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Abstract
The arrival of both high-throughput and bench-top ne­
xt-generation sequencing technologies and sequence 
enrichment methods has revolutionized our approach to 
dissecting the genetic basis of cancer. These technolo­
gies have been almost invariably employed in whole-
genome sequencing (WGS) and whole-exome sequenc­
ing (WES) studies. Both WGS and WES approaches 
have been widely applied to interrogate the somatic 
mutational landscape of sporadic cancers and identify 
novel germline mutations underlying familial cancer 
syndromes. The clinical implications of cancer genome 
sequencing have become increasingly clear, for example 
in diagnostics. In this editorial, we present these ad­
vances in the context of research discovery and discuss 
both the clinical relevance of cancer genome sequenc­
ing and the challenges associated with the adoption of 
these genomic technologies in a clinical setting.
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INTRODUCTION
Sporadic cancers are complex diseases that are caused by 
the accumulation of  somatic mutations that are acquired 
by the genomes of  the cells of  the tissue in which the 
cancer originated[1]. The importance of  identifying the 
“driver” (causal) somatic mutations amongst the much 
more numerous “passenger” mutations has long been 
recognized. However, previous cancer genome sequenc-
ing studies have also been constrained by technological 
limitations. Although several early attempts were made 
to sequence the coding regions of  the majority of  the 
consensus coding sequence and/or RefSeq genes in 
several cancers (e.g., breast and colorectal), these studies 
were conducted in “brute-force” mode employing tradi-
tional low-throughput polymerase chain reaction-Sanger 
sequencing methods[2,3]. The advent of  next-generation 
sequencing (NGS) technologies has revolutionized the 
sequencing of  cancer genomes, the first example of  
which employed whole-genome sequencing (WGS) to 
characterize an acute myeloid leukemia (AML) genome 
thereby identifying numerous tumor-specific mutations[4]. 
This study clearly demonstrated the technical feasibil-
ity of  applying NGS to interrogate the genome-wide 
somatic mutational spectra of  entire cancer genomes in 
tandem with paired constitutional DNA samples.

In parallel, the development of  a variety of  exome 
enrichment methods to selectively capture the entire col-
lection of  exons in the human genome has made whole-
exome sequencing (WES) technically feasible[5]. Cou-
pling this development to the high-throughput NGS 
techniques has allowed the exome to be sequenced very 
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rapidly and in unprecedented detail. In comparison to 
WGS, WES is more affordable for larger sample sizes 
and is analytically less challenging since only 1%-2% of  
the entire genome needs to be sequenced[6-8]. As a re-
sult, a larger number of  cancer DNA samples have been 
sequenced by WES than WGS in attempts to identify 
recurrent mutations (i.e., identical mutations that recur 
in different samples) and highly mutated genes (genes 
harboring multiple mutations in a significant propor-
tion of  the cancer samples)[9-12]. The other reason for 
the more widespread adoption of  WES has been that 
the mutations identified within protein coding regions 
are inherently easier to interpret than those in the non-
coding regions, which still remain largely uncharacterized 
in functional terms. In addition to the advances being 
made in characterizing the somatic mutational landscape 
in various cancers, the applications of  cancer genome 
sequencing in a clinical setting have also become increas-
ingly numerous. 

SOMATIC MUTATIONS IN SPORADIC 
CANCERS
WGS and WES have been commonly applied to study 
the patterns of  somatic mutation in a range of  different 
cancers[13,14]. Collectively, these endeavors have generated 
new insights into the mutational landscape of  various 
cancers, and have resulted in the identification of  a large 
number of  recurring mutations as well as many highly 
mutated genes. For example, in the context of  gastro-
intestinal cancers, WES of  15 gastric adenocarcinomas 
and their matched normal DNAs succeeded in identi-
fying several frequently mutated genes such as TP53, 
PIK3CA and ARID1A[15]. In addition, it was found that 
cell adhesion was the most enriched biological pathway 
among the frequently mutated genes. More importantly, 
mutations in three chromatin remodeling genes (ARI-
D1A, MLL3 and MLL) were detected in almost half  of  
the gastric cancers examined[15]. In fact, an earlier study 
which performed WES in 22 gastric cancer samples also 
identified frequent inactivating mutations in ARID1A, 
which encodes a member of  the switch/sucrose non-
fermenting chromatin remodeling family. Further, the 
mutational spectrum for ARID1A was found to differ 
between molecular subtypes of  gastric cancer[7]. In simi-
lar vein, mutations in multiple chromatin regulator genes 
such as ARID1A, ARID1B, ARID2, MLL and MLL3 
were also found in about half  of  hepatocellular carcino-
mas through WGS[16]. The consistent finding of  muta-
tions in chromatin remodeling genes in different cancers, 
which also included renal carcinoma and glioblastoma 
multiforme, further highlights a close inter-relationship 
(or possibly a “synergy” interaction effect) between so-
matic mutations and aberrant epigenetic regulation in 
the pathogenesis of  cancers[8,17-19].

