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Abstract 
Non-alcoholic fatty liver disease (NAFLD) includes a 
variety of histological conditions (ranging from liver 
steatosis and steatohepatitis, to fibrosis and hepa-
tocarcinoma) that are characterized by an increased 
fat content within the liver. The accumulation/deposi-
tion of fat within the liver is essential for diagnosis of 
NAFLD and might be associated with alterations in the 
hepatic and systemic inflammatory state. Although it 
is still unclear if each histological entity represents a 
different disease or rather steps of the same disease, 
inflammatory processes in NAFLD might influence its 
pathophysiology and prognosis. In particular, non-

alcoholic steatohepatitis (the most inflamed condition 
in NAFLDs, which more frequently evolves towards 
chronic and serious liver diseases) is characterized by 
a marked activation of inflammatory cells and the up-
regulation of several soluble inflammatory mediators. 
Among several mediators, cytokines and chemokines 
might play a pivotal active role in NAFLD and are con-
sidered as potential therapeutic targets. In this review, 
we will update evidence from both basic research and 
clinical studies on the potential role of cytokines and 
chemokines in the pathophysiology of NAFLD. 
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INTRODUCTION 
In the last decade, there has been a remarkable scientific 
effort to improve our understanding of  the pathogen-
esis, diagnosis, and treatment of  non-alcoholic fatty liver 
disease (NAFLD). Clinical studies revealed dramatically 
high  prevalence of  NAFLD worldwide[1,2]. Worrying 
data on the prevalence of  NAFLD in children and ado-
lescents was also revealed[3]. Importantly, in American 
adolescents followed in the National Health and Nutri-
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tion Examination Survey between 1999 and 2004, serum 
elevation of  hepatic enzymes [i.e., alanine aminotrans-
ferase (ALT)] was observed in 6% to 11% of  subjects 
(depending of  ethnicity)[4]. Furthermore, serum ALT 
increase was positively associated with waist circumfer-
ence and insulin resistance, suggesting that NAFLD 
might be considered as the hepatic manifestation of  
other epidemic diseases, such as metabolic syndrome 
and obesity[1,2]. In fact, in obese children and adoles-
cents, NAFLD affects about 20% to 74%, indicating 
that this disease might start early during life, providing 
more time for its deleterious evolution[5-7]. However, 
we believe that NAFLD is limited to patients suffering 
from obesity, metabolic syndrome, or other fat-related 
diseases. Although NAFLD has been described as an in-
creased hepatic accumulation of  fat (steatosis), a recent 
scientific consensus defined it as a complex spectrum 
of  diseases, ranging from asymptomatic steatosis with 
possible aminotransferase alterations to non-alcoholic 
steato-hepatitis (NASH), cirrhosis, and also hepatocellu-
lar carcinoma[8-10]. Whether these conditions are different 
stages of  a common progressive disease or should be 
considered as different entities, is still an open question. 
Thus, additional pathophysiological studies on improved 
animal models are needed to clarify this issue. Indeed, 
NAFLD is often underestimated, under diagnosed, and 
not treated in the current medical practice; therefore, its 
pathophysiological history is at risk of  remaining a mys-
tery for several years. 

At present, the most suitable area for improving our 
knowledge of  the pathophysiology of  NAFLD is rep-
resented by the chronic inflammation that underlies all 
NAFLD entities/stages[11]. Soluble cytokines and che-
mokines, regulating inflammatory cell function and sur-
vival, could be considered as very promising candidates. 
On the other hand, hormonal axes, adipocytokines, 
and growth factors have also received attention from 
NAFLD scientists. In the following paragraphs, we fo-
cus on cytokines and chemokines, updating evidence of  
their role in NAFLD pathophysiology, both in human 
(Table 1) and animal studies.

CYTOKINES
Cytokines are soluble molecules that are involved in in-
tercellular communication and are produced by a wide 
variety of  cells in the body, including most types of  liver 
cells[12]. They comprise several subfamilies, including 
interferons, interleukins, tumor necrosis factors (TNF), 
transforming growth factors (TGF), colony-stimulating 
factors, and chemokines. Cytokines mediate several fun-
damental biological processes, including body growth, 
adiposity, lactation, hematopoiesis, as well as inflamma-
tion and immunity. However, they are also implicated in 
various pathologies, such as atherosclerosis, rheumatoid 
arthritis, systemic lupus erythematosus, psoriasis, as well 
as NAFLD[13-16].

