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Abstract 
Ischemia-reperfusion injury (IRI) remains an unre-
solved and complicated situation in clinical practice, 
especially in the case of organ transplantation. Several 
factors contribute to its complexity; the depletion of 
energy during ischemia and the induction of oxidative 
stress during reperfusion initiate a cascade of path-
ways that lead to cell death and finally to severe organ 
injury. Recently, the sirtuin family of nicotinamide ad-
enine dinucleotide-dependent deacetylases has gained 
increasing attention from researchers, due to their in-
volvement in the modulation of a wide variety of cellu-
lar functions. There are seven mammalian sirtuins and, 

among them, the nuclear/cytoplasmic sirtuin 1 (SIRT1) 
and the mitochondrial sirtuin 3 (SIRT3) are ubiquitously 
expressed in many tissue types. Sirtuins are known to 
play major roles in protecting against cellular stress and 
in controlling metabolic pathways, which are key pro-
cesses during IRI. In this review, we mainly focus on 
SIRT1 and SIRT3 and examine their role in modulating 
pathways against energy depletion during ischemia and 
their involvement in oxidative stress, apoptosis, micro-
circulatory stress and inflammation during reperfusion. 
We present evidence of the beneficial effects of sirtuins 
against IRI and emphasize the importance of develop-
ing new strategies by enhancing their action.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Sirtuins are responsible for the regulation of 
protein activation by deacetylating a range of proteins 
that play important roles in the pathophysiology of vari-
ous diseases. The present review summarizes the bene-
ficial effects of sirtuins 1 and 3, the two most prominent 
sirtuins involved in mammalian energy homeostasis and 
oxidative stress. We conclude that both sirtuins might 
be attractive targets for counteracting the detrimental 
effects of ischemia-reperfusion injury.
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INTRODUCTION
Sirtuins belong to the highly conserved class Ⅲ histone 
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deacetylases with homology to the yeast silent informa-
tion regulator 2. To date, seven sirtuins have been de-
scribed in mammals. They posses nicotinamide adenine 
dinucleotide (NAD+)-dependent deacetylase activity, with 
the exception of  sirtuin 4 (SIRT4) which has only ADP-
ribosyltransferase activity, and SIRT1 and SIRT6 which 
have not only deacetylase activity but also relatively weak 
ADP-ribosyltransferase activity[1]. Their enzymatic activity 
depends on their protein expression levels, the availability 
of  NAD+ and the presence of  proteins that modulate 
sirtuin enzymatic activity. For instance, SIRT1 expression 
increases during starvation or when cells are exposed to 
conditions of  oxidative stress and DNA damage[2,3].

Sirtuins are found in several subcellular locations, 
including the nucleus (SIRT1, SIRT6, and SIRT7), cyto-
sol (SIRT2), and mitochondria (SIRT3-SIRT5). In some 
studies, however, SIRT1 has been found to possess cyto-
solic activity, and SIRT2 has been found to be associated 
with nuclear proteins[4]. 

Several recent studies have shown that sirtuins regu-
late a wide variety of  cellular processes, such as gene 
transcription, metabolism and cellular stress response[5-7]. 
SIRT1, the most studied member of  the family, plays 
an important role in several processes ranging from cell 
cycle regulation to energy homeostasis[8,9]. SIRT3 has 
recently been reported to have a considerable impact on 
mitochondrial energy metabolism and function[10,11]. In 
this review, we will focus mainly on SIRT1 and SIRT3 
functions in ischemia-reperfusion injury (IRI).

IRI is one of  the most significant problems in graft 
injury, contributing to primary graft dysfunction or non-
function after organ transplantation[12-14]. Many factors 
contribute to IRI. First of  all, the loss of  oxygen supply 
during ischemia results in the reduction of  adenosine tri-
phosphate (ATP) synthesis and subsequent changes in ion 
influx, acidosis and cell swelling which may eventually lead 
to cell death. The restoration of  blood flow is followed by 
an excessive acute inflammatory response triggering the 
reperfusion injury. Although the ischemic insult causes sig-
nificant damage in cells, the tissue injury generated during 
reperfusion is much more severe. On reperfusion, oxygen 
is suddenly available, and metabolism proceeds rapidly, 
resulting in a sudden production of  reactive oxygen spe-
cies (ROS), cytokines and chemokines which increase the 
accumulation of  inflammatory cells (monocytes, dendritic 
cells and granulocytes). In combination with excessive 
nitric oxide (NO), ROS are able to induce DNA damage 
and activate various types of  cell death pathways[15-17]. 