In addition to individual studies, technological ad-
vances have made possible large-scale international proj-
ects such as the International Cancer Genome Consor-

tium which aims to interrogate the somatic mutational 
landscape of  at least 50 different cancer types and sub-
types in thousands of  samples, with the eventual aim of  
integrating these genomic data with both transcriptomic 
and epigenomic data. NGS technologies are instrumen-
tal in generating these “omics datasets”[20]. The concept 
of  an integrative approach for a range of  different omics 
data is not new, but in recent years it has resurfaced and 
become reinvigorated by technological advancement. 
The integrative analysis of  different omics datasets (pro-
viding information in different dimensions, from DNA 
sequence to the transcriptional and translational levels) 
is expected to be more informative, and hence ought to 
provide new and more detailed biological insights, than 
would be possible using individual datasets[21].

Although most of  the cancer genome sequencing 
studies were not conducted with a view to investigating 
their applications in a direct clinical context per se (but 
rather to characterize the somatic mutational spectrum 
in order to understand better the genetic basis and biol-
ogy of  the cancer in question), the data generated are 
nevertheless important as a means to identify the drug 
targets as well as potential biomarkers (e.g., single muta-
tions or mutational patterns that could be used for di-
agnostic and prognostic applications). The potential of  
driver mutations to shape the future science of  cancer 
taxonomy was recently outlined by Stratton (2011) i.e., 
the drawing up of  a system based on causal mutations 
rather than the conventional organ-based (e.g., breast, 
lung or colorectum tissue) classification and TNM-stag-
ing system that are widely applied in the clinic[22].

So far, what are the potential implications of  cancer 
genome sequencing for the clinical setting? The ap-
plication of  cancer genome sequencing in diagnostics 
has been increasingly evident, as demonstrated by two 
recent studies using WGS[23,24]. WGS has demonstrated 
both its discovery and confirmatory role in a specific 
patient characterized by an ambiguous diagnosis or 
clinical presentation. More specifically, it has been used 
to determine the genetic aberration in a patient with a 
diagnosis of  AML of  unclear subtype[23]. The ambigu-
ity came from the observation that the patient’s clinical 
presentation was consistent with acute promyelocytic 
leukemia (which is a subtype of  AML with a favorable 
prognosis), but it was contradicted by cytogenetic analy-
sis. The cytogenetic analysis revealed a different subtype 
associated with a poor prognosis for which bone mar-
row transplantation in first remission is recommended. 
The diagnostic and treatment uncertainty was resolved 
by WGS performed on the original leukemic bone mar-
row and from a skin biopsy. The WGS analysis detected 
a novel insertional translocation on chromosome 17 
which generated a pathogenic PML-RARA gene fusion 
thereby confirming a diagnosis of  acute promyelocytic 
leukemia. This type of  complex rearrangement could not 
have been made by targeted sequencing (as the genetic 
etiology was unsuspected), further demonstrating that 
WGS represents both a discovery and a comprehensive 
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analytical tool for the entire genome. More importantly, 
the molecular confirmatory diagnosis carries important 
clinical implications for the treatment and management 
of  the patient[23]. Similarly, WGS was also employed to 
resolve the genetic basis of  a suspected cancer suscep-
tibility syndrome based upon the early onset of  several 
primary tumors[24]. Further, therapeutic prediction has 
also benefited from NGS as a powerful discovery tool. 
For example, a recent study employed a targeted NGS 
approach to sequence 138 cancer genes in melanomas 
derived from a patient (before and after relapse) and 
succeeded in identifying the underlying genetic mutation 
in the MEK1 gene responsible for acquired resistance 
to PLX4032 (vemurafinib) after an initial dramatic re-
sponse, revealing a novel mechanism of  acquired drug 
resistance[25]. 