Under physiological conditions, constitutive cytokine 

generation is absent or minimal in the liver. Neverthe-
less, pathological stimuli like lipid accumulation induces 
hepatic cells to produce these inflammatory molecules. 
Cytokines might play an active role in the development 
and the potential progression of  NAFLD through stim-
ulation of  hepatic inflammation, cell necrosis and apop-
tosis, and induction of  fibrosis. Nevertheless, they are 
also essential for liver regeneration following injury[16]. 
Evidence on the pathophysiological role of  cytokine in 
NAFLD is reported and discussed below. 

TNF-α
TNF-α is an inflammatory mediator secreted by several 
inflammatory cell types, including monocyte/macro-
phages, neutrophils, and T-cells, but also by many other 
tissues, such as the endothelium, adipose tissue, or neu-
ronal tissue. In the liver, TNF-α is secreted directly by 
hepatocytes and Kupffer cells or indirectly by abdominal 
fat[17]. Several studies have shown that TNF-α is a key 
factor in the development of  NAFLD and NASH in 
both humans and animals. Hotamisligil et al[18] showed 
for the first time a relationship between TNF-α expres-
sion and insulin resistance in NASH. The authors stated 
that adipose tissue represents an important source of  
obesity-induced inflammation, notably by the expression 
of  TNF-α, which can induce inflammation and insulin 
resistance. Indeed, in several rodent models of  obesity, 
TNF-α expression in adipose tissue was upregulated as 
compared to controls[18]. Accordingly with these study, 
obese mice lacking TNF-α showed an improved insulin 
sensibility[19]. Recently, mice treated with the anti-TNF-α 
drug thalidomide showed some improvements in the he-
patic alterations mediated by a high-fat diet[20]. Moreover, 
the use of  anti-TNF-α antibodies in an experimental 
model of  NASH decreased inflammation, necrosis, and 
fibrosis in rats[21].

Although TNF-α inhibition in animal models of  
NAFLD presents encouraging therapeutic perspectives, 
in humans, the role of  this cytokine remains controver-
sial. In patients, TNF-α levels were shown to be higher 
in obese than in lean individuals, and were correlated 
with insulin resistance[22,23]. Moreover, a positive correla-
tion was observed between the degree of  liver fibrosis 
and circulating TNF-α levels in patients with NASH[24]. 
Another study showed increased TNF-α expression in 
the liver and adipose tissue in NASH patients with sig-
nificant fibrosis in comparison with those with a slight 
or nonexistent fibrosis[25]. More recently, Hui et al[26] 
strengthened these results, showing increased TNF-α 
levels in subjects with steatohepatitis as compared to con-
trols. The potential involvement of  TNF-α in NAFLD 
pathophysiology was recently suggested by genetic stud-
ies on its polymorphisms[27,28]. Moreover, treatment with 
pentoxifylline (a molecule inhibiting TNF-α) decreased 
the serum levels of  aminotransferases and displayed he-
patic beneficial effects in patients with NASH[29].

Nevertheless, the involvement of  TNF-α in insulin 
resistance and NAFLD is questionable. Some studies did 
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  Cytokine/chemokine References Findings Approach/sample size Treatment

  TNF-α Hotamisligil et al[22] Increase of TNF-α in fat tissue of obese subjects 18 control and 19 obese pre-
menopausal women

-
Correlation between TNF-α and IR

Dandona et al[23] Higher TNF-α levels in obese subjects that contribute to 
IR

30 control and 38 obese 
women 

-

Decrease of TNF-α levels and IR with weight loss
Lesmana et al[24] Correlation between TNF-α serum levels and liver 

fibrosis
30 patients with NASH -

Crespo et al[25] Overexpression of TNF-α in liver and adipose tissue in 
patient with NASH

