
GUIDELINES FOR BASIC SCIENCE

Hepatic expression and cellular distribution of the glucose 
transporter family

Sumera Karim, David H Adams, Patricia F Lalor

World J Gastroenterol  2012 December 14; 18(46): 6771-6781
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2012 Baishideng. All rights reserved.

Online Submissions: http://www.wjgnet.com/esps/
wjg@wjgnet.com
doi:10.3748/wjg.v18.i46.6771

6771 December 14, 2012|Volume 18|Issue 46|WJG|www.wjgnet.com

Sumera Karim, David H Adams, Patricia F Lalor, Centre for 
Liver Research and NIHR Biomedical Research Unit, Institute 
of Biomedical Research, University of Birmingham, Birming-
ham B15 2TT, United Kingdom
Author contributions: Karim S, Adams DH and Lalor PF 
devised and wrote the manuscript; Karim S and Lalor PF per-
formed the experiments and analyzed data included in the re-
view.
Correspondence to: Dr. Patricia F Lalor, PhD, Lecturer, 
Centre for Liver Research and NIHR Biomedical Research Unit, 
Institute of Biomedical Research, University of Birmingham, 
Birmingham B15 2TT, United Kingdom. p.f.lalor@bham.ac.uk
Telephone: +44-121-4146967  Fax: +44-121-4158700
Received: June 20, 2012           Revised: September 10, 2012
Accepted: September 19, 2012
Published online: December 14, 2012

Abstract
Glucose and other carbohydrates are transported into 
cells using members of a family of integral membrane 
glucose transporter (GLUT) molecules. To date 14 
members of this family, also called the solute carrier 
2A proteins have been identified which are divided on 
the basis of transport characteristics and sequence 
similarities into several families (Classes 1 to 3). The 
expression of these different receptor subtypes varies 
between different species, tissues and cellular sub-
types and each has differential sensitivities to stimuli 
such as insulin. The liver is a contributor to metabolic 
carbohydrate homeostasis and is a major site for syn-
thesis, storage and redistribution of carbohydrates. 
Situations in which the balance of glucose homeostasis 
is upset such as diabetes or the metabolic syndrome 
can lead metabolic disturbances that drive chronic 
organ damage and failure, confirming the importance 
of understanding the molecular regulation of hepatic 
glucose homeostasis. There is a considerable literature 
describing the expression and function of receptors 
that regulate glucose uptake and release by hepato-
cytes, the most import cells in glucose regulation and 

glycogen storage. However there is less appreciation 
of the roles of GLUTs expressed by non parenchymal 
cell types within the liver, all of which require carbo-
hydrate to function. A better understanding of the 
detailed cellular distribution of GLUTs in human liver 
tissue may shed light on mechanisms underlying dis-
ease pathogenesis. This review summarises the avail-
able literature on hepatocellular expression of GLUTs in 
health and disease and highlights areas where further 
investigation is required.
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INTRODUCTION
Provision of  a regular supply of  glucose and other 
carbohydrates for fuel is vital for human survival and 
these are transported into cells using members of  a fam-
ily of  integral membrane glucose transporter (GLUT) 
molecules[1]. To date 14 members of  this family, also 
called the solute carrier 2A (SLC2A) proteins have been 
identified which can be divided on the basis of  transport 
characteristics (intrinsic or inducible, specificities) and 
sequence similarities[2] into several families (Classes 1 to 
3)[3,4]. The expression of  these different receptor sub-
types varies between different species, tissues and cellular 



Karim S et al . Hepatic glucose transporters

6772 December 14, 2012|Volume 18|Issue 46|WJG|www.wjgnet.com

subtypes and each has differential sensitivities to stimuli 
such as insulin.