Understanding the mechanisms involved in the patho-
genesis of  IRI is the first step to mitigate its adverse 
effects. Sirtuins are known to regulate many important 
processes in cell physiology, including those affecting 
IRI, such as cellular metabolism and stress response. This 
makes them potentially appealing targets for therapeutic 
interventions against IR-induced injury.

Role of Sirtuins in ischemia 
The low energy state during ischemia results in activation 

of  adenosine monophosphate protein kinase (AMPK), 
a fuel-sensing enzyme that is positively regulated by an 
increased ratio of  adenosine monophosphate to ATP. 
When AMPK is activated, it stimulates processes that 
restore ATP levels (e.g., fatty acid oxidation) and inhibits 
other processes that consume ATP (e.g., protein synthe-
sis)[18]. The activity of  sirtuins is directly related to the 
metabolic state of  the cell due to their dependence on 
NAD+. Suchankova and collaborators found that glucose-
induced changes in AMPK are linked to alterations in the 
NAD+/reduced nicotinamide adenine dinucleotide ratio 
and SIRT1 abundance and activity[19]. These results may 
suggest a possible interaction between AMPK and SIRT1 
in ischemic conditions. Indeed, an activator of  AMPK, 
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, 
has been found to improve IRI and increase SIRT1 ex-
pression in the rat kidney[20]. Furthermore, enhancing the 
activity of  SIRT1 through the application of  resveratrol, 
a SIRT1 activator, has been demonstrated to protect 
against cerebral ischemia[21]. 

Another element that plays an essential role in trig-
gering cellular protection and preventing metabolic 
alterations caused by oxygen deprivation is hypoxia-
inducible factors (HIFs). Mammals possess three iso-
forms of  HIFα, of  which HIF1α and HIF2α are the 
most structurally similar and the best characterized. Dur-
ing hypoxia, protein levels of  HIF2α increase slightly, 
but it presents significant activation, which suggests that 
its activity is regulated by additional post-translational 
mechanisms. One of  these post-translational modula-
tions may be deacetylation, since in hypoxic Hep3B cells 
SIRT1 deacetylates lysine residues in the HIF2α protein, 
enhancing its transcriptional activity[22]. 

Additionally, SIRT1 interacts with HIF1α, but in this 
case SIRT1 represses HIF1α transcriptional activity[23]. 
Under hypoxic stress, decreased cellular NAD+ downreg-
ulates SIRT1, increases HIF1α acetylation, and thereby 
promotes the expression of  HIF1α  target genes[23]. Inter-
estingly, other studies have shown that HIF2α compete 
with HIF1α for binding to SIRT1[24]. Moreover, it has 
been demonstrated that SIRT6 is also linked to HIF1α 
by repressing the transcription of  HIF1α  target genes[25].

Likewise, the effects of  SIRT3 appear to be protective 
in the context of  hypoxic stress in human cancer cells. 
SIRT3 overexpression resulted in decreased ROS produc-
tion, impediment of  HIF1α stabilization and subsequent 
suppression of  tumorigenesis[26,27]. However, the effect 
of  SIRT3 in HIF1α stabilization in IRI has not been re-
ported to date.

One of  the most important factors involved in the 
metabolic control regulated by SIRT1 is peroxisome 
proliferator-activated receptor-γ coactivator 1α (PGC1α), 
a transcriptional co-activator of  many nuclear receptors 
and transcriptional factors. SIRT1 functionally interacts 
with PGC1α and deacetylates it, thus inducing the ex-
pression of  mitochondrial proteins involved in ATP-
generating pathways[28]. Increased PGC1α activity is also 
associated with lower levels of  oxidative damage during 
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ischemia, as shown by the decrease ROS scavenging in 
rodents lacking PGC1α subjected to global ischemia[29]. 
Furthermore, the uncoupling protein 2 (UCP2), an inner 
mitochondrial membrane protein, regulates the proton 
electrochemical gradient and in neuronal cells PGC1α is 
required for the induction of  UCP2 and subsequent pro-
tection against oxidative stress[30]. It has also been shown 
that enhanced activity of  SIRT1 during ischemic precon-
ditioning (IPC) or resveratrol preconditioning confers 
protection against cerebral ischemia by reducing UCP2 
levels, which results in increased ATP levels[21]. However, 
a more recent study associated the protective effect of  
resveratrol against oxidative stress in cerebral ischemia 
with increased levels of  SIRT1/PGC1α and UCP2[31]. 
Moreover, the exact role of  UCP2 during ischemia is not 
fully understood, as studies of  its effects have produced 
conflicting results[32-35].

