
7852 November 28, 2013|Volume 19|Issue 44|WJG|www.wjgnet.com

which ultimately leads to cirrhosis and liver cancer - 
the realm of Charybdis.
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Core tip: This topic highlight on the immunopathogen-
esis of chronic hepatitis C addresses changes in innate 
immunity (interferons and natural killer cells), adaptive 
immunity and immunoregulation (regulatory T cells). 
Our review provides a succinct but comprehensive 
overview and presents the concept, that effective an-
tiviral immunity is associated with pronounced acute 
liver damage, while during chronic infection the arms 
of immunity will acquire new functions, which will 
cause and maintain tissue damage. Thus, the immune 
response becomes part of the mechanisms that even-
tually lead to progressive inflammation, liver cirrhosis 
and death in chronic hepatitis C.
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INTRODUCTION
Scylla and Charybdis were two immortal and irresistible 
sea monsters in Greek mythology believed to live on ei-
ther side of  the Strait of  Messina between Sicily and Italy. 
Scylla was a six-headed supernatural creature - probably 
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Abstract
Hepatitis C virus (HCV) frequently elicits only mild im-
mune responses so that it can often establish chronic 
infection. In this case HCV antigens persist and con-
tinue to stimulate the immune system. Antigen persist-
ence then leads to profound changes in the infected 
host’s immune responsiveness, and eventually contrib-
utes to the pathology of chronic hepatitis. This topic 
highlight summarizes changes associated with chronic 
hepatitis C concerning innate immunity (interferons, 
natural killer cells), adaptive immune responses (im-
munoglobulins, T cells, and mechanisms of immune 
regulation (regulatory T cells). Our overview clarifies 
that a strong anti-HCV immune response is frequently 
associated with acute severe tissue damage. In chronic 
hepatitis C, however, the effector arms of the immune 
system either become refractory to activation or take 
over regulatory functions. Taken together these chang-
es in immunity may lead to persistent liver damage 
and cirrhosis. Consequently, effector arms of the im-
mune system will not only be considered with respect 
to antiviral defence but also as pivotal mechanisms of 
inflammation, necrosis and progression to cirrhosis. 
Thus, avoiding Scylla - a strong, sustained antiviral 
immune response with inital tissue damage - takes 
the infected host to virus-triggered immunopathology, 
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reflecting a shoal that devoured whatever came within 
her reach, and Charybdis was a whirlpool off  the coast 
of  Sicily. Avoiding Charybdis meant passing too close to 
Scylla and vice versa. According to Homer, the Greek 
hero Odysseus opted for Scylla when passing the strait, 
and had to sacrifice six of  his companions rather than to 
risk the loss of  his vessel in the whirlpool. Thus, being 
“between Scylla and Charybdis” means to be forced to 
make a choice between two equally unpleasant evils. 

This allegory matches the challenge of  the human 
immune system when defending against a viral infection, 
such as hepatitis C which has a high potential to estab-
lish chronic persistence. On one hand a strong and effi-
cient immune response rapidly clears the virus; accepting 
the risk of  severe tissue damage from immune-mediated 
destruction. On the other hand a less vigorous response 
allows for viral persistence and facilitates a low-level 
smoldering inflammation, which eventually results in 
progressive liver disease and ultimately death of  the indi-
vidual. In line with this analogy, acute self-limited hepa-
titis C is frequently associated with symptomatic disease 
and jaundice, while chronic hepatitis C often establishes 
in the absence of  any characteristic symptoms[1,2]. Stud-
ies in various expression systems (cell culture or trans-
genic mice) indicate that hepatitis C virus (HCV) is not 
directly cytopathic, and viral replication may occur in the 
absence of  any detectable inflammatory reaction[3,4]. On 
the other hand, chronic hepatitis C is associated with liv-
er cell damage and intrahepatic inflammatory infiltrates. 
Of  note, hepatocellular damage coincides with the onset 
of  an immune response during acute infection but not 
with that of  viral replication[5]. Thus, activation of  the 
immune response is a pivotal factor for the pathogenic 
processes in hepatitis C leading to progressive tissue 
injury. Ultimately, hepatic inflammation and progressive 
fibrosis in chronic hepatitis C may result in cirrhosis and 
carry a high risk for hepatocellular carcinoma.