The liver is a contributor to metabolic carbohydrate 
homeostasis and is a major site for synthesis, storage 
and redistribution of  carbohydrates. At its simplest, 
after a meal hepatocyte GLUTs take up glucose from 
the portal bloodstream and it is converted to glycogen 
for storage. In a glucose-depleted state, this glycogen 
can then be converted back to glucose for fuel with up 
to 70% of  total hepatic glucose production arising via 
this route[5]. Situations in which the balance of  glucose 
homeostasis is upset such as diabetes or the metabolic 
syndrome can lead metabolic disturbances that drive 
chronic organ damage and failure, which confirms the 
importance of  understanding the molecular regulation 
of  glucose homeostasis. The liver is the major store of  
glycogen, regulates the availability of  glucose and acute 
liver failure is associated with profound hypoglycemia. 
This has led to a large body of  work investigating the 
expression and function of  receptors that regulate 
glucose uptake and release by hepatocytes, the most 
import cells in glucose regulation and glycogen storage 
but there is less appreciation of  the roles of  GLUTs 
expressed by other cell types within the liver. Thus to 
date expression of  GLUT-1, GLUT-2[6,7], GLUT-9[8] 
and GLUT-10[9] has been documented on hepatocytes 
but little is known about their expression or function on 
other cell types. However all cells require carbohydrate 
to function and there is evidence that non-parenchymal 
cells may contribute to glucose disposal. For example 
sinusoidal endothelial cells bind insulin with high affinity, 
and endothelial insulin-responses may be rate-limiting 
for glucose uptake[10]. Thus a better understanding of  the 
detailed cellular distribution of  GLUTs in human liver 
tissue may shed light on mechanisms underlying disease 
pathogenesis. We begin by discussing the extrahepatic 
expression and functions of  these proteins.

EXTRAHEPATIC EXPRESSION AND 
FUNCTION OF CLASS Ⅰ GLUCOSE 
TRANSPORTERS
This family contains the proteins GLUTs 1 to 4 and 14 
(SLC2A1-4, 14). The gene for GLUT-1 (SLC2A1) the 
most ubiquitous transporter is located on chromosome 
1p35-p31.3 and generates a 54 Kd protein in humans 
and rodents[11]. It has a high Km for glucose (Km = 1-2 
mmol/L) and is mainly responsible for basal glucose 
and uptake[12], but can also transport other hexose car-
bohydrates including mannose, galactose, glucosamine, 
3-O-methylglucose and 2-deoxy-d-glucose. GLUT-1 
is, expressed in most cells[13] at low levels, with highest 
expression reported on erythrocytes, the blood brain 
barrier, neuronal membranes, eye, placenta and lactating 
mammary glands[14-16]. Murine embryonic expression also 
suggests a developmental role[17,18]. Over expression of  
GLUT-1 has been documented in a variety of  tumours[19] 
and is associated with increased proliferation rates and 

increased mortality[20] leading to its use as a diagnostic/
prognostic marker in some cancers[21,22].

The GLUT-2 (SLC2A2) gene located on chromo-
some 3q26-1-q26.2 encodes a 524 amino acid protein. 
GLUT-2 can efficiently transport sugars due to its high 
Vmax and Km for glucose, and is well suited to manag-
ing large bi-directional fluxes of  glucose in and out of  
cells[23]. It also transports other dietary sugars such as 
galactose, mannose and fructose with a high affinity for 
glucosamine[11,24,25]. GLUT-2 is highly expressed in the 
liver, pancreatic beta cells, and on the basolateral surface 
of  kidney and small intestine epithelia[26,27] with expres-
sion regulated by sugars and hormones[23,28]. Glycog-
enosis in the rare autosomal recessive disorder Fanconi-
Bickel Syndrome has been associated with mutations in 
GLUT-2[29], and diabetes mellitus in patients with pro-
longed hepatitis C virus (HCV) infection has been linked 
to virally-induced reduction in hepatocyte expression of  
GLUT-2[30].

GLUT-3 (SLC2A3) was initially identified from mus-
cle cell cDNA[31]. Expression localises to the membrane 
of  slow twitch muscle fibres[32] and it is implicated in 
muscle regeneration and cell fusion[33]. However its major 
role is in neurons, supplying the high glucose demands 
in the brain[11,34] and it is increased in brain tumour 
cells[35]. The gene for GLUT-3 is located on chromosome 
12p13.3 and encodes a 496aa protein[12] which transports 
glucose with a high affinity (Km = 1.8 mmol/L) and 
maltose, xylose, dehydroascorbic acid, mannose and ga-
lactose[25]. It is also present in fat, kidney, heart, placenta 
and liver at lower levels[36], and is vital for the supply 
of  substrate to early post-implanted embryos[37]. White 
blood cells, which need an increased supply of  glucose 
to fuel immune functions, express several GLUTs includ-
ing GLUT-3[34] the expression of  which is decreased in 
diabetes[38].