ROLE OF SIRTUINS IN REPERFUSION
Deprivation of  oxygen to the grafts during ischemia in-
duces severe lesions, but the most important damage is 
caused during reperfusion, when oxygen entry to the or-
gan is restored. During reperfusion, the cellular metabo-
lism returns to aerobic pathways, which results in the gen-
eration of  a wide variety of  ROS, including superoxide, 
hydrogen peroxide and reactive nitrogen species, such as 
peroxynitrite. ROS are mainly produced in mitochondria 
and trigger several phenomena, including accumulation 
of  Ca2+, caspase activation, cytokine upregulation, lipid, 
protein and DNA damage[36-38]. ROS can be eliminated by 
enzymatic pathways including manganese superoxide dis-
mutase (MnSOD), catalase (Cat) and peroxidases. Imbal-
ance between ROS generation and elimination produces 
oxidative stress[15,16].

Various reports in cardiomyocytes have demonstrated 
the protective role of  SIRT1 against oxidative stress[39,40]. 
Hearts overexpressing SIRT1 were more resistant to 
oxidative stress in response to IRI, as SIRT1 upregu-
lated the expression of  anti-oxidants like MnSOD and 
thioredoxin 1[41]. SIRT1 also deacetylated Forkhead box-
containing protein O (FoxO) 1 transcription factor, 
inducing its nuclear translocation and subsequent tran-
scription of  anti-oxidant molecules[41,42]. Moreover, the 
question of  whether SIRT1 can induce the transcription 
of  other FoxO transcription factors, like FoxO3α, has 
not yet been investigated. However, the levels of  SIRT1 
activation are decisive for its protective role, as very high 
cardiac SIRT1 expression induces mitochondrial dys-
function and increases oxidative stress[39]. Furthermore, 
in a model of  kidney IRI, the protective effect of  SIRT1 
against oxidative stress has also been demonstrated since 
SIRT1 upregulated Cat levels and maintained peroxisome 
number and function[43]. 

Although mitochondrial sirtuins (SIRT3-SIRT5) have 
not been studied as extensively as SIRT1, an increasing 
body of  evidence indicates the importance of  SIRT3 
in mitochondrial biology and function. Lombard et al[44] 

demonstrated that SIRT3 is the dominant mitochondrial 
deacetylase, as a significant number of  mitochondrial 
proteins are hyperacetylated in SIRT3-/- mice. SIRT3 
deacetylates and thus enhances the activity of  various 
proteins that appear to be an important part of  the anti-
oxidative defense mechanisms of  mitochondria, such as 
MnSOD[45,46], regulatory proteins of  the glutathione[47-49] 
and thioredoxin system[50]. 

Transcriptional upregulation of  the antioxidant 
enzymes MnSOD, Cat and peroxiredoxin can also be 
achieved by FoxO3α transcription factor, which is 
translocated to the nucleus after being deacetylated by 
SIRT3[51,52]. Furthermore, SIRT3 is necessary for the 
enhanced expression of  cytochrome c, which presents 
peroxidase- and superoxidase-scavenging capacity[47,49,53]. 
However, a similar anti-oxidant effect of  SIRT3 in mod-
els of  IRI has not yet been established.

A wide array of  functional alterations develop in 
mitochondria during reperfusion injury[36,54]. In healthy 
cells, their primary function is the provision of  ATP 
through oxidative phosphorylation in order to meet the 
high energy demands. There is increasing evidence of  
the involvement of  a multi-protein complex called the 
mitochondrial permeability transition pore (mPTP) in the 
decline in mitochondrial function, which is a common 
finding during reperfusion injury[55-57]. SIRT3 is known 
to deacetylate the regulatory component of  the mPTP, 
cyclophilin D, and thereby reduce its activity and the 
subsequent mitochondrial swelling in the heart[58]. It has 
also been shown that SIRT4 interacts with the adenine 
nucleotide translocator, another component of  mPTP, 
and that SIRT5 deacetylates cytochrome c, but the physi-
ological importance of  these interactions has not yet 
been established[59,60], especially in models of  IRI.

