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Abstract
Inflammatory bowel diseases (IBDs) such as Crohn’s dis-
ease are highly debilitating. There are inconsistencies in 
response to and side effects in the current conventional 
medications, failures in adequate drug delivery, and the 
lack of therapeutics to offer complete remission in the 
presently available treatments of IBD. This suggests the 
need to explore beyond the horizons of conventional 
approaches in IBD therapeutics. This review examines 
the arena of the evolving IBD nanomedicine, studied so 
far in animal and in vitro  models, before comprehensive 
clinical testing in humans. The investigations carried 
out so far in IBD models have provided substantial evi-
dence of the nanotherapeutic approach as having the 
potential to overcome some of the current drawbacks 
to conventional IBD therapy. We analyze the pros and 
cons of nanotechnology in IBD therapies studied in dif-
ferent models, aimed at different targets and mecha-
nisms of IBD pathogenesis, in an attempt to predict its 
possible impact in humans.
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INTRODUCTION
Crohn’s disease (CD) and ulcerative colitis (UC) con-
stitute the two principal components of  inflammatory 
bowel diseases (IBDs), which occur as a result of  dys-
regulated immune responses in genetically predisposed 
individuals due to various environmental conditions[1]. 
There are sufficient similarities in the pathological condi-
tions in CD and UC that cause about 10% of  IBD cases 
to be diagnosed as indeterminate IBD[2]. Nevertheless, 
CD and UC show discrete risk factors and dissimilar 
gene and protein expressions, which manifest distinctive 
pathophysiological mechanisms. CD exhibits a transmu-
ral inflammatory response and can be associated with 
granulomas, whereas UC usually shows mucosa-confined 
inflammation[2-8]. Genomic technologies are now being 
used to separate the effects of  different susceptibility 
genes in the two diseases. For example, Wu et al[6] have 
studied 36 expression profiles of  colonoscopic pinch bi-
opsies from CD and UC patients. Affected genes, mostly 
related to interferon (IFN)-γ inducible T helper cell 1 
(TH1) process and antigen presentation in CD patients, 
were differentially regulated, with the upregulation of  47 
genes and downregulation of  30 genes. In contrast, the 
expression of  genes from UC biopsies showed upregula-
tion of  51 genes and downregulation of  81 other genes, 
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associated with biosynthesis, metabolism and electrolyte 
transport[6]. 

The common conventional medications currently in 
use to treat both CD and UC involve 5-aminosalicylic 
acid drugs, corticosteroids, immunosuppressive agents, 
biologic therapies and antibiotics[9], with a customary “step 
up” approach of  starting with aminosalicylates and ris-
ing to corticosteroids and immunosuppressive agents in 
response to the persisting conditions of  the disease. The 
more effective biological therapies are usually considered 
as a last option and only in case of  refractory diseases, 
because their systemic action in the host often leads to 
adverse effects[10,11]. 

Nanomedicines are precise therapeutics established 
with the aid of  nanotechnology to treat diseases at the 
molecular level[12]. The application of  nanotechnology in 
medicine can be termed as nanomedicine. It is an evolv-
ing face of  medicine that uses nanoparticulate carriers to 
deliver therapeutics targeted to specific cells, or constitu-
ents of  cells or tissues. Studies have shown nanomedi-
cines to be more beneficial than conventional medica-
tions, because their size leads to more effecting targeting, 
better availability at diseased tissues, and decreased ad-
verse effects. Moreover, nanomedicines have been found 
to have similar or even better therapeutic impacts at 
lower drug concentrations than their conventional coun-
terparts[12]. However, although the arena of  nanomedicine 
appears to be encouraging for IBD therapy, concerns 
related to the impact of  the nature of  nanoparticles due 
to their size, shape, aggregation potential, and surface 
chemistry on the IBD gut need to be scrutinized[12,13], 
and investigations on the impact of  nanomedicine in 
IBD therapy is currently in early stages. As targeted drug 
or biological delivery to sites of  inflammation remains 
a crucial challenge in the current treatment of  IBD[14], 
nanostrategies involving short interfering RNAs (siR-
NAs), antisense oligonucleotides, nanomedicines deliv-
ered to the sites of  malfunction in IBD can be a valuable 
therapeutic approach.