The potential applications of  cancer genome sequen
cing in the clinical arena are promising, but what are the 
challenges associated with their adoption? As WGS and 
WES are high-throughput methods which generate huge 
amounts of  data, our ability to perform both the analysis 
and the interpretation of  the data in a clinically relevant 
time-frame is critical. This challenge is being addressed 
in the context of  a “comprehensive genomic approach” 
where WGS, WES and transcriptome sequencing are 
applied to cancer samples to evaluate their clinical utility 
and feasibility (in terms of  technical, time and cost)[26]. 
In particular, the time required, from biopsy sampling 
and wet-lab experiments to computational analysis and 
initial results, was streamlined to just 24 d with the cost 
of  all the sequencing and analysis estimated to be only 
USD5400. An obvious advantage of  this “integrative 
genomic approach” is that the findings can be cross-
validated more efficiently. For example, both WGS and 
WES detected an amplification event on chromosome 
13q spanning the CDK8 gene in a metastatic colorectal 
carcinoma; the over-expression of  CDK8 was confirmed 
by transcriptome sequencing. Although this “compre-
hensive genomic approach” was shown to be both time- 
and cost-effective, the handling and interpretation of  
the huge amount of  genomic data remains a key issue. 
To address this challenge, it was proposed that a multi-
disciplinary “sequencing tumor board” (which included 
professionals from multiple disciplines such as clinicians, 
geneticists, pathologists, biologists, bioinformatic spe-
cialists and bioethicists) should take responsibility for the 
clinical interpretation of  the sequencing data obtained 
from each patient[26].

FAMILIAL CANCER SYNDROMES
In addition to the investigation of  somatic mutations 
in sporadic cancers, cancer genome sequencing has also 
made significant advances in relation to the study of  
the germline mutations underlying familial cancer syn-
dromes. The early successes in the identification of  caus-
al mutations and genes for familial cancer syndromes 
(e.g., RB1 and APC) were achieved by painstaking family 

linkage analysis and positional cloning. However, the 
genetic causes of  many familial cancer syndromes have 
remained elusive. For example, CDH1 was the first and 
only causal gene identified for hereditary diffuse gastric 
cancer through linkage analysis[27], but germline muta-
tions in this gene account for only a proportion of  he-
reditary diffuse gastric cancer cases. Thus germline mu-
tations in CDH1 were found in 30%-40% of  clinically 
defined families with hereditary diffuse gastric cancer 
from different ethnic backgrounds[28,29]. This suggests 
that an as-yet-to-be identified gene(s) is likely to be re-
sponsible for the remaining cases unexplained by CDH1. 
On the other hand, whereas most Lynch syndrome cases 
can be accounted for by mutations in DNA mismatch 
repair genes, the genetic basis of  familial colorectal can-
cer type X still remains elusive[30,31]. Similarly, the genetic 
causes of  other familial cancer syndromes, such as famil-
ial pancreatic cancer, still remain largely unknown[32,33]. In 
a fashion similar to that noted with the identification of  
somatic mutations, cancer genome sequencing provides 
new opportunities to identify germline mutations for 
familial cancer syndromes. This is well exemplified by 
the case of  hereditary pheochromocytoma, a rare neural 
crest cell tumor; by harnessing the latest technological 
advances, germline mutations in MAX were identified in 
three unrelated individuals with hereditary pheochromo-
cytoma by WES[34]. The segregation of  two MAX gene 
variants with hereditary pheochromocytoma was ob-
served in families from whom DNA from affected rela-
tives was available. Further, additional data to support 
the causative role of  the MAX variants came from their 
absence (or non-detection) in more than 750 population-
matched control chromosomes. Additional screening for 
MAX mutations in 59 cases lacking germline mutations 
in known genes for hereditary pheochromocytoma then 
identified two additional truncating mutations and three 
missense variants in the gene[34]. Following this discovery, 
a recent study found that germline mutations in MAX 
are responsible for 1.12% pheochromocytomas or para-
gangliomas (both are genetically heterogeneous neural 
crest-derived neoplasms) by sequencing MAX in 1694 
patients[35].

