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Abstract 
Helicobacter pylori  (H. pylori ) is a Gram-negative bac-
terium that infects half of the human population. The 
infection is associated with chronic inflammation of the 
gastric mucosa and peptic ulcers. It is also a major risk 
factor for gastric cancer. Phylogenetic analysis of global 
strains reveals there are seven populations of H. pylori , 
including hpAfrica1, hpAfrica2, hpEastAsia, hpEurope, 
hpNEAfrica, hpAsia2 and hpSahul. These populations 
are consistent with their geographical origins, and pos-
sibly result from geographical separation of the bac-
terium leading to reduced bacterial recombination in 
some populations. For each population, H. pylori  has 
evolved to possess genomic contents distinguishable 
from others. The hpEurope population is distinct in that 
it has the largest genome of 1.65 mbp on average, and 
the highest number of coding sequences. This confers 
its competitive advantage over other populations but 
at the cost of a lower infection rate. The large genomic 
size could be a cause of the frequent occurrence of 
the deletion of the cag pathogenicity island in H. pylori 
strains from hpEurope. The incidence of gastric cancer 
varies among different geographical regions. This can 

be attributed in part to different rates of infection of 
H. pylori . Recent studies found that different popula-
tions of H. pylori  vary in their carcinogenic potential and 
contribute to the variation in incidence of gastric cancer 
among geographical regions. This could be related to 
the ancestral origin of H. pylori . Further studies are indi-
cated to investigate the bacterial factors contributing to 
differential virulence and their influence on the clinical 
features in infected individuals.  
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INTRODUCTION 
Helicobacter pylori (H. pylori) is a Gram-negative bacterium 
which colonizes the human stomach. As a pathogen, H. 
pylori induces inflammation of  the gastric mucosa[1]. It 
plays a causal role in the ulceration and recurrence of  
peptic ulcer[2]. Eradication of  the bacterium heals ulcers 
and prevents recurrence of  the disease. The infection is 
also associated with an increased risk of  gastric cancer[3,4].  

The incidence of  gastric cancer shows geographi-
cal variation. This is attributed in part to the difference 
in the prevalence of  the H. pylori infection among geo-
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graphical regions. In Africa and South Asia, however, the 
incidence of  gastric cancer in these areas is much lower 
than in other countries in spite of  the high prevalence 
of  the H. pylori infection[5]. Such a disparity has also been 
found in other local regions[6]. Analysis of  global strains 
reveals seven populations of  H. pylori that are consistent 
with their geographical origin[7-10]. These current popula-
tions derive from six ancestral populations[7]. It appears 
that the ancestry, genomic contents and carcinogenic 
potentials are diversified among H. pylori populations. 
Studies at a population level have improved our under-
standing of  gastric carcinogenesis associated with the H. 
pylori infection. 

GENETIC DIVERSITY AND POPULATIONS 
OF H. PYLORI 
There are three types of  bacterial population structure: 
clonal, panmictic and endemic[11]. If  intra-species or 
inter-species recombination is rare, the genetic diversity 
of  a bacterial species predominantly comes from evolu-
tion of  the ancestry. This species has a clonal population 
structure. In a species with high frequency of  recom-
bination, introduction of  foreign gene fragments into 
the genome occurs frequently in the evolution history. 
As foreign genes have a different evolution history, the 
evolution speed of  individual genes is different. In this 
case, the species possess a panmictic structure. For a 
bacterial species with a panmictic structure, a temporal 
clonal structure may occur if  it rapidly spread among 
naïve hosts. In this situation, a bacterial species has an 
endemic structure. 