The RNA interference technique, notable for speci-
ficity, can be speculated to regulate the expression of  
proinflammatory cytokines and genes related to IBD at 
the mRNA level[15]. As the impact of  noncoding RNAs 
and RNA silencing in gene modulation is known to be 
great[16], the use of  siRNAs as drugs to silence proin-
flammatory genes is being scrutinized in various animal 
models of  IBD. This strategy also reduces the chances 
of  immune reactions usually associated with viral vec-
tors[15,17,18]. Due to the potential importance of  targeted 
therapy in IBD, this review is presented to explore the 
advancements in the prospects of  nanomedicine in the 
modulation of  gene expression and targeted therapeutics 
in IBD (Figure 1).

GENE AND PROTEIN MODULATIONS 
WITH NANO PROSPECTS
Amongst the key genes involved in IBD pathogenesis, 

the function of  tumor necrosis factor (TNF)-α in the 
mediation of  inflammation in IBD is extensively ac-
knowledged. Therefore, many biological therapies com-
prising monoclonal antibodies or soluble receptors are 
intended to reduce TNF-α activity, and have been exten-
sively tested in many clinical trials[19-24]. However, there 
are adverse side effects due to the systemic depletion of  
TNF-α. These adverse effects involve amplified infusion 
reactions, immunosuppression, opportunistic infections 
and decreased efficacy of  the biologics due to antibody 
formation against them[24-26]. 

The gene silencing nanostrategy, in which orally 
delivered TNF-α siRNA is encapsulated in thioketal 
nanoparticles (TKNs) made from the polymer poly-
PPADT (1, 4-phenyleneacetone dimethylene thioketal), 
effectively decreases the levels of  TNF-α mRNA levels 
at sites of  intestinal inflammation in dextran sulfate so-
dium (DSS)-induced mouse models of  UC. In this study, 
the site specific delivery of  siRNA was made possible 
due to the ability of  TKNs to degrade in the presence of  
higher levels of  reactive oxygen species (ROS) present 
in regions of  inflammation in the intestinal tissue[27]. In 
another study, TNF-α siRNA/polyethyleneimine (PEI) 
nanocomplex was shown to inhibit TNF-α secretion 
by macrophages in vitro, whereas the oral administration 
of  TNF-α siRNA/PEI nanocomplexes in lipopolysac-
charides (LPS)-treated mice models was found to reduce 
specifically the synthesis and secretion of  TNF-α in the 
colon[28]. Nanoparticles in a microsphere oral system (Ni-
MOS), comprised of  TNF-α siRNA entrapped in type 
B gelatin enclosed in poly(ε-caprolactone) (PCL) micro-
spheres, were found to exhibit favorable gene silencing in 
the colon tissues of  DSS-treated murine models of  UC. 
This treatment results in the suppression of  proinflam-
matory cytokines such as interleukin (IL)-1β, IFN-γ, che-
mokine monocyte chemoattractant protein (MCP)-1, per-
mitting an increase in body weight and diminished action 
of  tissue myeloperoxidase in mouse models[29]. A protein 
modulation nanostrategy involving monovalent and bi-
valent murine TNF-α neutralizing nanobody proteins 
has been investigated in DSS-induced murine chronic 
colitis models. Lactococcus lactis engineered to produce the 
therapeutic nanobodies was orally administered, which 
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Figure 1  Graphical representation of nanoinvestigations in inflammatory 
bowel diseases models. IBD: Inflammatory bowel disease.



resulted in a significant reduction in the TNF-α driven 
inflammation in the mucosa of  the colon in mouse mod-
els, without affecting considerable TNF-α levels in the 
systemic circulation[30]. 