BASIC FACTS
HCV is a hepacivirus of  the Flaviviridae family. Its ge-
nome consists of  a single strand positive sense RNA. 
After cell entry the viral genome is translated into a 
single polyprotein which is co- and post-translationally 
cleaved into structural and non-structural proteins by 
host peptidases and two virus-encoded proteases. Rep-
lication involves generation of  an antigenomic replica-
tion intermediate, and probably intermediate double-
stranded RNA (ds-RNA) products, which can trigger 
intracellular pattern recognition receptors. The new viral 
genomes are packaged into viral particles by the viral 
non-structural proteins, which then are released from 
hepatocytes in association with host lipoproteins. Thus, 
HCV circulates in blood as a lipoprotein-coated virus[6]. 
During replication HCV is sensed by pattern recognition 
receptors (PRRs) in the host cell which detect pathogen-
associated molecular patterns within viral products. This 
process then leads to coordinated activation of  innate 

and adaptive immune responses. Both arms of  the im-
mune response work together in an integrated fashion to 
recognize and defend against HCV infection. 

Innate responses to HCV comprise both cellular re-
sponses, such as recognition of  non-self  by various types 
of  natural killer (NK) cells and humoral components, 
such as induction of  a variety of  cytokines, especially 
interferons. These various elements of  innate immunity 
act in a highly integrated fashion as do innate and adap-
tive immune responses. Thus, development of  adaptive 
B and T cell immunity is shaped by the initial innate re-
sponses, in particular interferons and other inflammatory 
and immunoregulatory cytokines that are induced by vi-
ral invasion[7]. However, despite these immune defences, 
hepatitis C becomes chronic in about 70%-80% of  acute 
infections[8]. Failing immunity and continued viral per-
sistence lead to sustained inflammatory host responses 
which then become the key mechanism for tissue injury 
in chronic hepatitis C.

INNATE IMMUNITY IN HEPATITIS C
Three types of  PRRs are known to detect HCV: (1) the 
retinoic acid inducible gene-Ⅰ (RIG-Ⅰ)-like receptors, 
RIG-Ⅰ and melanoma differentiation antigen 5, which 
sense viral RNA in the cytosol; (2) toll-like receptors 
(TLRs), such as TLR3, which detects ds-RNA frag-
ments in the endosomal compartment; and (3) the non-
traditional pattern recognition receptor protein kinase R 
(PKR), which binds ds-RNA binding and upon activa-
tion promotes interaction with mitochondrial antiviral 
signaling protein (MAVS) to trigger innate immunity[9]. 

RIG-Ⅰ signaling is initiated by binding of  the HCV 
PAMP RNA which consists of  an exposed 5’triphos-
phate and the 3’poly-U/UC-rich untranslated region of  
the HCV RNA[10,11]. These regions are located at oppo-
site ends of  the viral genome but are brought together 
by intra-genomic interactions. In this configuration the 
viral RNA comes into close contact with RIG-Ⅰ and 
induces conformational changes of  RIG-Ⅰ. RIG-Ⅰ ac-
tivation leads to the formation of  a multi-component 
complex with MAVS (also termed interferon beta pro-
moter stimulator protein 1 or card adaptor inducing in-
terferon beta, cardiff). Finally, the interferon signaling 
cascade results in the activation of  multiple transcription 
factors, such as interferon-regulatory factor-3 (IRF-3) 
and nuclear factor kappa B and production of  multiple 
pro-inflammatory cytokines[12]. 

