold RPMI medium at the time of  necropsy. Spleens 
were processed with a dounce homogenizer, pelleted, 
and washed in RPMI. Cells were resuspended in ACK 
lysing buffer (Invitrogen, Carlsbad, CA, United States) 
and washed twice in RPMI. MsLNs were treated with 5 
mL enzymatic digest [5% fetal bovine serum (FBS), 0.5 
mg/mL collagenase, 0.05 mg/mL DNaseⅠ) for 30 min 
at 37 ℃. Cells were passed through 70-μm filters and 
washed with RPMI. Cell counts were performed with a 
hemocytometer using trypan blue exclusion and resus-
pended to a concentration of  one million cells per mil-
liliter of  medium.

Flow cytometry
Lymphocytes were resuspended in fluorescence-activated 
cell sorting (FACS) buffer (0.1% sodium azide, 1% FBS, 
in dPBS) blocked with anti-Fc receptor RⅡ/Ⅲ [CD16/
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CD32 (purified from clone 2.4G2 hybridoma; ATCC, 
Manassas, VA, United States)] for 10 min on ice, and 
subsequently incubated with combinations of  the follow-
ing fluorochrome-conjugated antibodies (E-bioscience, 
San Diego, CA, United States; or BD Bioscience, San 
José, CA, United States) at concentrations ranging from 
1:100 to 1:300 in FACS buffer: CD3 (PerCP-Cy5.5), CD4 
(eFluor450), CD8 (PE-Cy7), CD25 (PE), FoxP3 (FITC 
or Alexa Fluor488), CD62 (APC), Nkp46 (FITC) and 
DX5 (APC). Cells were incubated in staining cocktails 
(one million cells per cocktail) on ice in the dark for 30 
min. Intracellular staining was performed using FoxP3 
staining buffer set as per the manufacturer’s instructions 
(E-bioscience). Briefly, after surface staining, cells were 
washed twice in FACS buffer, fixed in 4% paraformalde-
hyde for 25 min, and permeabilized for 30 min. Permea-
bilization was followed by incubation for 30 min with the 
appropriate antibodies diluted in permeabilization dilu-
ent. Samples were then acquired on a LSR Ⅱ (BD Biosci-
ence) and analyzed using FlowJo software (Tree Star Inc., 
Ashland, OR, United States). The number of  cells in each 
population of  interest was determined by multiplying cell 
percentages by the total cell number.

Statistical analysis
Data for the colitis and immunohistochemistry scores 
were analyzed using the nonparametric Kruskal-Wallis 
test and Dunn’s post-test for specific comparisons. Flow 
cytometric data was analyzed using a two-way analysis 
of  variance in GraphPad Prism (GraphPad Software, 
La Jolla, CA, United States). When statistical differences 
were detected, Tukey’s multiple comparison test was 
used to determine differences between the two groups. 
P < 0.05 was considered significant. All data are repre-
sented as mean ± SE.

RESULTS
SMAD3-deficient mice are susceptible to colitis 4 wk 
post-infection
Colitis severity in SMAD3-/- mice (Figure 1A) peaked at 
4 wk post-infection, with an average colitis score of  7.8 
± 0.4. This value was significant compared to samples 
taken at all other time points (P < 0.05). Colitis resolved 
to baseline levels in SMAD3-/- mice by 8 wk post-infec-
tion. In comparison, SMAD3+/- mice were resistant to 
colitis development at all time points (data not shown). 
There was no statistically significant change in colitis 
scores in SMAD3+/- mice compared to baseline at any 
time point post-infection. Representative HE images 
from SMAD3+/- and SMAD3-/- mice prior to and 4 wk 
following infection are presented in Figure 1B.

SMAD3-dependent changes in lymphocyte populations 
following H. hepaticus infection
We next evaluated genotype- and time-dependent chang-
es in lymphocyte populations in the spleen and MsLNs 
using flow cytometry. There were no significant changes 

in total CD3+, CD4+ or CD8+ lymphocytes in the spleen 
at baseline or at any time point following infection (Fig-
ure 2A-C). Tregs (FoxP3+/CD25+/CD4+) and NK cells 
(NKp46+/DX5+) increased in both genotypes following 
infection but returned to baseline by 28 d (Figure 2D 
and E).  