52 obese patients -

Increase of p55 TNF-α receptor expression in fibrotic 
liver
Enhancement of TNF-α expression with advanced liver 
fibrosis

Hui et al[26] Increase of TNF-α and TNFR2 in patients with NASH 109 patients with NAFLD -
Valenti et al[27] Higher prevalence of 238 TNF-α polymorphism in 

patients with NAFLD
99 subjects with NAFLD -

Zhou et al[28] 238 TNF-α polymorphism association with NAFLD 
susceptibility

117 subjects with NAFLD -

Lee et al[29] Reduction of aminotransferase in patients treated with 
Pentoxifylline

20 patients with NASH Pentoxifylline 400 mg 
three time per day

Müller et al[30] No significant increase of TNF-α or its receptor levels in 
patients with IGT

80 subjects with IGT, 152 
subjects with type II diabetes 
and 77 control subjects

-

Bruun et al[31] No correlation between IR and TNF-α levels 19 obese and 10 lean men -
Ofei et al[32] No effect on insulin sensitivity 21 obese NIDDM patients Single injection of 

CDP571 (anti-TNF-α 
antibody)

Bernstein et al[33] No effect on insulin sensitivity 56 subjects with metabolic 
syndrome

Etanercept (TNF-α an-
tagonist) 50 mg 1 time 
per week, for 4 wk

  TGF-b1 Annoni et al[40] Enhancement of TGF-b1 expression in man with active 
liver disease

16 patients with active liver 
disease

-

Castilla et al[44] Association of TGF-b1 levels and fibrosis in chronic 
liver disease

46 patients with elevated 
serum ALT

-

Milani et al[45] High TGF-b1 mRNA expression in fibrotic liver 2 subjects control, 1 subject 
with cirrhosis, and 9 subjects 
with hepatitis B viral liver 
disease

-

Hasegawa et al[47] TGF-b1 levels are useful to differentiate between 
NAFLD and NASH
Benefits of α-tocopherol to treat NASH

12 patients with non-alcoholic 
steatohepatitis and 10 patients 
with non-alcoholic fatty liver

α-tocopherol 300 mg/d 
during 1 yr

Dixon et al[48] Association of polymorphism inducing angiotensino-
gen and TGF-b1 and advanced hepatic fibrosis

105 obese patients -

  IL-6 Kopp et al[58] Correlation between IL-6 and IR 37 obese patients -
Kugelmas et al[60] Elevated IL-6 concentration in serum of patients with 

NASH
Decrease of IL-6 with the treatment

16 patients with NASH Vitamin E 800 IU/d

Haukeland et al[61] Higher levels of IL-6 in patients with NAFLD 47 patients (22 simple steato-
sis, 25 NASH) and 30 controls

-
-

Wieckowska et al[63] Higher hepatic IL-6 expression in patients with NASH
Association with IL-6 levels and the disease severity
Correlation  between hepatic IL-6 expression and IR

50 patients with suspected 
NALFD

  IL-10 Esposito et al[69] Association between low levels of IL-10 and metabolic 
syndrome

50 obese and 50 normal-
weight women

-

Calcaterra et al[70] No association between metabolic syndrome and low 
levels of IL-10

70 severely obese and 30 non-
obese children and adoles-
cents

-

  CCL2/MCP-1 Haukeland et al[61] Elevated levels of CCL2 in patients with NAFLD and 
NASH

47 patients (22 simple steato-
sis, 25 NASH) and 30 controls

-

Westerbacka et al[92] Increase of CCL2 in steatotic liver of patients with 
NAFLD

24 subjects (8 controls, 16 with 
NAFLD)

-

Greco et al[93] Correlation between CCL2 gene expression and liver 
fat content in patients with NAFLD

10 subjects with low and high 
extremes of fat liver

-

  CCL5/RANTES Wu et al[99] Higher CCL5 expression in adipose tissue of obese 
patients than in lean controls

21 morbidly obese patients, 10 
obese patients with metabolic 
syndrome, and 3 lean controls

-

Table 1  Summary of human studies concerning the role of cytokines and chemokines in non-alcoholic fatty liver disease
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not show any correlation between insulin resistance and 
TNF-α levels[30,31], whereas two clinical studies, using an 
antagonist and an anti-TNF-α antibody, did not show 
any improvements in insulin sensitivity[32,33]. Moreover, 
in a recent study, Lucero et al[34] did not observe any dif-
ference in circulating levels of  TNF-α between patients 
with NAFLD as compared to controls without NAFLD. 

