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Abstract
Metastasis is the main reason for cancer-related death. 
S100A4 is one of the key molecules involved in this 
event. Several studies have shown that overexpression 
of S100A4 in non-metastatic cancer cells can make 
them become metastatic, and knockdown of S100A4 in 
metastatic cancer cells can curtail their invasive nature. 
A study by Chen et al [2] published in the World J Gas-
troenterol  18(9): 915-922, 2012 is a typical example. 
This study showed in vitro  and in vivo  evidence that 
S100A4 expression level determines the invasiveness of 
esophageal squamous carcinoma. Considering the fact 
that more than half of the cancer-related deaths are 
caused by malignancies derived from the digestive sys-
tem and esophageal cancer is the 4th top contributor 
to this fraction, this study warrants more attention.
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INVITED COMMENTARY ON HOT 
ARTICLES
Cancer is the second leading cause of  death in the world 
(18%), after heart disease (21%). Among about 18 mil-
lion new cases of  cancers diagnosed each year, about 
one third is skin cancer. However, 95% of  skin cancer is 
either basal cell carcinoma or squamous cell carcinoma, 
which has a mortality of  less than 0.5%. The majority of  
cancer-related deaths are actually caused by malignancies 
derived from the digestive system, including esophagus, 
stomach, small intestine, colon, rectum, anus, liver, gall-
bladder and pancreas[1]. The main feature that makes 
these cancers deadly is metastasis, a process that cancer 
cells break off  from their original location and invade 
other parts of  the organ. The majority of  skin cancers 
do not have this capacity; therefore, they can be easily 
treated before becoming life threatening. Esophageal 
cancer, on the other hand, is highly metastatic. There-
fore, understanding the molecular mechanisms behind its 
metastasis is of  great values for developing better treat-
ment strategies. A study by Chen et al[2] published in the 
World J Gastroenterol 18(9): 915-922, 2012 examined the 
role of  S100A4, one of  the well-known cancer metastatic 
markers, in esophageal squamous cell carcinoma (ESCC) 
in vitro and in vivo, in animal models as well as in clinical 
human specimens, and clearly demonstrated a reliance 
of  the invasiveness of  esophageal cancer on this small 
calcium-binding protein[2].

A little biography of S100A4: Short but hot
S100A4 was discovered in the mid 1980s by several la
boratories independently. One of  these laboratories be-
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longed to Daniel Nathans, MD (10/30/1928-11/16/1999) 
(Figure 1), the Nobel Prize winner in Physiology/Medi-
cine 1978 for his landmark discovery of  restriction en-
zymes. In 1983, one of  his post-doctoral fellows, Daniel 
I Linzer, PhD, was constructing a cDNA library from 
serum-stimulated mouse 3T3 fibroblasts and found that 
a clone named 18A2 was highly up-regulated by serum 
exposure[3]. There seemed to be many laboratories in the 
late 70s and early 80s of  the 20th century which were in-
terested in the effect of  serum on gene expression. That 
was also how and when serum response factor (SRF) was 
discovered[4,5]. In the following year, Linzer took a job at 
Northwest University in Illinois (now he is the Provost 
of  this school) and continued his study on 18A2. He de-
termined that 18A2 coded for a calcium binding protein 
of  101 amino acids[6], much similar to the members of  
S100 family, a group of  small peptides that are known to 
be 100% soluble in saturated ammonia sulfate. He also 
compared the sequence of  18A2 with 2A9, a human 
clone that was published a year earlier[7], and found a 57% 
nucleotide and 62% amino acid homology between them. 
It might be due to the difference of  species origin, Linzer 
was pretty sure that these two sequences represented 
different genes. Around that time and shortly thereafter, 
several other laboratories also published similar sequenc-
es and each of  which was given a different name, includ-
ing p9Ka from rat mammary cells[8], 42A from rat neuro-
nal cells[9], pEL98 from mouse fibroblasts[10], CAPL from 
Aplysia neurons[11], mts1 from metastatic tumor cells[12], 
and FSP1 from mouse fibroblasts[13]. Despite the indi-
viduality of  each of  these studies, there were some com-
mon features shared among their discoveries: (1) serum 
inducibility; (2) around 100 amino acids; and (3) similarity 
to S100 calcium binding proteins. Although all of  these 
sequences eventually turned out to be for a single mol-
ecule - S100A4, each of  these studies made unique con-
tributions to our knowledge today about S100A4. The 
last two studies warrant an extra attention, because one 
established the connection between S100A4 and cancer 
metastasis and the other associated it to fibroblast pheno-
type. Now we know that S100A4 is a prognostic marker 
for metastatic cancers as well as a marker for epithelial-
mesenchymal transition. However, both of  these studies 
went a little bit too far by calling this molecule metastatic-
specific and fibroblast-specific, respectively. Now we 
know that is not entirely true, a lot of  other cells (e.g., 
epithelial cells, endothelial cells, lymphocytes, smooth 
muscle cells, etc.) also express S100A4, just as our study 
reported[14]. 