Increased TNF-α suppresses the expression of  the 
anti-inflammatory protein prohibitin (PHB) in IBD[31,32], 
therefore, a study by Theiss et al[33] considered the oral 
delivery of  PHB entrapped in poly (lactic acid) nanopar-
ticles in mouse models of  DSS-induced colitis. This strat-
egy inhibited the TNF-α-induced nuclear factor (NF)-κB 
activation; consequently curtailing inflammatory reactions 
and reducing the severity of  colitis. Double-stranded 
decoy oligonucleotides (ODNs) against the proinflam-
matory NF-κB gene were enclosed in chitosan-modified 
poly (D,L-lactide-co-glycolide) nanospheres (CS-PLGA 
NSs) and delivered orally to DSS-induced murine colitis 
models. This study showed the absorption of  the ODN- 
CS-PLGA NSs in inflamed mucosal regions, producing 
considerable curative effects on DSS-induced diarrhea, 
bloody feces, shortening of  colon length, and myeloper-
oxidase activity[34]. 

Besides directly inhibiting the TNF-α gene in macro-
phages, macrophages more generally play a role in induc-
ing the pathogenic inflammatory reactions[35]. This study 
has revealed the importance of  mitogen-activated protein 
kinase kinase kinase kinase 4 (Map4k4) gene in macro-
phages in mediating the production of  inflammatory 
cytokines. Map4k4 siRNA encapsulated in β1,3-D-glucan 
shells silenced Map4k4 expression in vivo in mice treated 
with LPS, protecting them from LPS-induced systemic 
inflammation by suppressing the production of  TNF-α 
and IL-1β[35]. 

Matrix metalloproteinases (MMPs) play a vital role in 

tissue remodeling by regulating the intestinal tissue architec-
ture during the inflammatory reactions and wound healing 
in IBD[36,37]. Studies have indicated the increased expression 
of  MMP-3 (stromelysin-1) and MMP-10 (stromelysin-2) 
in causing enhanced tissue injury in DSS-induced murine 
colitis[38,39]. Furthermore, IBD patients have shown in-
creased MMP-3 and MMP-10 expression in the gut and 
intestinal ulcer tissues[39-42]. Polymorphisms in various 
MMP genes may be susceptibility factors for IBD risk, at 
least in some populations[43]. A study by Kobayashi et al[39]  
demonstrated the specific inhibition of  MMP-3 and 
MMP-10 by siRNA targeted against MMP-3 and MMP-10, 
having a therapeutic benefit in protecting the colon tissue 
and reducing the severity of  colitis in DSS-treated murine 
models, which could therefore be a valuable gene silencing 
option to prevent intestinal damage in IBD (Figure 2).

Cyclin D1 (CyD1) is a cell cycle regulatory protein 
that is upregulated in IBD in both epithelial and im-
mune cells[44]. A leukocyte-directed siRNA against CyD1 
mRNA inhibits the intestinal inflammatory responses 
in murine models of  DSS-induced colitis. Silencing the 
CyD1 gene decreases the induction of  TH1 cell inflam-
matory cytokines TNF-α and IL-12, but has no im-
pact on the production of  TH2 cell cytokine IL-10[45]. 
Therapeutic efforts to enhance the action of  the anti-
inflammatory cytokine IL-10, which is known to be criti-
cally involved in maintaining mucosal immune balance 
due to its potent impact on immunosuppression[46] and 
involvement in CD pathogenesis[47,48], have been largely 
unsuccessful to date. This is thought to be due to the ad-
verse side effects caused by systemic action of  the IL-10 
therapies, and the low concentrations of  IL-10 delivered 
to the intestinal tissues[49]. Therefore, biologics intend-
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Figure 2  Nanomodulations whose efficacy has been validated in animal models of inflammatory bowel diseases. Genes regulated therapeutically by nano 
gene silencing in intestinal tissues and macrophages and protein nanobodies that have been investigated to have therapeutic impacts to help control inflammation and 
tissue destruction in animal models relevant to inflammatory bowel diseases (IBDs). TNF: Tumor necrosis factor; Map4k4: Mitogen-activated protein kinase kinase 
kinase kinase 4; MMP: Matrix metalloproteinase; NF-kB: Nuclear factor kappa B.
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ing to enhance cytokine IL-10 action have been dropped 
from the current IBD therapies[50]. However, because the 
involvement of  IL-10 and its genetic variations in IBD 
is great[47,48,51], a consideration of  the targeted study by 
Bhavsar et al[52], which involved the nanodelivery of  IL-
10-producing plasmid to the mucosa in murine models 
mimicking IBD intestinal epithelial pathogenesis[53] can 
be scrutinized. According to this study, trinitrobenzene 
sulfonic acid (TNBS)-induced acute colitis models in 
Balb/c mice were treated with NiMOS intended for oral 
gene therapy. This comprised the pORF5-mIL-10 plas-
mid DNA encapsulated in type B gelatin nanoparticles 
in PCL. This strategy directed the local transfection of  
IL-10 plasmid in inflamed intestinal tissues and caused 
its enhanced expression, which led to suppression of  
predominant proinflammatory cytokines such as IFN-γ, 
TNF-α, IL-1α, IL-1β and IL-12, consequently causing 
the therapeutic benefits of  restored colon length and 
weight, increased body weight, and beneficial clinical ac-
tivity score[52]. 