H. pylori shows great inter-strain variation in genetic 
content[12]. None of  the individual strains is identical as 
demonstrated by multiple fingerprinting methods[13,14]. 
Sequence divergence is the main cause of  this variation. 
Comparison of  two sequenced genomes revealed occur-
rence of  substantial silent mutation in the genetic loci[15]. 
A number of  mechanisms are involved in the generation 
of  the sequence variation: H. pylori shows a higher muta-
tion rate than Escheria coli[16]. Approximately a quarter of  
strains possess a mutator-like phenotype. This is attrib-
uted to the lack of  a functional DNA repair system[16,17] 
and error-prone DNA polymerase in H. pylori[18]. Recom-
bination in H. pylori is more frequent than in any other 
organism studied to date[19]. Foreign DNA from the same 
species or phage has been found in the bacterium[15]. 
Strand slippage mispairing is another mechanism respon-
sible for genetic diversity. A number of  homopolymeric 
tracts and dinucleotide repeat regions are present in the H. 
pylori genome[20,21], which may cause replication error and 
subsequently sequence variation. H. pylori has a special-
ized type Ⅳ system for uptake of  foreign DNA from the 
same species or other species[22]. Foreign DNA fragments 
are subsequently integrated into the genome by recom-
bination. A high frequency of  recombination and a high 
mutation rate in H. pylori result in a panmictic structure 
of  the bacterium[23].  

Recombination is a rare genetic event in house-keeping 
genes. Phylogenetic analysis of  highly conserved house-
keeping genes (atpA, efp, mutY, ppa, trpC, ureI and yphC) 
has then been used to study populations of  H. pylori[24]. 
Examination of  global strains of  H. pylori reveals that it 
has seven populations: hpAfrica1, hpAfrica2, hpEastAsia, 
hpEurope, hpNEAfrica, hpAsia2 and hpSahul[7-10,25,26]. 
Some populations could be further divided into subpop-
ulations. For hpEastAsia, there are three subpopulations 
including hspEAsia, hspAmerind and hspMaori[27], while 
hpAfrica1 is split into hspWAfrica and hspSAfrica[28]. 
These populations and subpopulations reflect not only 
their geographical origin but also ethnic groups of  their 
hosts. Spatial separation reduces bacterial recombination 
between different geographical regions. A weakly clonal 
population may thus be generated in strains from a par-
ticular geographical region[29]. H. pylori spreads mainly 
through a mode of  family transmission[30,31], leading to a 
reduced chance of  recombination between strains from 
different ethnic groups. Therefore, strains from different 
ethnic groups could be distinguished in the phylogenetic 
analysis. This is one of  the features that allows phyloge-
netic analysis of  H. pylori to be used to trace the history 
of  human migration.  

GENOMIC DIVERGENCE BETWEEN 
H. PYLORI POPULATIONS 
H. pylori has been accompanying human hosts for more 
than 58 000 years[10]. The genome of  H. pylori is thus 
shaped by its human hosts due to the long co-existence[32]. 
H. pylori strains differ in their affinity to bind blood group 
antigens expressed in the gastric mucosa[33]. Strains from 
Europe bind all three blood group antigens, while Amer-
indian strains have higher affinity for O blood antigen as 
this antigen is predominant in Amerindians[32]. Therefore, 
the genomic content of  H. pylori may vary in different 
populations.  

To date, a number of  strains of  H. pylori have been 
sequenced[15,34-37]. Of  these, the origin and other informa-
tion of  30 strains are publicly available. These include 14 
strains from hpEastAsia (7 from hspEasia and 7 from 
hspAmerind subpopulations, respectively), 10 from 
hpEurope, 5 from hpAfrica1 and 1 from hpAfrica2[38-41]. 
All, except for strain B38 from hpEurope, possess cagA 
and the cag pathogenicity island (cag PAI). The genomic 
size of  cagA-positive H. pylori ranges from approximately 
1.55 mbp to 1.71 mbp with an average of  1.61 mbp. For 
cagA-negative strains, their genome is generally smaller be-
cause of  the lack of  the cag pathogenicity island of  about 
40 kbp. We analyzed the average genomic size of  cagA-
positive H. pylori strains from different populations[42-47]. 
The average genomic size of  strains from hpEurope is 
approximately 1.65 mbp, which is significantly larger than 
that from hpEastAsia (1.60 mbp, P < 0.05) or hpAfrica1 
(1.60 mbp). Consistent with this, strains of  hpEurope 
have the highest number of  coding sequences. There was 
a statistically significant difference between hpEurope and 
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hpEastAsia in the average genomic size and number of  
CDS. The size of  bacterial genomes is primarily deter-
mined by two counteracting processes: the gain of  new 
genes by gene duplication or by horizontal gene transfer; 
and the decay of  non-essential genes[15]. Both of  these 
processes have been observed in H. pylori. Recombination, 
conjugation, insertion elements, mutation and slipped-
strain replication lead to gene gain or loss[34]. They may be 
involved in the variability of  genomic size among H. pylori 
of  different populations.  