TGF-b
TGF-b is a cytokine/growth factor with immunosup-
pressive, anti-inflammatory, and pro-fibrotic proper-
ties[35]. In the liver, TGF-b1 is the most abundant iso-
form, and it is secreted by immune cells, stellate cells, 
and epithelial cells[36]. TGF-b1 plays a pivotal role in 
hepatic fibrosis by mediating the activation of  stellate 
cells and their production of  extracellular matrix pro-
teins[37-39]. Indeed, Kupffer and stellate cells produce 
TGF-b1, which induces the transformation of  resting 
stellate cells to myofibroblasts[40]. In experimental models 
of  hepatic fibrosis induced by CCl4 or schistosomiasis, 
expression of  TGF-b1 is upregulated[41-43]. Moreover, in 
patients with liver fibrosis, the expression of  TGF-b1 
mRNA is increased[40,44,45]. Stärkel et al[46] showed that the 
upregulation of  TGF-b1 is an early molecular step in the 
progressive fibrotic steatohepatitis. A study by Hasegawa 
and co-workers showed that TGF-b1 levels were in-
creased in patients with NASH as compared to hepatic 
steatosis. Thus, the measurement of  serum levels of  
TGF-b1 might be useful to distinguish NASH patients 
in the spectrum of  NAFLD[47]. Moreover, polymor-
phisms that induce high angiotensinogen and TGF-b1 
are associated with advanced hepatic fibrosis in obese 
patients with NAFLD[48]. 

Interleukin-6
The role of  interleukin-6 (IL-6) in liver pathology is 
very complex, and its participation in the development 
of  NAFLD remains unclear. IL-6 activates several cells, 
such as immune cells, hepatocytes, hematopoietic stem 

cells, and osteoclasts[49]. Furthermore, IL-6 has a wide 
range of  biological functions, including induction of  
inflammation and oncogenesis, regulation of  immune 
response, and support of  hematopoiesis[49]. IL-6 was 
initially considered as a hepatoprotector in liver steatosis, 
capable of  reducing oxidative stress and preventing mi-
tochondrial dysfunction[50,51]. Furthermore, this potential 
hepatoprotective effect of  IL-6 was confirmed in other 
models of  liver disease, such as ischemic precondition-
ing models and in liver regeneration after partial hepa-
tectomy in mice[52-55].

Nevertheless, IL-6 is a key element in the acute phase 
response, mediating the synthesis of  several acute phase 
proteins (such as C-reactive protein and serum amyloid 
A)[56]. Thus, we cannot exclude the possibility that IL-6 
might also play an indirect deleterious role in NAFLD 
pathogenesis. In diet-induced obese mice, treatment with 
IL-6 antibodies improved sensitivity to insulin[57]. Fur-
thermore, IL-6 is considered as a predictor marker of  
insulin resistance and cardiovascular diseases. In patients 
undergoing bariatric surgery, decreased IL-6 concentra-
tions were associated with weight loss and insulin resis-
tance improvement[58]. Serum IL-6 levels are higher in 
animal models and patients with NAFLD[59-61]. Recently, 
Mas and co-workers showed that diet-induced NASH 
was reduced in IL-6 knockout mice as compared to con-
trols[62]. In humans with NASH, a positive correlation 
between IL-6 expression in hepatocytes and the severity 
of  NAFLD was observed [63]. 