IMPLICATIONS OF IBD DRUGS GOING 
NANO 
Nanomedicines comprising IBD drugs loaded onto na-
noparticles, designed to cope and act in accordance with 
the pathophysiological changes in the intestinal tissues 
of  IBD, can be an intelligent mode of  targeted drug de-
livery. This approach offers the possibility of  eliminating 
undesirable side effects usually caused by systemic action 
of  the drugs[14]. The usual pathophysiological conditions 
related to inflamed intestinal tissues in IBD predomi-
nantly involve abnormal intestinal permeability, increased 
presence of  immune cells, and higher levels of  mucus 
production[54-56]. 

Cellular interaction of nanoparticles in the IBD gut
Nanomedicines in IBD can potentially be more efficient 
in their mechanism due to the cellular intake of  the 
nanoparticles by the cells at the targeted sites of  delivery. 
This means that they are not eliminated from the intes-
tinal tract by diarrhea, as are many current conventional 
medications. This is an important IBD symptom[57,58]. 
Nanoparticles in the gastrointestinal tract are usually 
found to be adsorbed either by paracellular transport 
or endocytosis by regular epithelial cells[59]. Specialized 
differentiated epithelial cells called M cells, which form 
major populations of  Peyer’s patches are involved in the 
predominant uptake of  nanoparticles through trans-
cytosis[60,61]. Predominant CD mutations such as R702W, 
G908R and 3020insC have been associated with ileal-
specific disease[62,63], which show an enhanced presence in 
Peyer’s patches and M cells, which may cause an increase 
in the uptake of  dietary and nanoparticulate substanc-
es[13]. In addition to these, translocation of  nanoparticles 
in the intestinal tract can also occur by persorption 
through gaps or holes at the villous tips[64,65]. Cells in-
volve the autophagic mechanism to cause the clearance 

of  nanoparticles[66], and Powell et al[13] have indicated 
that mutations in the autophagy gene Atg16L1 in IBD 
subjects can be susceptible to possible alterations in the 
clearance of  nanoparticles.