HCV dsRNA intermediates, which occur late in HCV 
replication, have been identified as ligands for TLR3[13]. 
TLR3 signals are transmitted by the adaptor molecule 
TIR-domain-containing-adaptor-inducing-interferon-β 
(TRIF) and also lead to production of  interferons and 
pro-inflammatory cytokines[14]. TLR3 mediated inter-
feron and cytokine responses are considered a secondary 
innate immune defense after initial RIG-Ⅰ activation to 
establish an antiviral state and trigger T cell recruitment 
in HCV infection.
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The ligand for PKR is the structured RNA at the 
internal ribosomal entry site (IRES) of  HCV RNA[15,16]. 
Binding of  HCV RNA induces phosphorylation of  the 
α-subunit of  the eukaryotic initiation factor 2 (eIF2α). 
In addition, RNA binding also triggers a kinase-indepen-
dent signal transduction cascade involving MAVS which 
finally activates interferon-β and interferon-stimulated 
genes (ISGs)[9,16]. 

Although HCV can be detected effectively by RIG-Ⅰ, 
TLR3 and PKR, it frequently establishes chronic persis-
tence in up to 80% of  patients, because it has evolved 
several mechanisms to counter-act innate immunity. 
The multi-functional HCV NS3/NS4A protease is a 
key component of  the HCV evasion strategy from in-
nate immunity. Studies in Huh-7 cells indicate that HCV 
initially activates the RIG-Ⅰ pathway which is shut 
down as infection progresses and NS3/NS4 abundance 
increases[17]. In addition to proteolytically processing the 
HCV polyprotein, NS3/NS4A can block RIG-Ⅰ signal-
ing, because it cleaves MAVS from intracellular mem-
branes[18-21]. This cleavage prevents signal transduction, 
abrogates interferon induction and facilitates progres-
sion to chronic infection. However, other hepatotropic 
viruses, such as hepatitis A virus also encode proteases 
that can cleave MAVS but in general do not become 
chronic[22]. Thus, MAVS cleavage alone is not sufficient 
for viral chronicity. Nevertheless, cleavage of  MAVS has 
been demonstrated in the livers of  patients with chronic 
hepatitis C, and patients with cleaved MAVS revealed 
reduced interferon pathway activation, although this in-
verse correlation was rather weak[23]. 

The NS3/NS4A protease can also cleave TRIF[24], 
the adaptor protein of  the TLR3 pathway, and the rela-
tive abundance of  this protein is reduced after HCV 
infection, probably as a result of  degradation following 
its cleavage by NS3/NS4A[25]. Although details are insuf-
ficiently understood at present, blocking of  the TLR3 
pathway by HCV also seems to contribute to establish-
ing chronic infection. TLR3-independent sensing of  
RNA which signals via TRIF has also been described, 
and is likewise blocked by NS3/NS4A targeting of  
TRIF[26]. Finally HCV proteins E2, NS3, NS4A and NS5 
provide several strategies to interfere both with PKR sig-
naling and PKR-regulated inhibition of  translation[27-29]. 
However, these interactions are complex and the exact 
mechanisms how they support HCV persistence are still 
unclear. 

Continued triggering of  PRR pathways in chronic 
hepatitis C is likely to contribute to immunopathology, 
such as hepatic inflammation, fibrosis progression and 
HCV-associated malignancy. In this context it is interest-
ing to note that HCV proteins core and NS3 also trig-
ger TLR 1-2 and 2-6 dimers[30,31], and there is evidence 
from genetic epidemiology and functional in vitro studies 
that HCV-TLR interactions might contribute to hepatic 
fibrogenesis and cirrhosis[32,33], development of  liver 
cancer[34], HCV-associated autoimmunity and B cell lym-
phoma[35]. 