Microcirculatory alterations play an important part 
in IRI. During the ischemic period, vascular hypoxia can 
cause increased vascular permeability. After reperfusion, 
complement system activation, leukocyte-endothelial cell 
adhesion and platelet-leukocyte aggregation further ag-
gravate microvascular dysfunction[61].

NO produced by endothelial NO synthase (eNOS) is a 
key regulator of  endothelial function, as it opposes the va-
soconstrictive actions of  endothelins and provokes vasodil-
atation. Thus, it can abrogate the microcirculatory stress 
generated during reperfusion[62]. However, NO produced 
by inducible NO synthase (iNOS) exacerbates IRI through 
the NOS-derived superoxide production or the generation 
of  peroxynitrite[12]. There is a large body of  evidence in fa-
vor of  the relationship between eNOS and SIRT1; SIRT1 
interacts and modifies the acetylation state of  eNOS, re-
sulting in the activation of  the enzyme[63-65]. In SIRT1+/+ 
hearts subjected to IRI SIRT1 was associated with eNOS 
activation[66]. SIRT1 activation by resveratrol protected 
against subacute intestinal IRI by reducing the NO pro-
duction through iNOS[67] Moreover, various experimental 
models showed that resveratrol inhibits endothelin-1 levels, 
providing better regulation of  vascular tone[68-70]. However, 
a recent study in human umbilical vein endothelial cells 
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ability of  FoxO3 to induce cell cycle arrest and resistance 
to oxidative stress.

A possible pro-apoptotic role of  SIRT1 in IRI has 
not been reported previously. However, studies in human 
embryonic kidney cells have revealed that SIRT1 can 
promote cell death by inhibiting NF-κB in response to 
tumor necrosis factor alpha[86]. Further investigation is re-
quired to define the conditions under which SIRT1 may 
promote apoptosis.

Apoptotic pathways are known to be initiated during 
reperfusion upon the opening of  the mPTP which leads 
to the release of  caspase-activating molecules[87,88]. Since 
SIRT3 is located in the mitochondria, it may be involved 
in anti-apoptotic pathways. In this regard, SIRT3 protects 
various types of  cells from apoptotic cell death triggered 
by genotoxic or oxidative stress[89-92]. The pro-apoptotic 
role of  SIRT3 has also been associated with tumor sup-
pression and restraint of  ROS[93]. However, SIRT3 has 
also been reported to contribute to Bcl-2- and JNK-re-
lated apoptotic pathways in human colorectal carcinoma 
cells[94]. In any case, the potential anti-apoptotic mecha-
nisms of  SIRT3 during IRI are yet to be elucidated. 

CONCLUSIONS AND PERSPECTIVES
A wide range of  pathological processes contribute to IRI. 
Particularly during organ transplantation, IRI contributes 
to early graft dysfunction. For this reason, it is important 
to gain additional mechanistic insight into the molecular 
mechanisms underlying this injury. In the past few years, 
sirtuins have emerged as critical modulators of  various 
cellular processes, including those that contribute to the 
pathogenesis of  IRI. 

In this paper, we have reviewed the signaling pathways 
of  SIRT1 and SIRT3 protection in IRI. SIRT1 has been 
shown to exert its beneficial effect against oxidative stress, 
hypoxic injury or inflammation associated with IRI by ac-
tivating FoxO1, PGC1α and HIF2α or by inhibiting NF-
κB transcription factors (Figures 1 and 2). SIRT3’s protec-
tive role in IRI is mainly mediated by activating FoxO3α 
and mitochondrial anti-oxidant enzymes (Figure 2). In-
vestigations that can further determine other intracellular 
signaling, trafficking and post-translational modifications 
by SIRT1 and SIRT3 in a variety of  cell systems and en-
vironments will allow us to translate this knowledge into 
effective treatment strategies that will be applicable in 
multiple disorders. 