For bacteria, a larger genome requires more meta-
bolic activities and consumes more energy[48,49]. Therefore 
bacteria containing a larger genome may have a lowered 
capacity of  growth, reducing its competitive ability with 
other bacteria in the same ecological niche. This leads to 
a decreased spread of  bacteria. It is well known that H. 
pylori is less prevalent in Western countries than in other 
parts of  the world[50]. Hygiene, economical incomes and 
social status have been suggested to contribute to this dif-
ferential prevalence[51]. It is arguable that a larger genome 
of  H. pylori strains in Western countries may also contrib-
ute to the low prevalence of  the infection in this region.  

Comparison of  the genomic content of  H. pylori from 
different populations revealed differences in the composi-
tions of  outer membrane proteins and central metabolism[39]. 
Compared with hpEurope, strains from hpEastAsia tend 
to have fewer genes of  these two categories. There are a 
total of  12 genes in H. pylori involved in molybdenum me-
tabolism, including those encoding proteins for molybde-
num transport and cofactor synthesis and a molybdenum-
containing enzyme. A massive decay of  molybdenum-
related genes occurs in strains from hpEastAsia. At least 
five genes are fragmented due to mutations. The molyb-
denum-containing enzyme functions in electron transfer 
and responses to oxidative and acid stress[52]. It is probable 
that in hpEastAsia populations, H. pylori use alternative 
pathways for the purpose[39]. Outer membrane proteins 
consist of  several paralog families interacting with the 
human host[53,54]. In the hpEastAsia population, there is a 
tendency for a reduced number of  these proteins resulting 
from mutations and recombination. Therefore it appears 
that H. pylori from hpEastAsia have evolved to possess a 
reduced genome.  

The cag PAI is a 40-kb DNA fragment which contains 
27 to 31 genes flanked by 31-bp direct repeats[55]. It en-
codes CagA, the major virulence determinant of  H. pylori 
and components of  a type Ⅳ secretion system[56,57]. The 
latter translocates CagA into host cells[58]. Once inside 
the host cells, CagA binds to a number of  host cell pro-
teins disrupting intracellular signaling systems via tyrosine 
phosphorylation-dependent or -independent pathways[59]. 
This causes elongation and loss of  polarity of  host cells, 
promoting proliferation and inflammation. The presence 
of  the cag PAI in H. pylori is associated with increased risk 
of  severe gastritis, atrophic gastritis, and distal gastric 
cancer compared with strains that lack the cag island[60-62].  

A marked difference lies between hpEurope and hpEast-

Asia in the prevalence of  strains possessing the cag PAI. 
Approximately 60% to 70% of  Western H. pylori strains 
express CagA[61,63], indicating the presence of  the cag PAI. 
In East Asia, however, almost 100% of  strains possess 
the cag PAI irrespective of  pathology[64,65]. It is believed 
that the cag PAI is deleted in Western strains resulted from 
recombination between the repeats flanking the island[66]. 
This results in a reduced genomic size by approximately 
40 kbp. In addition, it has been demonstrated that the 
prevalence of  strains with an intact cag PAI is the lowest 
in Western countries[67]. As described above, strains from 
hpEurope are coincidently 40 kbp larger than the average 
genomic size of  H. pylori. Thus, the occurrence of  cagA-
negative strains in hpEurope is probably due to the evolu-
tion of  the bacterium towards a smaller genome.  