Thus, although IL-6 could improve hepatic regenera-
tion and repair, it could also sensitize the liver to injury, 
stimulate hepatocyte apoptosis, induce insulin resistance, 
and participate in NASH development. Recent studies 
from Yamaguchi illustrated this paradoxical role of  IL-6 
in NAFLD. Indeed, IL-6 pathway neutralization with to-
cilizumab, a specific antibody against the IL-6 receptor, 
enhanced hepatic steatosis, but improved liver damage 
in mice with methionine choline deficient (MCD) diet-
induced NASH[64]. Furthermore, Yamaguchi et al[65], in 
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Kirovski et al[100] Upregulation of hepatic and circulating CCL5 levels in 
patients with NAFLD

45 patients with NAFLD and 
61 controls with normal liver

-

  CXCL8/IL-8 Bahcecioglu et al[103] Higher serum levels of IL-8 in patients with NASH and 
cirrhosis compared to control group

28 patients with NASH, 14 
patients with cirrhosis, and 15 
controls 

-

Torer et al[104] Higher IL-8 serum levels in the patients with NASH 
than in patients with hepatosteatosis

57 patients with NASH and 
35 patients with NALFD

-

Jarrar et al[105] Higher levels of IL-8 in NAFLD patients compared to 
obese and non-obese subjects

26 patients with NASH, 19 
patients with simple steatosis, 

-

Independent association of IL-8 levels with NASH 38 obese controls, and 12 non-
obese controls

Abiru et al[106] No differences of IL-8 between NASH, simple steatosis, 
and control groups

23 patients with NASH, 21 
patients with simple steatosis, 
and 18 healthy controls

-

  CXCL9/Mig Wasmuth et al[109] Association CXCL9 serum levels and CXCL9 liver ex-
pression with liver fibrosis due to NASH

441 individuals with HCV

NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steato-hepatitis; TNF: Tumor necrosis factor; TGF: Transforming growth factor; IL: 
Interleukin; MCP: Monocyte chemotactic protein; RANTES: Regulated on activation normal T-cell expressed and secreted; Mig: Monokine induced by 
interferon-γ; IR: Insulin resistance; IGT: Impaired glucose tolerance; NIDDM: Noninsulin-dependent diabetes mellitus; ALT: Alanine aminotransferase; 
HCV: Hepatitis C virus.
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a second study, showed that not only upregulation of  
IL-6, but also severe suppression of  hepatic IL-6/signal 
transducer and activator of  transcription 3 signaling may 
lead to the progression of  NASH.

IL-10
IL-10 is considered as an anti-inflammatory cytokine that 
regulates the inflammation in several organs and tissues 
in physiological or pathological situations[66]. It inhibits 
T cell-, monocyte-, and macrophage-mediated functions. 
In the liver, IL-10 has been detected in several cells, in-
cluding hepatocytes, stellate cells, and Knuppfer cells, 
but only few studies have been performed to investigate 
the role of  endogenous IL-10 in the progression of  
NAFLD. A study using IL-10-deficient mice fed on high 
fat diet, suggested that endogenous IL-10 was protec-
tive for hepatic steatosis, but not for concomitant insulin 
resistance[67]. In another study, Cintra and co-workers 
observed that the inhibition of  IL-10 (either using an 
anti-IL-10 antibody or an IL-10 antisense oligonucle-
otide) led to increased expression of  pro-inflammatory 
markers (TNF-α, IL-6, IL-1b, and F4/80) and impaired 
insulin signal transduction and steatosis[68]. In humans, 
Esposito and co-workers showed an inverse correlation 
between IL-10 levels and metabolic syndrome in obese 
woman, suggesting a potential IL-10-mediated benefit in 
metabolic syndrome patients also affected by NAFLD[69]. 
However, Calcaterra et al[70] did not confirm this associa-
tion in obese children and adolescents.

CHEMOKINES
Chemokines (chemotactic cytokines) are small heparin-
binding proteins known to induce mainly leukocyte traf-
ficking, growth, and activation in inflammatory sites[71,72]. 
Many cell types, including endothelial cells, smooth muscle 
cells, leukocytes, hepatocytes, and stellate cells, can secrete 
them. Approximately 50 currently identified chemokines 
are classified in four subfamilies (C, CC, CXC, CX3C) ac-
cording to their structural arrangement of  N-terminal 
conserved cysteine residues. Chemokines need to bind to 
their coupled seven transmembrane protein G coupled re-
ceptors on target cells to induce cellular changes. Chemo-
kines and their receptors have been implicated in multiple 
inflammatory diseases, such as atherosclerosis, multiple 
sclerosis, psoriasis, and insulin resistance[73]. Expression 
of  several chemokines and chemokine receptors has been 
shown to be upregulated in the livers of  obese patients 
with severe steatosis and NASH[74]. Inflammatory pro-
cesses are crucial in the potential progression of  NAFLD; 
therefore, chemokines might also play a pivotal role in 
NAFLD pathophysiology[75]. 