In addition to its role in research discovery, cancer 
genome sequencing has also been used as a diagnostic 
tool to detect known germline mutations for familial 
cancer syndromes. Indeed, by leveraging technological 
advances in genomic sequence enrichment methods and 
NGS technologies, studies have developed NGS-based 
diagnostic tests for breast and ovarian cancers and Lynch 
syndrome. For example, Walsh et al[36] designed custom 
oligonucleotides in solution to capture 21 genes respon-
sible for hereditary breast and ovarian cancers, and the 
enriched genomic DNA was then subjected to sequenc-
ing using an NGS platform. This NGS-based test was 
evaluated in 20 women diagnosed with breast or ovarian 
cancer and with a known mutation in one of  the genes 
responsible for inherited predisposition to these cancers. 
The results were very promising in that all the known 
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point mutations and small indel mutations (ranging 
from 1 bp to 19 bp), as well as large genomic duplica-
tions and deletions (ranging from 160 bp to 101 013bp), 
were detected in all the samples. The potential to detect 
different mutations of  various sizes has further demon-
strated the technical advantages of  NGS-based tests over 
conventional PCR-Sanger sequencing methods. For ex-
ample, two different tests were offered separately to de-
tect point mutations and large deletions/amplifications 
for genetic testing of  BRCA1/2 genes, respectively[36]. 
Similarly, attempts have also been made to incorporate 
custom genomic enrichment and NGS methods into the 
genetic diagnostic testing of  Lynch syndrome by captur-
ing every exon in a panel of  22 genes (most of  which 
are known to be associated with hereditary colorectal 
cancer) followed by NGS[37]. 

Technological advances have facilitated the accessi-
bility of  cancer genome sequencing in the clinical arena. 
In addition to the custom sequence enrichment methods 
(i.e., either based on polymerase chain reaction amplifica-
tion such as Fluidigm and RainDance technologies, or 
based on target-probe hybridization such as the Agilent 
and Nimblegen technologies) that allow one to selective-
ly capture the genomic regions of  interest, the arrival of  
several bench-top NGS instruments has not only made 
the sequencing of  a panel of  genes highly feasible tech-
nically but also cost-effective[5,38,39]. This is an important 
step towards the development and adoption of  NGS-
based diagnostic tests in the clinic. The bench-top NGS 
instruments (Roche 454 Genome Sequencer Junior, Ion 
Torrent Personal Genome Machine Sequencer and Ⅰ
lluminaMiSeq) have a much lower throughput (ranging 
from > 10 Mb to > 1 Gb per run) than the conventional 
high-throughput NGS machines[38,39]. The bench-top 
NGS instruments are therefore more suitable in terms 
of  their throughput for sequencing panels of  genes (as 
discussed earlier for the panels of  genes for breast/ovar-
ian cancers and Lynch syndrome) than WES or WGS. 
Further, sample indexing (or barcoding) is also available 
for the bench-top NGS instruments which can further 
optimize sample throughput and cost-effectiveness by 
multiplexing up to several tens of  samples for sequenc-
ing. However, the level of  multiplexing is dependent 
on the sizes of  the regions to be sequenced and the 
throughputs of  the instruments being used. Although 
it remains to be demonstrated in the context of  cancer, 
WES has been widely assessed and shown as a promis-
ing diagnostic tool for various Mendelian disorders[40-43]. 
In addition to diagnosis, WGS has also been applied to 
optimize patient treatment regimens, although not in the 
context of  cancer. In the context of  inherited disease, 
WGS has been applied to sequence a fraternal twin pair 
diagnosed with dopa (3,4-dihydroxyphenylalanine)-re-
sponsive dystonia (OMIM 128230); germline compound 
heterozygous mutations were identified in the SPR gene 
encoding sepiapterin reductase. As a result, supplemen-
tation of  L-dopa therapy with 5-hydroxytryptophan has 
led to clinical improvements in both twins[44]. 