Numerous studies have demonstrated key roles 
for SIRT1 and SIRT3 in brain, heart and kidney IRI. 
However, the protective effect of  these sirtuins against 
ischemic processes in other organs such as the liver has 
not yet been demonstrated. The relevance of  SIRT3 in 
the hepatic metabolism has been confirmed in a study 
showing that its overexpression in hepatocytes decreased 
the accumulation of  lipids via AMPK activation[95]. Fur-
thermore, deletion of  hepatic SIRT1 resulted in hepatic 
steatosis, hepatic inflammation and endoplasmatic reticu-
lum stress[96]. Since SIRT1 and SIRT3 have been shown 

has shown that the inhibitory effects of  resveratrol on en-
dothelin-1 levels are SIRT1-independent[71].

ROLE OF SIRTUINS IN IRI-ASSOCIATED 
INFLAMMATION
IRI results in a profound inflammatory tissue reaction 
with immune cells infiltrating the tissue. The damage is 
mediated by various cytokines, chemokines, adhesion 
molecules, and compounds of  the extracellular matrix. 
The expression of  these factors is regulated by specific 
transcription factors with nuclear factor kappa B (NF-kB) 
being one of  the key modulators of  inflammation. After 
activation, the transcription factor migrates to the nucleus 
and enhances the transcription of  pro-inflammatory genes 
potentiating the inflammatory response. This is followed 
by an infiltration of  lymphocytes, mononuclear cells/mac-
rophages, and granulocytes into the injured tissue[72-74]. 

In this way, SIRT1 plays an important role in neuro-
protection against brain ischemia by deacetylation and 
subsequent inhibition of  p53 and NF-κB pathways[75]. In 
SIRT1+/+ hearts subjected to IRI SIRT1 was correlated 
with decreased acetylation of  NF-κB and possible pre-
vention of  inflammation[66]. Moreover, the anti-inflam-
matory action of  SIRT1 by deacetylating NF-κB and 
thus inhibiting the expression of  endothelial adhesion 
molecules has also been demonstrated in human aortic 
endothelial cells[74]. 

SIRTUINS: CELL SURVIVAL OR DEATH?
Apoptotic cell death is a well known mechanism involved 
in IRI which occurs via activation of  caspases that cleave 
DNA and other cellular components[16,17,76]. There is 
evidence that SIRT1 is associated with longevity in mam-
mals and enhances mammalian cell survival under stress 
conditions via regulating the specific substrates[77-79]. In 
fact, several studies have mentioned the anti-apoptotic 
effect of  SIRT1 in IRI. SIRT1 deacetylates known 
mediators of  apoptosis, such as the tumor-suppressor 
p53, resulting in inhibition of  its transcriptional activ-
ity[80,81] . SIRT1 also deacetylates the DNA repair factor 
Ku70[2,82,83]; thus Ku70 prevents the translocation of  Bax, 
a pro-apoptotic B cell lymphoma-2 (Bcl-2) family protein, 
to the mitochondria. In ischemic kidney and brain SIRT1 
has been identified as an important survival mediator, 
given that increased SIRT1 was associated with reduced 
p53 expression and apoptosis[75,84]. SIRT1 also modulates 
apoptosis-related molecules through the deacetylation of  
the FoxO family of  transcription factors. During IRI in 
heart-specific SIRT1+/+ transgenic mice, SIRT1 induces 
nuclear translocation of  FoxO1, which upregulates the 
anti-apoptotic factors Bcl-2 and Bcl-like X and down-
regulates Bax[41]. As regards other members of  the FoxO 
family, Brunet et al[85] revealed a dual role of  SIRT1 in the 
cell cycle depending on stress conditions; SIRT1 inhib-
ited the ability of  FoxO3 to induce cell death, thus pro-
moting cell survival and, surprisingly, it also increased the 
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to exert a beneficial effect in regulating hepatic fatty acid 
metabolism, it would be interesting to investigate their 
role in the context of  liver transplantation. Currently, 
the shortage of  organs for transplantation has obliged 
physicians to utilize marginal grafts, including grafts with 
moderate steatosis. Steatotic livers exhibit a more severe 
inflammatory reaction and more exacerbated oxidative 
stress and consequently a higher vulnerability to IRI[12]. 
Thus, activating SIRT1 and SIRT3 might be a potential 
strategy to protect steatotic livers from IRI as well as to 
expand the donor pool for liver transplantation. In fact, 
in preliminary studies our group observed that SIRT1 is 
involved in the protective mechanisms against IRI elicited 
by IPC in fatty livers.