GLUT-4 (SLC2A4) was cloned and sequenced by 
several groups in 1989[39-41]. It is a 55kDa protein respon-
sible for more than 50% of  all body glucose uptake[42]. 
In the absence of  insulin it is sequestered in intracel-
lular vesicles and rapidly translocated to the plasma 
membrane in response to insulin. GLUT-4 transports 
glucose (Km = 5-6 mmol/L), dehydroascorbic acid and 
glucosamine[11,24]. Highest levels of  expression are de-
tected in insulin sensitive tissues such as skeletal and 
cardiac muscle, brown and white adipose tissue[11] and 
endothelial cells[43]. Expression has also been document-
ed in monocytes, and like GLUT-3 is reduced in insulin-
resistant individuals[44]. Mutations in the gene have been 
associated with diabetes.

GLUT-14 (SLC2A14) was identified and cloned 
by Wu X et al[45] in 2002. It is located on chromosome 
12p13.3, has a high sequence similarity to GLUT-3 and 
may have arisen as a result of  gene duplication. The 
protein contains sugar transporter signature motifs pre-
dicted to exhibit glucose transport activity[45]. Two splice 
variants have been identified in the testis[45]. Mutations 
of  GLUT-14 and its drosophila homologue have been 
associated with Alzheimers disease in genome wide as-
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sociation studies in patients and insect models[46,47] and 
may explain the reported brain-specific dyregulation of 
glucose metabolism seen in this condition.

EXTRAHEPATIC EXPRESSION AND 
FUNCTION OF CLASS Ⅱ TRANSPORTERS
This family contains the transporters GLUT-5, GLUT-7, 
GLUT-9 and GLUT-11. GLUT-5 (SLC2A5) mRNA is 
detected mainly in the small intestine were it is found 
at both the apical and basolateral membranes and func-
tions to absorb dietary fructose (Km = 6 mmol/L)[11,48,49]. 
It is also expressed at lower levels in the human kidney, 
microglial cells, adipocytes, muscle, brain, and testes[49,50], 
and in common with other transporters, expression is 
increased in human malignant tumours[51]. The protein 
exhibits no activity for glucose transport in humans 
or mouse[11,52] and its localization is not regulated by 
insulin[50,53]. There is a growing interest in fructose con-
sumption and its link with the metabolic syndrome, 
type 11 diabetes and obesity[49] since consuming foods 
and beverages which contain excessive amounts of  
fructose has been linked to nonalcoholic fatty liver dis-
ease (NAFLD)[54]. The thiazolidinedione drug pioglita-
zone[55], which is used to treat type Ⅱ diabetes, decreases 
GLUT-5 mRNA (52%) and protein (40%) in muscle 
fibres of  type II diabetic subjects.

The GLUT-7 (SLC2A7), which was originally cloned 
from a human intestinal cDNA library[56], has consider-
able sequence similarity to GLUT-5[57] and is involved in 
uptake of  sugars via facilitative diffusion mechanisms. 
Like GLUT-5 it has substrate specificity for both glu-
cose and fructose and a key Ile-314 residue confers hex-
ose specificity and is essential for fructose transport[58]. 
GLUT-7 mRNA is detected in the small and large intes-
tines at the brush border membrane of  enterocytes[11,49]; 
it is also detected in the prostate and testis[56]. Interest-
ingly, disparities between the localisation of  expression 
within the small intestine and glucose and fructose 
substrate availabilities suggest that alternate ligands may 
exist[57].