CCL2/monocyte chemotactic protein-1
CCL2 is a potent chemoattractant that is principally se-
creted by macrophages and, to a lesser extent, by activated 
endothelial cells, smooth muscle cells, and hepatic stellate 

cells[76-79]. It activates target cells (mainly macrophages) 
through binding with its receptor, CCR2[76-79]. It is widely 
secreted in adipose tissue and plasma of  obese mice[80]. 
Monocyte/macrophage infiltration in adipose tissue has 
been observed in animal models and humans[81]. Mono-
cyte/macrophage accumulation in the steatotic liver was 
reduced in mice fed on high-fat diet and who were defi-
cient for CCL2 or CCR2 genes[82]. However, the role of  
CCL2 is actually more complex, extending far beyond 
the monocyte/macrophage chemoattractant effect. For 
instance, low density lipoprotein receptor and CCL2 
double knockout mice showed alterations in glucose and 
lipid metabolism induced by high-fat diet[83]. When fed 
with a normal chow diet, these mice are characterized by 
lower alterations in the lipid and glucose profile. However, 
obesity is also reduced under normal diet, suggesting 
that different food intake might regulate CCL2-mediated 
inflammation in mice prone to develop obesity and ath-
erosclerosis. Importantly, CCL2 deficiency in mice fed on 
a high-fat diet decreases insulin resistance and hepatic ste-
atosis[84]. On the other hand, mice overexpressing CCL2 in 
adipose tissue presented increased insulin resistance and 
hepatic triglyceride levels[84]. 

Interestingly, CCL2 was also upregulated in the liv-
ers of  animals with high-fat diet-induced NASH[85]. This 
pathophysiological aspect of  CCL2 directly contributed 
to the lipid accumulation in hepatocytes via the activa-
tion of  peroxisome proliferator-activated receptor α gene 
expression[86]. More recently, Obstfeld and co-workers 
showed that hepatic myeloid cells might play a crucial 
role in the promotion of  obesity-induced hepatic steato-
sis. Indeed, they observed that obesity upregulates CCL2 
expression in hepatocytes, leading to the recruitment of  
CCR2-positive myeloid cells and thus, promoting hepa-
tosteatosis[87]. Pharmacological treatments inhibiting the 
CCL2/CCR2 pathway in several mouse models of  meta-
bolic diseases significantly improved obesity, insulin resis-
tance, hepatic steatosis, and inflammation in the adipose 
tissue[88-90]. These benefits were not confirmed by other 
studies. For example, CCL2 deletion in an experimental 
model of  MCD diet-induced steatosis did not improve 
liver fat accumulation and associated inflammation[91].