VARIATION IN THE CARCINOGENIC 
POTENTIAL OF H. PYLORI POPULATIONS 
The incidence of  gastric cancer varies in different geo-
graphical regions. It is higher in East Asian countries than 
in any other countries when age-standardized rates are 
considered[68]. In some countries of  West Africa and South 
America, there is also an increased incidence of  gastric 
cancer[69,70]. The geographic difference in the incidence 
of  gastric cancer can be attributed partially to the differ-
ence in the prevalence of  H. pylori infection[71]. A high 
prevalence of  virulent strains of  H. pylori is another con-
tributing factor to the high incidence of  gastric cancer in 
East Asia. Virulent strains possess the cag PAI and express 
VacA. There is, however, a disparity between the preva-
lence of  H. pylori or virulent strains and the incidence of  
gastric cancer. In Linqu County, China, the incidence of  
gastric cancer is extremely high, while in its neighbor-
ing county Cangshan the incidence is very low[72,73]. The 
rate of  H. pylori infection and the proportion of  virulent 
strains in these two counties, however, show no significant 
difference[74]. Similar results have been found when com-
paring two regions in Mexico with contrasting incidence 
of  gastric cancer[75]. These results indicate differential 
incidence of  gastric cancer among different geographical 
regions is attributable to other bacterial factors. 

To explore other bacterial factors related to carci-
nogenesis, the phylogeographical origin of  H. pylori has 
been investigated[76]. In the Andean mountain region of  
Colombia, habitants have a high incidence of  gastric can-
cer (150 per 100 000 people per year)[77,78], while habitants 
in the coastal line 200 kilometers away, have a very low 
incidence of  gastric cancer (6/100 000)[77,78]. The preva-
lence of  the infection and virulent strains of  H. pylori in 
these two regions are similar[75]. All H. pylori strains iso-
lated from the Andean region, however, are from hpEu-
rope, in contrast to strains isolated from the coastal line 
which are mainly from hpAfrica1[76]. Furthermore, strains 
from the Andean region caused more severe mucosal 
inflammation and more DNA damage in epithelial cells. 
This suggests that strains of  hpEurope probably have an 
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increased carcinogenic potential compared with those of  
hpAfrica1[76]. Ancestral origin of  the bacterium could be 
an important factor contributing to gastric carcinogen-
esis. This conclusion is further supported from a study 
conducted in Malaysia[7]. There are three ethnic groups 
in the country: Malay, Indian and Chinese. The infection 
rate of  H. pylori in Malays is lower than that in Indian and 
Chinese subjects[79]. The incidence of  gastric cancer, how-
ever, is similar in Malays and Indians, but is much lower 
than in the Chinese[80]. Analysis of  the ancestral origin 
of  H. pylori found that strains isolated from both Malay 
and Indian subjects belonged to hpAsia2, whereas those 
isolated from Chinese subjects belonged to hpEastAsia. 
This suggests a different potential for carcinogenesis 
between hpAsia2 and hpEastAsia. H. pylori populations 
generally reflect the geographical regions from which 
they are isolated. Differences in the incidence of  gastric 
cancer among geographical regions could be in part at-
tributed to different populations of  H. pylori. Further 
study is required to investigate other bacterial factors in-
volved in the carcinogenesis. 

CONCLUSION
In summary, geographical separation reduces the fre-
quency of  recombination between H. pylori strains from 
a local area and those from outside. This leads to the 
formation of  a clonal population structure of  H. pylori 
in the local area. Thus, populations of  H. pylori could 
be identified through examination of  global strains. For 
each population, H. pylori have experienced relatively 
separate evolution processes, resulting in genomic diver-
sity and differential potential for carcinogenesis. Further 
study to characterize these differences may help eluci-
date mechanisms involved in the development of  gastric 
cancer induced by H. pylori. 
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