Investigations of IBD drugs in nanomodes 
Furthermore, IBD drugs delivered in nanomodes have 
been shown to have greater therapeutic impacts as 
compared to their conventional delivery studied in ani-
mal models, For example, the anti-inflammatory IBD 
drug mesalamine (5-ASA) covalently linked to the PCL 
nanoparticles was found to be 60 times more efficient as a 
nanomedicine at much lower doses (0.5 mg/kg) than the 
free solution of  5-ASA (30 mg/kg) in treating TNBS-in-
duced colitis in BALB/c murine models[67]. Moulari et al[68] 
have established that silicon nanoparticles have a sixfold 
increased ability to adhere to inflamed tissues when com-
pared to tissues in healthy controls. In this study, 5-ASA 
loaded in its methylated form in silicon nanoparticles was 
shown to collect in inflamed regions in TNBS-induced 
murine colitis models, inducing a positive impact on clini-
cal activity score and myeloperoxidase activity at reduced 
drug doses, as compared to conventional delivery[68]. An 
immunosuppressive drug tacrolimus, used to treat UC, 
was encapsulated in polylactic-co-glycolic acid (PLGA) 
nanoparticles and used to treat murine models of  TNBS- 
and oxazolone-induced colitis. This study showed that 
nanomedicine had an augmented and specific action with 
a threefold increased penetration in inflamed tissues when 
compared to healthy tissues[69]. Also, tacrolimus-loaded 
PLGA nanoparticles and tacrolimus-loaded pH-sensitive 
Eudragit P-4135F nanoparticles showed diminished side 
effects in DSS-induced murine colitis models when com-
pared to the free tacrolimus which causes nephrotoxicity 
in traditional delivery[70]. An anti-inflammatory tripep-
tide Lys-Pro-Val (KPV) loaded into polylactide (PLA) 
nanoparticles delivered in combination with a polysac-
charide hydrogel had a similar anti-inflammatory effect 
at 12 000-fold lower doses (25.2 ng/d) to that of  KPV in 
free solution (200 μg/d), thus demonstrating the greater 
therapeutic efficiency of  the nanomode of  the drug in 
treating DSS-induced colitis in murine models[71]. Nakase 
et al[72] demonstrated that dexamethasone, encapsulated in 
poly-DL-lactic acid (PDLLA) microspheres was more ef-
fective in ameliorating DSS-induced murine colitis when 
compared to the free solution of  the same drug, because 
the microsphere form was engulfed by the immune cells in 
the inflamed colonic tissue, which resulted in increased ef-
ficiency of  the drug in mouse models. An ex vivo study by 
Serpe et al[73] showed solid lipid nanoparticles (SLNs) com-
prising the anti-inflammatory molecule cholesteryl butyr-
ate (chol-but) showed a greater impact than butyrate alone 
in significantly reducing proinflammatory cytokines such 
as IL-1β and TNF-α and increasing IL-10 production in 
whole blood ex vivo models of  peripheral blood mononu-
clear cells (PBMCs) obtained from IBD patients taking no 
anti-inflammatory medications. Furthermore, this study 
demonstrated SLNs, consisting of  the immunosuppres-
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sive corticosteroid dexamethasone, suppressed TNF-α by 
90% when the free solution of  dexamethasone showed a 
TNF-α suppression of  25% at the highest concentrations 
in similar whole blood IBD ex vivo models. These studies 
provide preliminary support for the effects of  SLNs chol-
but and SLN dexamethasone in inducing an enhanced 
anti-inflammatory activity, due to the more effective cellu-
lar intake of  the nanodrug forms, as compared to the free 
drugs in solution (Table 1).

LIKELY CONCERNS OF GOING NANO
The general concern associated with the nano approach 
is due to the fact that nano-sized materials display altered 
physicochemical properties[74] as compared to their larger 
counterparts, with chances of  causing possible toxicity, 
since nonbiological nanoparticulate carriers above a par-
ticle size of  100-200 nm can alter normal cellular activity, 
because they can invoke cell membrane ruffling, cytoskel-
etal rearrangement and stimulate endocytic machinery 
causing their ingression in phagocytic cells[75]. However, 
reliable data on the adverse impacts of  nanomedicine in 
IBD is unavailable, whereas the impact of  nanoparticles 
themselves in the gastrointestinal tract might vary accord-
ing to the nanoparticle polymer material and nanoparticle 
size, as surface interactions and surface chemistry differ 
for different nanoparticle sizes. Also, different nanopar-
ticle sizes can cause different mechanisms of  cellular up-
take, due to which, nanoparticle sizes can be modulated 
to cause different intracellular effects[13,76,77]. The studies 
on the effects of  nanoparticles themselves in the human 
gastrointestinal tract in IBD have been limited and need 
to be explored further.

Although nanostrategies for IBD therapeutics inves-

tigated in animal and in vitro models of  IBD have shown 
promise, it is still only the dawn of  the era of  interest 
in IBD nanomedicine, and there is a definite need for 
further extensive investigations on many issues related to 
the safety and uptake of  the different nanomedical thera-
peutics acting on various pathways and phases in the hu-
man gastrointestinal tract. It is essential to be confident 
of  their consequent impact on immune responses and 
therapeutic effects in the different genotypic populations, 
before recommending the clinical use of  nanomedicines 
to treat IBD in humans. 
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