GLUT-9 (SLC2A9) shares sequence homology[59,60] 
and substrate specificities[58] with GLUT-5, GLUT-7 
and GLUT-11 and, together with GLUT-2, is important 
for glucose-sensing by pancreatic B-cells[61]. Expression 
is localised to liver, kidneys, leukocytes[62], pancreas[61], 
placenta, lung[63], testis and adrenal gland. Two alternate 
isoforms have been identified, termed GLUT-9a and 
GLUT-9b[64,65], and alternative splicing results in differ-
ential subcellular localisation. Both isoforms have also 
been reported to transport urate with high affinity[66], 
and polymorphisms in the GLUT-9 gene are linked 
with an increased predisposition to gout[67]. Some poly-
morphisms have also been associated with an increased 
incidence of  diabetes in Chinese populations[68]. GLUT-
9a expression increases in pregestational and gestational 
diabetes, and GLUT-9b is increased by insulin[59]. In 
mouse, three isoforms of  this transporter are reported, 

and similarly elevated in diabetes[8].
Three distinct isoforms of  GLUT-11 (SLC2A11) 

have been identified in humans, with distinct but overlap-
ping tissue expression patterns. Thus GLUT-11-A is ex-
pressed in skeletal muscle, kidney and heart, GLUT-11-B 
in adipose tissue, kidney and placenta, and GLUT-11-C 
in pancreas, heart, adipose tissue and skeletal muscle[69-72]. 
Muscle expression is localised to slow twitch fibres[73] 
and appears to be involved in myeloma cell viability and 
proliferation[74]. All three variants of  GLUT-11 exhibit 
transport activity for both glucose and fructose but not 
galactose when expressed in Xenopus oocytes[58,70].

EXTRAHEPATIC EXPRESSION AND 
FUNCTION OF CLASS Ⅲ TRANSPORTERS 
This family constitutes the evenly numbered transporters 
GLUT-6, GLUT-8, GLUT-10, GLUT-12 and GLUT-13. 
GLUT-6 (SCL2A6)[62] is widely expressed in normal and 
malignant tissue. mRNA has been detected in peripheral 
leucocytes, brain[72] and spleen[11] as well as in pancreas, 
testis, colon[62] and adipose tissue[75]. Subcellular protein 
expression varies with plasma membrane localisation 
in renal collecting tubule cells and cytoplasmic localisa-
tion in germinal cells of  the testis and smooth muscle. 
GLUT-6 has significant sequence identity with GLUT-3 
and may have arisen through insertion of  GLUT-3 se-
quence into another gene on chromosome 5[76].

GLUT-8 (SLC2A8) is a high capacity intracellular 
GLUT[77] composed of  447 amino acids containing an 
N-terminal dileucine motif  that permits trafficking via 
adaptor proteins to different organelles[77,78]. Expression 
is highest in the testis and[79], following insulin stimula-
tion increases in the mid-piece of  mature spermatozoa 
and translocates to the acrosome where the spermatozoa 
take up glucose to drive motility and the acrosome reac-
tion. GLUT-8 may compensate for a lack of  GLUT-4 
in spermatozoa[80,81] and the preimplantation blastocyst, 
which demonstrates insulin stimulated glucose uptake via 
GLUT-8 translocation[82]. GLUT-8 is also found in some 
insulin receptive tissues including adipose tissue, muscle, 
brain, adrenal glands, spleen, heart and the liver[62,83,84], 
but not adipocytes[75] or neuronal cells[85].