PERSPECTIVES AND CONCLUSIONS
NGS technologies have already made a major contri-
bution to characterizing somatic mutations in cancer 
genomes. This endeavor will be further accelerated by 
international initiatives such as the International Cancer 
Genome Consortium. Although the number of  studies 
is currently still very limited, NGS should also be applied 
to identify germline mutations in those familial cancer 
syndromes whose genetic causes have not yet been fully 
characterized. On the other hand, the successful dem-
onstration of  the applications of  NGS/WGS/WES in a 
clinical setting such as cancer diagnostics are likely to be 
just the first examples of  how the new technologies will 
prove their worth; the numbers are expected to increase 
in the coming year.

So far, the applications of  NGS in a clinical setting 
have been very promising. However, challenges rang-
ing from technical, analytical and interpretational, to the 
need for a considerable number of  well-trained profes-
sionals from a range of  disciplines in these genomic 
technologies must be further addressed before the ado
ption of  NGS-based tests in the clinic. The technical 
challenges include, for example, incomplete capture of  
the exons in WES and uneven sequencing across the 
genome which might result in poor sequence coverage 
in some of  the regions and affect both the sensitivity 
and specificity of  variant detection[39]. Having specialists 
trained in genomic technologies is critical to (1) obtain-
ing fully informed consent from patients in relation to 
the genomic tests; (2) ensuring accurate and reliable in-
terpretation of  the data for clinical decision-making; and 
(3) counselling the patients on the basis of  the results ob-
tained. It is also evident from the Global Cancer Genom-
ics Consortium (GCGC) that the translation of  emerging 
cancer genomics knowledge into clinical applications 
can only be achieved through the integration of  multi-
disciplinary expertise[45]. The GCGC is an international 
collaborative platform that brings cancer biologists and 
cutting edge high-throughput genomics expertise togeth-
er with medical oncologists and surgical oncologists to 
address the most important translational questions that 
are central to cancer research, diagnosis and treatment.

As to test affordability, although the total cost of  se-
quencing for several genomic experiments was only a few 
thousands of  USD per patient, it should be appreciated 
that this is unlikely to be the final chargeable cost to the 
patients. The cost of  sequencing is currently plummet-
ing and will become ever cheaper in the future with new 
developments. However, it should be appreciated that 
hidden costs are likely to be incurred for data storage, 
interpretation of  results and subsequent clinical consulta-
tion.

Further, handling of  the complex ethical issues such 
as revealing findings that might be considered incidental 
to the initial testing (WGS and WES) procedure must 
also be given serious consideration[46]. Determining what 
to disclose and what not to disclose to the patients is 
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likely to be quite challenging e.g., those results which are 
deemed clinically important i.e., those which could have 
a direct impact on the patient’s care or management, but 
which are irrelevant to the initial purpose of  the diag-
nostic test (i.e., incidental findings). Have the patients the 
right to be informed about those results which are/might 
be clinically important but not actionable e.g., mutations 
that are considered likely to predispose to certain inher-
ited diseases, although preventive treatments are not yet 
available? Adequate consultation must also be given to 
the reporting of  results that are of  unknown clinical im-
portance. This raises concerns as to whether periodic re-
analysis of  the WGS/WES data might be needed, which 
in turn would lead to some practicality issues potentially 
incurring additional costs. Finally, any results from WGS- 
and WES-based tests that would affect clinical decision-
making must be properly validated or the tests must be 
performed in a heavily regulated clinical setting accord-
ing to the College of  American Pathologists/Clinical 
Laboratory Improvement Amendments.

It is widely anticipated that cancer genome sequenc-
ing or the NGS-based tests will gradually become more 
accessible in clinical practice once the associated chal-
lenges and ethical issues have been adequately addressed. 
Irrespective of  the challenges that still remain to be over
come, the application of  NGS in the clinic appears inevi-
table.
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