In the MsLNs, CD3+, CD4+ and Treg cells were sig-
nificantly higher in both genotypes at 7 d and 28 d post-
infection (Figure 3A, C, and D), whereas there were 
no significant changes in CD8+ cells at any time point 
examined (Figure 3B). NK cells increased in SMAD3-
deficient mice by 7 d post-infection, and were signifi-
cantly different from baseline values at 28 d (Figure 3E). 
Comparably, NK cells were not significantly altered at 
any time point in SMAD3+/- mice (Figure 3E).

To determine activation status of  the different T 
lymphocyte populations, we next evaluated surface ex-
pression of  CD62L. L-Selectin (CD62L) is an adhesion 
marker expressed at high levels in naïve T cells and is 
cleaved from the surface (CD62Llo) in activated and/or 
in memory T cells. There were no statistically significant 
changes or observable trends in the proportion or total 
number of  activated T cells in the spleen at any time 
point after infection (data not shown). However, the 
proportion of  CD3+, CD8+, CD62Llo and CD3+, CD4+, 
CD62Llo cells was significantly higher in SMAD3-/- 

mice at 7 d and 28 d compared to baseline values and to 
SMAD3+/- mice (Figure 4A and D). Effector Treg cells 
increased in both strains at 7 d and 28 d compared to 
baseline values (Figure 4G). CD62L expression became 
dimmer at later time points in the SMAD3-/- mice for 
both CD8+ and CD4+ populations (Figure 4C and F) in 
the MsLNs, however, the intensity of  CD62L expression 
was maintained consistently in SMAD3+/- mice through 
all time points (Figure 4B and E). No significant dif-
ferences were observed in the percentage of  Treg cells 
expressing reduced levels of  CD62L between genotypes 
at any time point (Figure 4H and I).	

Immunohistochemical analysis of colon sections 28 d 
post-infection
We next evaluated local changes in CD3+ cells and the 
serine protease, granzyme B, in the proximal colons of  
SMAD3+/- and SMAD3-/- mice 4 wk post-infection. The 
lamina propria in SMAD3-/- mice was moderately expand-
ed by lymphocytic cells. Based on morphology and immu-
nohistochemistry, these cells consisted primarily of  CD3+ 
lymphocytes (Figure 5A). Additionally, numerous gran-
zyme B+ cells were noted in the intestine of  SMAD3-/- 
infected mice, primarily within the villous epithelium, but 
sometimes also within the lamina propria (Figure 5B).

DISCUSSION
Functional TGF-β signaling is crucial for maintaining 
immune cell homeostasis[30]. In the present study, we 
evaluated changes in local and systemic immune cell 
populations in colitis resistant SMAD3+/- and sensitive 
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SMAD3-/- mice during the course of  infection with the 
enteric pathogen, H. hepaticus. A major finding of  this 
study was a significantly higher number of  CD4 and 
CD8 effector cell populations in the mesenteric lymph 
nodes of  SMAD3-/- mice at 7 d and 28 d post-infection 
compared to both baseline values and to SMAD3+/- mice. 
The number of  granzyme B+ cells, a marker of  cytolytic 
lymphocytes, was also higher in proximal colon tissue at 
28 d post-infection, consistent with colitis development 
in these animals. Our findings suggest loss of  TGF-β 
signaling through SMAD3 leads to aberrant activation 
of  colitogenic T cell subsets in response to H. hepaticus, 
whereas changes in specific T cell numbers were un-
affected by genotype. These data are consistent with 
Maggio-Price et al[19], who reported no significant T cell 
response to infection with Helicobacter in vitro, although 

it is important to note that in that study only splenic 
lymphocytes were assessed, and that both H. hepaticus 
and Helicobacter bilis were used for infection. Additionally, 
Yang et al[31] reported no differences between SMAD3-/- 
and wild-type controls on development of  T and B 
lymphocytes and NK cells, but found increased activated 
phenotype of  T lymphocytes in SMAD3-/- mice that 
were resistant to TGF-β1 inhibition in vitro.    