GLUT-10 (SLC2A10) is a 541aa protein in humans 
and 513aa in zebrafish[11,86], which transports both glu-
cose and galactose with high affinity[87]. It is expressed 
in the brain, lungs, adipose tissue[88], heart, placenta, and 
skeletal muscle with highest expression in the liver and 
pancreas[9,87]. The GLUT-10 gene, located on chromo-
some 20q12-13.1[89] has been linked with type Ⅱ diabe-
tes[9,90]. However other studies do not show any associa-
tion with a diabetic phenotype[91,92]. Development of  the 
cardiovascular system and TGFb signalling are linked to 
GLUT-10 function[93] and mutations are associated with 
altered angiogenesis and arterial tortuosity syndrome[93,94] 
as a consequence of  a loss of  regulation of  smooth 
muscle mitochondrial antioxidants production in the ab-
sence of  functional GLUT-10[89].
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GLUT-12 (SLC2A12) was originally identified in the 
MCF-7 breast cancer epithelial cell line[95]. It is expressed 
in insulin sensitive tissues in humans and rodents includ-
ing adipose tissue, skeletal muscle (major expression in 
type 1 oxidative fibres) and heart[72,88,96-98] as well as hu-
man chondrocytes[99]. GLUT-12 is also found in placenta, 
small intestine, heart and tumours with a high metabolic 
and capacity glucose utilisation[100-103]. In normal hu-
man muscle GLUT-12 undergoes PI3 kinase dependent 
translocation from an intracellular region to the plasma 
membrane[104]. Its expression in insulin sensitive tissues, 
and evidence that overexpression of  GLUT-12 in mice 
improves glucose clearance rate and whole body insulin 
sensitivity[105] confirm that this transporter is insulin-
sensitive. The GLUT-13 (SLC2A13) gene encodes a 629 
amino acid protein, located on chromosome 12q12. It is 
a H+/myo-inositol co-transporter[11,106,107] also known as 
HMIT[108] in neuronal cells[106,108]. Although there are no 
known reports of  glucose activity for GLUT-13[11], the 
rat gene contains motifs which are important for glucose 
transport activity (http://omim.org/entry/611036).

LIVER SPECIFIC EXPRESSION OF 
GLUCOSE TRANSPORTER MOLECULES
The data reviewed above reveal the widespread distribu-
tion and diverse function of  extrahepatic transporter 
proteins but much less is known about their expression 
and function it the liver. Surprisingly, there are few stud-
ies documenting changes in expression and function in 
disease. Defining local expression of  GLUTs in tissue 
will shed light on disease pathogenesis. For example, dia-
betes is associated with altered expression of  GLUT-1, 
GLUT-2, GLUT-3 and GLUT-8 and GLUT-9 (reviewed 
in[8]) and abnormal GLUT-1 expression on tumour 
endothelium in HCC has prognostic and diagnostic 

significance[109-111]. A good example is the finding that 
diabetes in HCV is a consequence of  virally induced 
downregulation of  GLUT-1 and GLUT-2 on hepato-
cytes[30]. Similarly, transport of  key substrates such as 
fructose has been linked to NAFLD[54]. Dysregulated 
glucose homeostasis and insulin resistance in NAFLD is 
associated with chronic organ damage affecting multiple 
hepatic cell types. The expression levels of  transport-
ers is not only regulated by insulin and glucose levels 
but also by cytokines including interleukin-6, which is 
increased in obesity and diabetes and can amplify in-
sulin resistance via effects on GLUT-4[112]. The hexose 
transporters also play important roles in the function of  
cholangiocytes[113], endothelial cells and stellate cells[114]. 
Thus we summarise the current state of  knowledge re-
garding hepatocellular expression of  the GLUT family 
of  proteins, in order to highlight their potential role in 
tissue homeostasis and disease (Table 1).

HEPATIC EXPRESSION OF 
CLASS Ⅰ TRANSPORTERS 
The widespread expression of  GLUT-1 includes the liv-
er although the precise cellular distribution remains con-
troversial. Because hepatocytes are capable of  gluconeo-
genesis their need for glucose uptake is modest. GLUT-1 
is expressed on the sinusoidal membrane of  rat and por-
cine[115,116] hepatocytes, and may be expressed to a greater 
extent than GLUT-2 during early post-natal develop-
ment[117]. Expression of  both GLUT-1 and GLUT-2 by 
foetal hepatocytes allows for efficient glycogenesis at 
low plasma glucose concentrations[118]. In adult animals, 
expression is strongest in the central acinar zones[119]. 
Transcription and microsomal expression of  GLUT-1 
is detected in periportal and perivenular hepatocytes 
but membrane localisation is restricted to hepatocytes 

Table 1  Summary of reported hepatic expression of glucose transporters isoforms

Class GLUT 
isoform

Hepatic 
expression

Subcellular expression/localisation Protein/
mRNA

Ref. 