For this reason, both surgical and pharmacological 

strategies should be developed to enhance the activity of  
sirtuins and thus mitigate the detrimental effect of  IRI. 
Recent studies have highlighted the important role of  
SIRT1 in IPC-mediated protection in the heart and brain; 
in IPC brain, SIRT1 prevents neuronal death[97], whereas 
during cardiac IPC, SIRT1 regulates HIF1α protein lev-
els[98,99]. A recent review has also associated SIRT1 with 
the protective effects of  hyperbaric oxygen precondition-
ing against apoptosis in the rat brain[100]. However, it is still 
to be established whether SIRT1 contributes to the pro-
tective effects of  preconditioning through the regulation 
of  other signalling pathways. Furthermore, its possible 
implication in IPC related mechanisms in other organs, 
including the liver or kidney, remains to be elucidated.

Nor has the potential role of  sirtuins in cold ischemia 
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↓ Oxidative stress

↑ AMPK

↑ HIF2α

↓ HIF1α

↑ UCP2

Sirtuin 1

↑ PGC1α

Figure 1  Protective role of sirtuin 1 during ischemia. Sirtuin 1 (SIRT1) activates adenosine monophosphate protein kinase (AMPK) as a cell response to counter-
act the energy deficiency. SIRT1 upregulates hypoxia-inducible factor 2α (HIF2α) and downregulates HIF1α to increase their transcriptional activity. SIRT1 upregu-
lates peroxisome proliferator-activated receptor-γ coactivator, leading to enhancement of anti-oxidant capacity of uncoupling protein 2 (UCP2). PGC1α: Peroxisome 
proliferator-activated receptor-γ coactivator.
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Figure 2  Protective role of sirtuin 1 and suggestive role of sirtuin 3 during reperfusion. Sirtuin 1 (SIRT1) inhibits inflammation through inhibition of nuclear 
factor kappa B and activates endothelial nitric oxide synthase for a better microcirculation. SIRT1 downregulates apoptosis through multiple pathways, for example, 
inhibiting p53 transcriptional activity or favoring the binding between Ku70 and Bax. SIRT1 also enhances forkhead box-containing protein O 1 (FoxO1) transcriptional 
activity, resulting in Bax downregulation and in the upregulation of B cell lymphoma-2 and Bcl-like X. Deacetylation of FoxO1 by SIRT1 also results in lessening oxida-
tive stress, whereas the same effect may be achieved by deacetylation of forkhead box-containing protein 3 alpha (FoxO3α). Sirtuin 3 (SIRT3) is suggested to con-
tribute to decrease in oxidative stress either by a direct interaction with mitochondrial anti-oxidant enzymes [manganese superoxide dismutase (MnSOD), thioredoxin 
system (Trx), cytochrome (Cyt)] or by enhancing FoxO3α to transcribe MnSOD and Cat. Mitochondrial permeability transition pore (mPTP) may also be inhibited by 
SIRT3 and result in less production of oxidative stress. NF-kB: Nuclear factor kappa B; eNOS: Endothelial nitric oxide synthase; Bcl-2: B cell lymphoma-2; Bcl-xL: Bcl-
like X; Bax: Bcl-2-associated X; Cat: Catalase.
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and reperfusion yet been established. In the context of  
liver IRI, a previous study by our group demonstrated 
that during normoxic reperfusion, after cold ischemia, the 
presence of  NO favors HIF1α accumulation, also pro-
moting the activation of  other cytoprotective proteins, 
such as heme oxygenase-1[101]. Among these cytoprotec-
tive proteins, SIRT1 may be ideally suited to enhance the 
protective effect.

This review summarizes the basic mediators of  IRI 
influenced by the action of  SIRT1 and SIRT3 and high-
lights the importance of  their regulation. Future research 
should aim to elucidate the complete action of  all mem-
bers of  the sirtuins family in IRI, and to develop phar-
macological strategies that can allow their action to be 
modulated.
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