The inflammation associated with H. hepaticus infec-
tion in susceptible strains leads to a dysregulated Th1-
type immune response, characterized by increased expres-
sion of  interleukin (IL)-12 and interferon (IFN)-γ[19,32,33] 
as well as the proinflammatory cytokines IL-1α, IL-1β, 
IL-6 and tumor necrosis factor-α[19]. Treg cells normally 
function to control the inflammatory response by sup-
pressing proliferation and activation of  CD4+ and CD8+ 
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Figure 3  Changes in T lymphocyte populations and natural killer cells in the mesenteric lymph nodes of drosophila mothers against decapentaplegic 3+/- 
and drosophila mothers against decapentaplegic-/- mice following infection with Helicobacter hepaticus. Flow cytometric analysis of lymphocyte populations 
at days 0, 3, 7 and 28 post-infection. Gates were drawn on viable cells using forward scatter vs side scatter parameters. A: Total CD3+ lymphocytes gated on forward 
scatter vs CD3; B: Total CD8+ lymphocytes gated on CD3+ lymphocytes; C: Total CD4+ lymphocytes gated on CD3+ lymphocytes; D: Total CD25+/FOXP3+ Treg cells 
gated on CD3+/CD4+ lymphocytes; E: Total natural killer (NK)p46+/DX5+ NK cells in mesenteric lymph nodes (n = 4-6 animals per time point). aP < 0.05 vs baseline 
values; cP < 0.05 denotes significant interaction between genotypes [drosophila mothers against decapentaplegic (SMAD)3-/- vs SMAD3+/-]. 
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lymphocytes, inhibiting production of  the cytokines IL-2 
and IFN-γ, as well as producing the anti-inflammatory 
cytokine IL-10[34,35]. Transgenic mice lacking T and B 
lymphocytes, including scid and rag-2-deficient mice ex-
hibit a more severe colitis that can be partially alleviated 
by adoptive transfer of  IL-10-producing Treg cells[36-40]. 
Additionally, adoptive transfer of  wild-type Treg cells 
into rag2-deficient mice inhibits H. hepaticus-induced 
colon cancer development[38,40], further establishing an 
important role for this cell type in suppressing inflam-
matory signaling.  

Importantly, Treg cell development is intricately de-
pendent on TGF-β signaling, whereas Treg cells them-
selves are a major source of  this cytokine, deriving much 
of  their suppressive function from TGF-β production 
as well as IL-10. Given the importance of  this cell type 

in suppressing colitis in other models, we next evaluated 
whether SMAD3-deficiency impaired the development 
and/or activation of  CD4+/CD25+/Foxp3+ T regulatory 
cells. We found no significant difference between geno-
types at baseline, suggesting normal development of  this 
cell type in the absence of  SMAD3 signaling. Following 
infection, Treg cells increased proportionally in both geno-
types in both the spleen and MsLNs at 7 d and remained 
elevated in the latter at 28 d. To assess further whether 
activation of  Treg cells may be impaired, we evaluated 
L-selectin (CD62L) expression, which is required for 
migration to sites of  inflammation and is cleaved from 
the surface upon activation[41,42]. Although the number 
of  activated Tregs (CD4+/CD25+/FOXP3+CD62Llo) 
increased at 7 d and 28 d post-infection in the MsLNs, 
there was no further difference between genotypes. Thus, 
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our findings suggest that SMAD3 deficiency does not 
influence Treg cell numbers in peripheral lymphoid tis-
sue; however, this does not rule out the possibility that 
the suppressive effect of  this cell type is influenced in a 
SMAD3-dependent manner. This is further supported 
by recent findings of  Fantini et al[43] who have reported 
that overexpression of  SMAD7 in CD4 T lymphocytes, 
which blocks TGF-β-mediated activation of  SMAD2/3, 
impairs the ability of  Treg cells to suppress T cell prolif-
eration and proinflammatory cytokine expression both in 
vitro and in vivo.  