Class Ⅰ    GLUT1 Yes Sinusoidal membrane of hepatocytes, protein restricted to hepatocytes proximal 
to the hepatic venule, also expressed on endothelial cells, kupffer cells and 
cholangiocytes; hepatocyte expression in HCC

Both [110,113,115,116,120] 

   GLUT2 Yes Hepatocytes Protein [124-126]
   GLUT3 Yes Hepatocytes, bile canalicular membrane more enriched than sinusoidal membrane Protein [115,116,132]
   GLUT4 Yes Stellate cells mRNA [115,116,134]
   GLUT14 No

Class Ⅱ    GLUT5 Yes Normal liver tissue hepatocytes (cytoplasmic) Both [51,115]
   GLUT7 No [140]
   GLUT9 Yes Majority of expression in hepatocytes of normal liver and HCC with cytoplasmic 

expression in pericentral areas
Protein [51]

   GLUT11 Yes mRNA [115]
Class Ⅲ    GLUT6 Yes mRNA [76]

   GLUT8 Yes Perivenous hepatocytes Both [115,143]
   GLUT10 Yes mRNA [86,115]
   GLUT12 Yes mRNA [98]
   GLUT13 No

The table summarizes the evidence presented within this review to highlight the reported hepatocellular expression of glucose transporter (GLUT) isoforms 
at message and protein level. Pertinent references are cited in the extreme right hand column. mRNA: Micro RNA; HCC: Hepatocellular carcinoma.
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proximal to the hepatic venule[120] under basal conditions. 
Our own microarray analysis of  human normal livers 
confirms expression of  GLUT-1 and GLUT-2 in total 
liver mRNA (Figure 1). In hepatocellular carcinoma, 
variable cytoplasmic GLUT-1 is detected and is has been 
used to distinguish between cholangiocarcinomas and 
hepatocellular carcinomas (HCC)[109] and has even been 
proposed as a therapeutic target for HCC[110]. Exposure 
of  rodents to alcohol and high fat feeding results in in-
creased GLUT-1 and decreased GLUT-2 expression in 
hepatocytes which presumably reflects changes in energy 
metabolism in response to the dietary changes[121].

Non-parenchymal cells, which cannot carry out glu-
coneogenesis, rely on glucose uptake rather than endog-
enous generation. GLUT-1 is the dominant receptor on 
both endothelial cells and Kupffer cells and levels increase 
in response to even brief  exposure to LPS[122]. Interest-
ingly, acute liver failure has been associated with increased 
GLUT-1 expression on cerebral vasculature in response 
to elevated circulating ammonia levels[123]. Cholangiocytes 
demonstrate basolateral expression of  GLUT-1[113] which 
facilitates absorption of  glucose from bile.

GLUT-2 fulfils the major glucose transport role in 
hepatocytes[36,124] (Figure 1). The protein localises to the 
sinusoidal plasma membrane of  normal[23,125] and ma-
lignant hepatocytes. Historical reports suggest a Km for 
glucose transport of  up to 66 mmol/L in intact rat hepa-
tocytes[126] although contribution from other transporters 
likely contributes in this study since others report lower 
values between 10 mmol/L and 20 mmol/L[23]. GLUT-2 
promotes rapid glucose efflux following gluconeogen-
esis. In the fasting state the liver produces glucose via 
glycogenesis or glycogenolysis with the conversion of  
glucose 6 phosphate into glucose preceding release via 

GLUT-2[23]. However in the fed state glucose and insulin 
levels rise and inhibit endogenous glucose production 
through effects on enzymes involved in gluconeogenesis. 
This is associated with removal of  membrane GLUT-2 
and a subsequent fall in GLUT-2 mediated release[23]. 
Excess glucose is stored as glycogen or converted to lip-
ids and hepatocyte GLUT-2 and the insulin receptor are 
internalised together into endosomes in response to in-
sulin[23,127,128]. In mice lacking GLUT-2 the rate of  hepatic 
glucose production is not impaired indicating the pres-
ence of  a facilitated diffusion-independent mechanism 
for glucose release[129]. Thus the major role of  hepato-
cyte GLUT-2 is to regulate efflux rather than uptake of  
glucose. However, in obesity insulin resistance drives an 
increase in GLUT-2 levels that may further exacerbate 
metabolic dysfunction in NAFLD[130].