INTERFERONS
HCV recognition by PRRs ultimately leads to induc-
tion of  antiviral cytokines termed interferons (IFNs). 
Type Ⅰ IFNs (several interferons-α and interferon-β) 
bind to the ubiquitously expressed type Ⅰ interferon 
receptor, while type Ⅲ IFNs [IFN-λ1 alias interleukin 
(IL)-29, IFN-λ2 alias IL-28A, IFN-λ3 alias IL-28B] have 
their own receptor consisting of  the IL10R2 chain (IL-10 
receptor beta chain) and a unique IFN-λ receptor chain 
with a limited expression mainly on hepatocytes[36,37]. The 
type Ⅱ interferon IFN-γ has its own IFN-γ receptor. All 
IFN receptors transmit signals from the cell surface to 
the nucleus via the Jak-STAT pathway to activate inter-
feron stimulated genes (ISGs). Specifically type Ⅰ and Ⅲ 
IFNs induce IFN-stimulated gene factor 3 consisting of  
phosphorylated STAT1 and 2 proteins and IRF9 which 
activate the IFN-stimulated response elements (ISRE) 
of  multiple genes contributing to antiviral activity[38-40].

IFN signaling is regulated by suppressors, such as 
suppressor of  cytokine signaling and ubiquitin specific 
peptidase 18 (USP18) which provide important nega-
tive feed-back loops[41-43]. USP18 is a protease cleaving 
ISG15 from its target proteins, also including STAT1[44]. 
ISG15 is conjugated to STAT1 by the sequential action 
of  several enzymes[45]. This so-called ISG-ylation and 
its de-conjugation by USP18 modify signal transduction 
pathways and immune responsiveness[46,47]. However, 
recently it has been recognized that USP18 suppresses 
IFN-signaling independently from its de-conjugating 
activity by interfering with the interaction between Jak1 
and the type Ⅰ IFN receptor[48]. USP18 is a major media-
tor of  unresponsiveness to type 1 IFNs in liver cells[49]. 
However, it does not inhibit signal transduction of  type 
Ⅱ and Ⅲ IFNs[50]. 

Activation of  the endogenous IFN system in the liv-
er exerts little anti-HCV activity, and it has been well es-
tablished that patients with high activation of  the endog-
enous IFN system respond poorly to IFNα based thera-
pies[51-55]. It has been proposed that expression of  HCV 
proteins inhibits binding of  activated STATs to ISRE[56], 
and Jak-STAT signaling was found to be inhibited both 
in HCV transgenic mice and liver biopsies from patients 
with hepatitis C[57,58]. Beyond that, phosphorylation and 
activation of  STAT3 is involved in the antiviral IFN ac-
tivity[59], and STAT3 expression was found to be reduced 
in HCV-infected livers[60]. Indeed, HCV core protein 
can prevent STAT3 phosphorylation[57,60,61], and this has 
been associated with HCV resistance to IFN-α[62]. Next, 
HCV-induced PKR activation inhibits cap-dependent 
translation of  antiviral host proteins at the ribosomes 
owing to phosphorylation of  eIF2α while production 
of  HCV proteins is not impaired, because translation 
occurs via an IRES-dependent mechanism[63]. Of  note, 
most studies on endogenous ISG induction in hepatitis 
C were based on steady state mRNA level measurements 
rather than determination of  protein concentrations[51-55]. 
Finally, HCV proteins might directly inhibit ISG antiviral 
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effector functions apart from their inhibition of  ISG 
translation. This concept is supported by experimental 
evidence from knock-out mice which demonstrated that 
expression of  the USP18 leads to a long-term refrac-
tory state towards IFNα stimulation[49]. Likewise, strong 
USP18 expression was found in many hepatocytes of  
patients with chronic hepatitis C and high endogenous 
IFN activity, when histological specimens were stud-
ied[64]. At present the cellular sources and involved types 
of  IFNs that maintain long-term ISG expression in 
chronic hepatitis C are still a matter of  debate. IFN-
λs are strong candidates as triggers of  ISG induction in 
patients with chronic hepatitis C and endogenous activa-
tion of  the IFN system, because, unlike all other IFN 
types, IFN-λ mRNA is readily detected in liver biop-
sies[53], and their action is not inhibited by USP18[50]. 