Functions of S100A4: Motivation to move
Up to date, S100 family includes 25 members with com-
mon characteristics such as low molecular weight, two 
calcium binding sites of  the helix-loop-helix (“EF-hand 
type”) conformation, and complete solubility in ammo-
nium sulfate at pH 7. They have been implicated in regu-
lation of  protein phosphorylation, transcription factor 
activation, calcium homeostasis, cytoskeleton reorganiza-
tion, cell migration, cell growth and death[15]. 

S100A4 is naturally expressed in various cell types in-
cluding both cancer and normal cells, and its elevation is 
usually associated with cell motility. It appears that wher-
ever cell migration is required, such as wound healing[16], 
angiogenesis[17] and cancer metastasis[18], S100A4 is acti-
vated. Like other members of  S100 family, S100A4 works 
like a calcium sensor. Upon calcium binding, S100A4 
goes through a series of  conformational changes, which 
allow the molecule to interact with its targets, such as 
nonmuscle myosin heavy chain (MHC ⅡA) and liprin β1, 
to facilitate cell migration[19,20]. For this reason, in motile 
cells, S100A4 is often found in complex with these cyto-
skeletal components at the migrating front where a high 
level of  calcium is accumulated. It is interesting to know 
that S100A4 knock-out mice do not display develop-
mental abnormalities in the postnatal period, but 10% of  
them develop tumors at age of  10-14 months, possibly 
due to destabilization of  the tumor suppressor p53[21], as 
S100A4 has been shown capable to bind to the C-termi-
nal of  p53 and repress its transcriptional activity[22,23].

Yet, the story of  S100A4 is not as straightforward as it 
might have been anticipated. In addition to being a cyto-
skeletal regulator in the cytoplasm, S100A4 has also been 
localized to the nucleus and extracellular matrix. How 
it gets there and what it does in these locations remain 
unclear. Nevertheless, its association with transcription 
factors like p53 might explain some of  its roles in the 
nucleus. It has been postulated that S100A4 binding to 
the tetramerization domain of  p53 favors p53 oligomer-
ization and thereby facilitates p53 nuclear translocation[23]. 
On the other hand, extracellular S100A4 has been dem-
onstrated to stimulate MMP-13 expression in chondro-
cytes in a receptor for advanced glycation end products 
(RAGE)-dependent manner[24], while its inductivity on 
neuron growth was found to be RAGE irrelevant[25]. 
More complicatedly, S100A4 has been found in associa-
tion with cell death in a conflict way, it inhibits apoptosis 
in pancreatic cancer[26] but promotes it in osteosarcoma 
cells[27].

S100A4 in cancers: A facilitator, not a generator
Elevation of  S100A4 has been found in almost every 
metastatic cancer known, including breast[28], ovarian[29], 
prostate[30], urinary bladder[31], lung[32], esophageal[33], gas-
tric[34], colon[35], pancreatic[36], liver[37], gallbladder[38] and 

Figure 1  Daniel Nathans, MD, Nobel 
Laureate (10/30/1928-11/16/1999), 
Department of Molecular Biology 
and Genetics, the Johns Hopkins 
University School of Medicine Balti-
more, Baltimore, MD 21205, United 
States.
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thyroid carcinomas[39]. More direct evidence for the essen-
tial role of  S100A4 in cancer metastasis perhaps comes 
from in vitro studies and animal models, which have 
shown that overexpression of  S100A4 in non-metastatic 
tumor cells confers a metastatic phenotype, just as dem-
onstrated in the study by Chen et al[2] as well as several 
others[40,41]; whereas, knockdown of  S100A4 in metastatic 
tumor cells curtails their invasive capability[2,42,43]. 

It should be pointed out though that S100A4 is not an 
oncogene product. As shown by transgenic studies[17,44], 
mice carrying extra copies of  S100A4 gene develop nor-
mally as wild-type and have no increased risk of  cancer. 
However, when these mice mated with cancer mice, their 
offspring showed increased number of  tumors distant 
from their primary location[45]. Therefore, S100A4 is not 
a cancer generator but a metastatic facilitator.