Much less is known about the hepatic expression and 
function of  GLUT-3. GLUT-3 is expressed in porcine 
livers[115] and localised to the plasma membrane of  rat 
hepatocytes. Expression is focussed on the bile canalicu-
lar membrane rather than the sinusoidal membrane[116]. 
Mice with GLUT-3 haploinsufficiency develop obesity 
and insulin resistance associated with hepatic steatosis, 
possibly as a consequence of  foetal glucose insufficien-
cy[131]. GLUT-3 expression is increased on both primary 
and metastatic hepatic tumours, which might reflect an 
increased need for glucose uptake in cancer[132]. Low 
levels of  GLUT-3 have been reported in the human 
liver[36] and are supported by our microarray analysis but 
detailed human studies are lacking and little is known 
about changes in disease.

Whilst the liver is generally considered to lack signifi-
cant expression of  GLUT-4[133], a recent study reports 
expression of  GLUT-4 mRNA in porcine liver[115]. Al-

Figure 1  Expression of glucose transporter glucose transporters 1-13 micro RNA in normal human livers. This figure contains unpublished data generated by 
the authors. Livers were collected from patients at the Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom with appropriate informed written consent 
and local ethics committee approval. Micro RNA was extracted using standard protocols and integrity was confirmed using an Agilent 2100 Bioanalyser. Transcriptome 
analysis was carried out for all samples using Agilent Human Whole Genome Oligo Arrays (G4112F) in accordance with Agilent one colour microarray gene expres-
sion analysis protocol. Results are expressed as means of five normal livers ± SE, and were run on triplicate plates. Data were normalized to pooled endogenous 
controls and differential expression is represented as power 2-∆CT. bP < 0.01 vs glucose transporters (GLUT) 2.
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though there is little evidence for expression in hepato-
cytes, GLUT-4 has been detected in sinusoidal endothe-
lial cells and stellate cells where it can mediate glucose 
uptake by semicarbazide sensitive amine oxidase medi-
ated effects on insulin receptor signalling[134] which ex-
plains our findings of  expression at mRNA level in hu-
mans (Figure 1). Expression on stellate cells is enhanced 
by leptin signalling[114] leading to HSC activation that may 
contribute to fibrogenesis in NAFLD. In contrast, in 
murine models of  diet-induced obesity GLUT-4 mRNA 
is decreased in the liver[135] and cirrhosis is associated 
with decreased extrahepatic GLUT-4 mRNA[42]. Dele-
tion of  skeletal muscle GLUT-4 results in redirection of  
excess circulating glucose to the liver where is becomes 
fuel for conversion to lipid storage[136-138]. Thus glucose 
homeostasis is maintained by a complex relationship 
between intra- and extra hepatic levels of  GLUT-4 regu-
lated by metabolic activity and dietary intake. To date 
there are no published reports concerning expression of  
GLUT-14 in the liver.

HEPATIC EXPRESSION OF CLASS Ⅱ 
TRANSPORTERS
GLUT-5 protein has been detected in human hepato-
cytes[51] although low to undetectable RNA levels in 
pigs[115] imply species-specific differences in GLUT-5 ex-
pression. Hepatic metastases from lung and breast can-
cer are GLUT-5 positive[132] but under normal conditions 
liver expression is minimal (Figure 1). A mechanistic link 
between elevations in GLUT-5 expression in small intes-
tine and alterations in hepatic metabolism[139] has been 
suggested.

GLUT-7 was initially reported as a hepatic micro-
somal GLUT found in the endoplasmic reticulum, which 
facilitated the release of  glucose formed in the process 
of  gluconeogenesis and glycogenolysis for export into 
the blood[36,140]. However this has recently been chal-
lenged by studies showing that neither human nor rat 
livers contain GLUT-7 mRNA[141] and our data in Figure 
1, suggesting that the previous findings were due to a 
cloning artefact. Definitive studies need to be performed 
to clarify the situation.