In patients with chronic hepatitis C endogenous ISG 
induction varies considerably between individuals, and 
this variability, as well as differential responsiveness to 
exogenous IFN-α is attributed to a combination of  viral 
and host factors. For instance, difficult-to-treat HCV 
genotypes 1 and 4 induce high levels of  endogenous 
IFN expression in hepatocytes resulting in an IFN-
insensitive state that attenuates treatment responses[65]. 
Of  note, endogenous ISG induction in Kupffer cells, 
the resident liver macrophages, is also a strong predictor 
of  treatment responsiveness[66]. However, the relation-
ship between baseline ISG induction and treatment 
outcome is opposite to that observed in hepatocytes: 
Virtually all non-responders lack baseline induction of  
ISGs whereas strongly induced ISG expression is found 
in responders[67]. This finding suggests that ISG induc-
tion in Kupffer cells may have a protective role for the 
host concerning both spontaneous HCV elimination and 
treatment outcomes.

Apart from viral factors genome-wide association 
studies have identified single nucleotide polymorphisms 
(SNPs) upstream of  the IFNL3 gene on chromosome 
19q13, which are associated with outcomes of  HCV 
infection both under IFN-based therapy of  chronic 
hepatitis C[68-70] and disease evolution during acute HCV 
infection[71,72]. Although some initial studies failed to find 
a relationship between the SNPs and IFNL3 mRNA ex-
pression[71,73], it has meanwhile become clear that SNPs 
in this region alter IFN-λ expression levels[53,68,70,74-76], 
and the unfavorable minor alleles result in less IFNL3 
expression. Thus, it is quite unlikely that these SNPs 
simply reflect linkage disequilibrium with some other 
gene. However, the molecular and cellular mechanisms 
that underlie this association between outcomes of  HCV 
infection and the IFNL3 gene locus are not yet under-
stood. It has been proposed that the unfavorable IFNL3 
variants may lead to compromised innate immune 
functions in particular with respect to natural killer cell 
activity[77,78]. However, given the fact that NK cells do 
not express type Ⅲ IFN receptors this hypothesis needs 
refining[79]. In addition, a dinucleotide polymorphism 
upstream of  the IFNL3 gene has been described, which 

can create or disrupt an alternative open reading frame 
giving rise to a new gene, termed IFNL4[80,81]. Although 
it has been proposed that loss of  IFNL4 expression 
should be protective against HCV, it is as yet not clear if  
the putative IFN-λ4 gene product plays any role for dif-
ferential immune responses to HCV infection. 

NATURAL KILLER CELLS
NK cells constitute a first line of  defence against viral 
infections. They rapidly recognize and lyse virus-infected 
cells, inhibit viral replication but also exert immune-
regulatory functions. NK cells constitute approximately 
30% of  resident lymphocytes in a normal liver, and may 
account for as many as 60% of  lymphocytes in HCV in-
fection[82].

Activation of  natural killer cells results from the in-
tegration of  multiple activating and inhibitory signals via 
specific receptors. The most important NK cell receptors 
(and their cognate ligands) comprise the killer immu-
noglobulin-like receptor (KIR) family (ligands: HLA-A, 
-B and -C), the CD94-NKG2A/C complex (ligand: 
HLA-E), NKG2D (ligands: MIC-A and MIC-B and 
others) and the natural cytotoxicity receptors NKp30, 
NKp44 and NKp46[83]. In addition, part of  these recep-
tors also exerts immune-regulatory functions in subsets 
of  T lymphocytes. NK cells are activated, when there 
is a relative reduction of  inhibitory signals, e.g., down-
regulated MHC class I expression on virus-infected cells, 
or a relative increase in signals from activating receptors, 
e.g., binding of  antibody-coated antigens[84]. However, 
conventional MHC class Ⅰ expression is not substan-
tially reduced in hepatitis C, and it has been proposed 
that NK cell functions might be altered by binding of  
HCV-derived peptides to non-polymorphic restriction 
molecules, such as HLA-E[85,86]. NK cells are recruited to 
inflammatory sites by a variety of  chemokines and can 
also be stimulated by cytokines, such as IFN-α and ILs 8, 
12, 15 and 18[87]. 