NK cells are generally acknowledged to be important 
for cell-mediated immunity, and play an important role 
in the control of  cellular infections as well as in antitu-
mor immunity[44]. For example, NK cells can directly lyse 
infected/dysplastic cells through perforin-granzyme-
dependent mechanisms and induce apoptosis[45-51]. Ad-
ditionally, NK cells activate other effector immune cells 
through local production of  cytokines[52]. Fort et al[53] 
have demonstrated that NK cells exert a protective ef-
fect on colitis by controlling the responses of  effector 
CD4 T cells through perforin-dependent mechanisms[53]. 
Other studies have provided evidence that NK cells are 
in fact an innate source of  IL-22 in the colon; a cytokine 
that has proinflammatory properties but is also proposed 
to protect tissues during inflammation[54-56]. 

Yang et al[31] previously have found no effect of  SMAD3 
deficiency on development of  NK cells in the spleen 
or MsLNs. In the current study, we determined whether 
SMAD3 deficiency would influence NK cells in peripheral 
lymphoid tissue in response to infection with H. hepati-
cus. Surprisingly, we found higher numbers of  NK cells 

(NKp46+/DX5+) in SMAD3-/- mice both at 7 d and 28 
d post-infection in the MsLNs, whereas no correspond-
ing changes in population numbers were observed in 
SMAD3+/- mice. Our findings of  increased NK cell pop-
ulations are somewhat inconsistent with the previously 
established protective role of  this cell type[53]; however, 
it is possible that SMAD3 signaling mediates the balance 
of  NK cell subsets in response to infection and/or cyto-
toxicity of  NK cells. For example, significant enrichment 
of  lamina propria NK cells of  the CD56+CD16+ cyto-
toxic subset in individuals with IBD has been report-
ed[57]. Additionally, individuals with Crohn’s disease have 
been reported to have a higher proportion of  NKp46+ 
compared to NKp44+ NK cells in the intestinal mucosa, 
which is suggested to mediate pathogenesis through 
increased production of  IFN-γ[58]. Importantly, TGF-β 
inhibits INF-γ production by NK cells[30,59], suggesting 
the possibility of  altered balance of  NK cell subsets in 
our model.  

Our findings highlight that mice infected with H. 
hepaticus and deficient in SMAD3 signaling have elevated 
levels of  effector lymphocyte subsets in the MsLNs 
and in the colon likely contributing to increased colitis 
severity. Although no genotype differences in numbers 
of  natural Treg cells were found following infection, 
it is possible that defective TGF-β signaling through 
SMAD3 may impair suppressive function. Alternatively, 
the latent presence of  effector T cells may indicate con-
tinuous antigen presenting cell stimulation which was 
not addressed in these studies. Given the pleiotropic role 
of  TGF-β signaling in immune cell homeostasis, further 
evaluation of  cytokine production by activated T cells 
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derived from infected SMAD3-deficient mice would 
lead to a more thorough understanding of  SMAD3 in 
colitis susceptibility. Additionally, very little is known 
about the role of  SMAD3 in NK cell function, however, 
the higher presence of  NKp46+/DX5+ NK cells in the 
MsLNs of  SMAD3-deficient mice might indicate al-
tered NK subsets present in the MsLNs due to different 
chemokines being released throughout the course of  the 
infection. The signaling pathways involved in initiating 
the inflammatory response to H. hepaticus in susceptible 
mouse strains has also not been well characterized. H. 
hepaticus activates nuclear factor-κB and extracellular 
signal-regulated kinase signaling in bone-marrow-derived 
macrophages[60], which can induce both pro- and anti-
inflammatory pathways[33,36,60,61]. Given the importance of  
TGF-β signaling in both IBD and colon cancer develop-
ment in humans, further identifying innate targets in-
volved in initiating the SMAD3-dependent inflammatory 
response to pathogenic stimuli would prove highly useful 
in understanding the pathogenesis of  IBD as well as for 
designing interventions that may alter immune cell popu-
lations and/or activation. Future studies addressing some 
of  these possibilities are currently under investigation.
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