GLUT-9 has been detected in the cytoplasm of  
pericentral hepatocytes in normal human liver and in 
HCC[51]. The receptor appears to be functional for glu-
cose transport because plasma membrane expression of  
GLUT-9 correlates with glucose influx in HepG2 cells[142] 
and GLUT-9 inactivation in mouse hepatocytes leads to 
hyperuricosuria[143]. Although GLUT-11 mRNA has been 
detected in porcine liver[115], there are no studies docu-
menting expression of  GLUT-11 in the human liver.

HEPATIC EXPRESSION OF CLASS Ⅲ 
TRANSPORTERS
Little is known about the hepatic expression of  the 

recently identified Class Ⅲ transporters although our 
microarray data (Figure 1) is indicative of  some degree 
of  expression. Presence of  mRNA for GLUT-6 has 
been described in hepatoma cell lines but has not been 
detected in normal human liver[76]. GLUT-8 mRNA has 
been detected in perivenous hepatocytes in pig[115] and 
mouse[144] livers where it may regulate glycolytic flux. 
Mice with type Ⅰ diabetes show decreased expression 
whereas expression increases in insulin resistance and 
type Ⅱ diabetes suggesting that expression is regulated 
by insulin[144]. Hepatic expression of  GLUT-10 has been 
reported in pigs[115] and zebrafish[86] but we are unaware 
of  any data in humans. GLUT-12 mRNA has been doc-
umented in all bovine tissues including the liver where 
levels are low compared to spleen and skeletal muscle[98], 
but again detailed cellular expression data is currently 
lacking. There are no known reports of  GLUT-13 ex-
pression in the liver. 

CONCLUSION
Systemic carbohydrate homeostasis is maintained by 
a complex relationship between organs such as the 
pancreas, intestine, muscle and liver. Intra- and extra 
hepatic levels of  GLUT molecules are regulated in part 
by metabolic activity, dietary intake, and disease state. 
For example, diabetes is associated with altered expres-
sion of  GLUT-1, GLUT-2, GLUT-3 and GLUT-8 and 
GLUT-9[8] and abnormal GLUT-1 expression on tumour 
endothelium in HCC[109-111] permits efficient glucose 
uptake by tumour cells even at low blood glucose con-
centrations. Chronic fructose intake drives glucose and 
glycogen storage, lipogenesis and production of  lipo-
genic intermediates as well as promoting production of  
very-low-density lipoproteins[145]. This suggests that the 
reported hyperlipidaemic and hyperuricaemic effects 
of  fructose, coupled with macrovesicular steatosis and 
lobular inflammation patterns[146] characteristic of  hu-
man NAFLD seen in rodents fed high fructose diets, 
may be enhanced in the context of  altered expression of  
fructose transporters within the hepatic parenchyma and 
especially so for individuals with high fructose intake 
or pre-existing hyperlipidaemia or metabolic syndrome. 
New data is increasingly suggesting the merits of  target-
ing members of  the GLUT family therapeutically. Thus 
overexpression of  GLUT-1 in tumours, particularly 
those with poor prognosis has been suggested as a pos-
sible means to selectively inhibit tumour cell metabo-
lism[147], although expression of  GLUT-1 red blood cells 
will likely preclude use therapeutically. Similarly targeting 
of  GLUT-3, which is involved in neovascularisation in 
glioblastoma has been suggested to prevent resistance 
to conventional therapy[148], and GLUT-4 is of  particular 
interest in the context of  diabetes and insulin resistance, 
with efforts underway to design therapeutics to enable 
appropriate glucose uptake independently of  insulin 
stimulation[149]. Alterations in hepatic expression of  
GLUT transporters have been described in response to 
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insulin resistance and hyperlipidaemia, alcohol consump-
tion, viral infection and carcinogenesis, with diverse 
functions including biliary transport, fibrogenesis, urate 
transport and angiogenesis executed by family members 
in extraparenchymal cells. Combined with the central 
role of  the liver in regulation of  circulating carbohy-
drate therefore, future definition of  the spatial, temporal 
and disease-specific expression of  GLUTs within the 
liver microenvironment is key to understanding disease 
pathogenesis and potential hepatic complications of  sys-
temic inhibition.
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