In humans, only few studies have been performed 
to investigate the role of  CCL2 in NAFLD pathology. 
Haukeland et al[61] showed that patients with NAFLD 
had low-grade systemic inflammation and presented 
with higher serum levels of  CCL2 compared to controls. 
Moreover, CCL2 has been confirmed to also be elevated 
in the steatotic livers of  NAFLD patients[92]. More re-
cently, another study showed that CCL2 expression was 
positively correlated with liver fat content in patients 
with NAFLD[93]. These studies suggest an important 
participation of  CCL2 in the potential progression of  
simple steatosis to NASH. Therefore, although the role 
of  CCL2 in metabolic diseases requires further inves-
tigation, these studies suggest a potential direct role of  
CCL2 in NAFLD and, in particular, in NASH.
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CCL5/regulated on activation normal T-cell expressed 
and secreted
CCL5 is involved in several chronic immune-inflamma-
tory diseases, such as atherosclerosis, acute myocardial 
infarction, myocarditis, rheumatoid arthritis, and mul-
tiple sclerosis[94,95]. It is secreted by various cells, such as 
endothelial cells, smooth muscle cells, macrophages, or 
hepatic stellate cells. This chemokine is mainly involved 
in migration of  T cells, monocytes, neutrophils, and 
dendritic cells through binding to its cognate transmem-
brane receptors, CCR1, 3 and 5. The receptor CCR5 has 
been identified on isolated hepatic stellate cells, suggest-
ing that these hepatic cells are both the target and source 
of  CCL5[96,97]. The association of  CCL5 with NAFLD 
was shown recently in humans and mice. Indeed, two 
studies showed that obesity increased hepatic expres-
sion of  CCL5 in a murine model of  NASH and in obese 
patients[98,99]. Hepatocytes are the major source of  serum 
and hepatic CCL5 in NAFLD[100]. CCL5 release in the 
liver is mediated by hepatocellular lipid accumulation, 
suggesting that hepatic steatosis per se has pathophysi-
ological relevance[100]. CCL5 is also involved in the pro-
gression of  hepatic fibrosis in mice via CCR1 and CCR5 
triggering[97]. More recently, Berres and co-workers de-
fined CCL5 as a critical mediator of  experimental liver 
fibrosis. Indeed, antagonism of  CCL5 on receptor CCR5 
improved experimental liver fibrosis in mice, indicating 
that CCL5 is a promising therapeutic target to reduce 
NAFLD[101].

CXCL8/IL-8
CXCL8/IL-8 is a CXC chemokine produced by sev-
eral cell types, including inflammatory and endothelial 
cells[102]. The major role of  this chemokine is to or-
chestrate neutrophil recruitment within inflamed tis-
sues. There is little data documenting its potential role 
in NAFLD. Serum levels of  CXCL8 were significantly 
higher in subjects with NASH as compared to hepatoste-
atosis or healthy control group[103,104]. More recently, Jar-
rar and co-workers showed that serum levels of  CXCL8 
were higher in NAFLD patients as compared to obese 
and non-obese patients[105]. In addition, CXCL8 serum 
levels were independently associated with NASH[105]. 
Conversely, the study from Abiru and co-workers did 
not confirm this association or any significant differ-
ences in serum CXCL8[106].

Other CXC chemokines
Chemokines CXCL9/monokine induced by interferon-γ, 
and CXCL10/interferon inducible protein-10, which 
bind the common receptor CXCR3, are generally not 
detectable in most non-lymphoid tissues under physi-
ological conditions. However, in some inflammatory 
conditions, interferon gamma might increase their re-
lease. CXCR3 is found at high levels on activated T cells, 
memory T cells, and natural killer cells[107]. CXCL9 and 
CXCL10 mainly induce the migration of  these cell types. 
In the liver, endothelial cells highly express CXCL9 lead-

ing to the transmigration of  the CXCR3-expressing lym-
phocytes[108]. Recently, high levels of  CXCL9 were found 
in the livers of  patients with NASH[109]. In this study, 
Wasmuth and co-workers identified the CXCL9-CXCR3 
axis as a potential anti-fibrotic pathway in the liver in 
both humans and animals.

CONCLUSION
The take-home message of  the present update on the in-
flammatory pathophysiology of  NAFLD do not recom-
mend any optimistic insights for the near future. Much 
research remains to be done to clarify the pathophysiolo-
gy of  NAFLD and to identify selective targets for treat-
ment. The involvement of  cytokines and chemokines 
and their receptors in the pathogenesis of  NAFLD is 
only partially understood. Although the first studies at-
tempting therapeutic strategies targeting the chemokine 
system have been recently published, we believe that sci-
entific interest in NAFLD should be increased. In par-
ticular, effort is required to improve the consideration 
of  NAFLD as a dangerous condition that should not be 
underestimated or by-passed. Another crucial aspect is 
represented by the identification of  common cytokines 
and chemokines between NAFLD and metabolic or car-
diovascular diseases. The most promising mediators (such 
as TNF-α, CCL2 and CCL5) also require more selective 
inhibitory drugs to safely improve NAFLD, limiting the 
potential risk of  deleterious immune-suppression.
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