S100A4 has been studied extensively in other cancers, 
especially in breast cancer. In esophageal cancer, there 
are about a dozen of  publications so far, mostly focusing 
on squamous cell carcinoma. The earliest study that can 
be found was done by a Japanese group[33], showing an 
elevated expression of  S100A4 protein in surgically re-
sected ESCC, and a possible association with esophageal 
cancer progression. However, a later study reported an 
opposite result, showing that 11 out of  16 S100 family 
members examined, including S100A4, were down-reg-
ulated at transcriptional level in tumor tissues compared 
with adjacent normal tissues[46]. In 2010, a Chinese re-
search team used RNA interference technology to knock 
down S100A4 in metastatic esophageal tumor cells and 
grafted them in nude mice[47]. They noticed that tumor 
growth was significantly inhibited by S100A4 deficiency, 
and E-cadherin expression was reciprocal to the level of  
S100A4. Unfortunately, the study had little impact be-
cause it was published in a local journal in Chinese. How-
ever, the idea of  xenografting has recently advanced to a 
new cancer treatment strategy - the “avatar” mice. Prin-
cipally, it is to take tumor tissue from a patient and graft 
it in nude mice to create a personalized colony of  mice 
carrying exact that patient’s cancer, and then test every 
potential treatment combinations in mice before selecting 
the best one to treat that patient. Manuel Hidalgo, the Di-
rector of  the Spanish National Cancer Research Center in 
Madrid, has been practicing this approach for pancreatic 
cancer patients over years and showed a clear advantage 
in drug responses[48,49], and now more and more research-
ers believe that this idea holds a great promise in cancer 
treatment in the future.

In the study by Chen et al[2], the research team clev-
erly used two ESCC cell lines, EC109 (highly invasive) 
and TE13 (non-invasive), and successfully made these 
cells switch characters by down-regulation of  S100A4 in 
EC109 and up-regulation of  S100A4 in TE13. They pro-
vided in vitro and in vivo evidence that the level of  S100A4 
determines the metastatic status of  the cancer.

There are two main subtypes of  esophageal cancer: 
ESCC and esophageal adenocarcinoma (EAC). Although 
nearly 95% of  esophageal cancer is ESCC, EAC has been 
rising by 6-fold annually in Americans and now its in-

crease rate exceeds the rate for any other type of  cancers. 
Overexpression of  S100A4 was also reported in EAC 
and its correlation with lymph node metastasis was found 
significant[50]. 

Although the exact molecular mechanisms how S100A4 
promotes cancer metastasis still need to be further ex-
amined, based on various studies, one possible explana-
tion could be that S100A4 binding to liprin β1 inhibits 
its phosphorylation[19], and thereby prevents its interac-
tion with liprin α1. As a result, liprin α1 fails to recruit 
leukocyte common antigen-related (LAR) protein[51], a 
phosphatase, to focal adhesions. Without LAR to dephos-
phorylate β-catenin[52], β-catenin becomes activated to 
leave E-cadherin and results in the collapse of  adherens 
junctions, allowing cells to migrate. As found in our study, 
the dissociation of  β-catenin from E-cadherin causes 
E-cadherin ubiquitination and degradation[53], which might 
at least in part explains why S100A4 elevation is often 
found in association of  E-cadherin loss, as shown in the 
study by Chen et al[2].

S100A4 in normal situation: An innocent bystander
As discussed above, S100A4 is expressed wherever cell 
migration is required, regardless normal or pathological 
situation. However, most of  S100A4 studies focus on its 
bad side, such as cancer metastasis and organ fibrosis. Its 
good side has been continually overlooked. If  we go back 
to the story that S100A4 was discovered in an experiment 
of  serum stimulated fibroblasts, we know that S100A4 is 
innocent. Cells, including fibroblasts, in our body normal-
ly do not come into a direct contact with serum unless 
there is an injury. Therefore, when cells are suddenly ex-
posed to serum, as the experiment done in Nathans’ lab, 
they naturally interpret it as a signal of  a wound. There-
fore, a transcriptional program for wound healing gets 
activated immediately to battle against injury. S100A4 is 
just one of  the players in this battle. So is SRF, and so are 
many SRF-regulated genes (e.g., C-FOS, EGR-1, CCN1, 
CTGF, FGF10, etc.)[54]. All these genes contain a common 
regulatory element CArG box, which SRF recognizes 
to bind. S100A4 gene also contains such element in its 
promoter region[55], suggesting a possible regulation by 
SRF. In vivo, S100A4 activation has been found in various 
wound healings, and its contributions to tissue repair and 
modification are indisputable[16,56].
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