Activated NK cells with potent de-granulation and 
substantial cytokine production have been described 
in acute HCV infection[88,89], and there is accumulating 
evidence to suggest that NK cells play an important 
role in the antiviral immune response to hepatitis C and 
later on also in the immune-mediated pathogenesis of  
chronic hepatitis C. NK cells can inhibit HCV replica-
tion in vitro both by IFN-γ mediated non-cytolytic as well 
as granzyme/perforin and TRAIL-mediated cytotoxic 
mechanisms[90]. While HCV-infected hepatocytes up-
regulate expression of  TRAIL receptors[91], in vivo IFNγ-
mediated clearance of  HCV might be more important 
than direct cytolysis, because cytolytic elimination of  all 
HCV-infected hepatocytes would lead to extensive liver 
damage[92]. Multi-functional NK cells are also detectable 
early after HCV exposure in health-care workers and iv 
drug users, who do not proceed to develop acute hepa-
titis; suggesting a potentially protective role of  NK cells 
in early HCV infection[93,94]. Further support for a pro-
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tective role of  NK cells in HCV infection comes from 
genetic studies, where genes encoding the inhibitory re-
ceptor KIR2DL3 and its ligand human leucocyte antigen 
group 1 (HLA-C1) seem to favour both spontaneous 
and treatment-induced elimination of  HCV[95,96]. Since 
the affinity between inhibitory KIR2DL3 and HLA-C1 
is weaker than all other combinations, it is reasonable 
to assume that a lower threshold of  activation is needed 
to trigger KIR2DL3 NK cell responses in HLA-C1 
homozygous individuals[88,97]. Finally, NK cells can be-
come more activated upon IFN-based therapy and may 
contribute to HCV elimination by TRAIL-mediated 
cytotoxic mechanisms[98]. Interestingly, responsiveness 
in this setting again depends on the endogenous IFN-α 
activation state, since a rapid first phase HCV decline is 
associated with strong induction of  STAT1 phosphory-
lation, whereas non-responders exhibit reduced STAT1 
induction[99]. Chronic exposure of  NK cells to IFN-α 
results in preferential STAT1 over STAT4 phosphoryla-
tion, which is associated with increased STAT1-depen-
dent cytotoxicity but reduced STAT4-dependent IFN-γ 
production[99-101]. These findings correspond to NK cell 
phenotypes and functional differentiation seen at later 
stages in IFN-α responders and non-responders[100,102], 
although patients who achieve a sustained virological re-
sponse also exhibit substantial NK cell cytotoxicity[103].

NK cells in chronic hepatitis C have been reported to 
also express altered patterns of  NK receptors (Figure 1). 
Although reported patterns are somewhat inconsistent 
and may vary between peripheral blood and the liver, 
altered expression on NK cells has been reported for 
receptors NKp30, NKp44, NKp46, NKG2A, NKG2C, 
NKG2D and CD122[100,104-107]. In addition, NK cells ex-

press the tetraspanin CD81, a co-receptor of  HCV, and 
in vitro binding of  the HCV envelope 2 (E2) protein to 
CD81 has been shown to block antiviral functions of  
NK cells and to alter their migratory behaviour[108-111]. 
However, the experimental setting of  these studies in-
volved cross-linking of  HCV E2 on plastic plates, where-
as NK cells exposed to intact virions did not exhibit 
altered functionality[112]. Thus, it remains to be elucidated 
if  cross-linking of  CD81 by HCV E2 affects functions 
of  NK cells to facilitate chronic infection. A particularly 
interesting NK cell receptor is NKp46, since it is consid-
ered a major activating receptor in hepatitis C, which also 
has a role in the regulation of  adaptive immunity: High 
expression of  NKp46 defines a NK cell subset with high 
cytotoxic activity and IFN-γ production that accumulates 
in the liver in chronic hepatitis C[113,114]. Of  note, recently 
Pembroke et al[115] confirmed intrahepatic enrichment of  
NKp46+ NK cells in chronic hepatitis C and reported a 
high (> 80%) frequency of  NKp46+ cells in the liver to 
be associated with pronounced inflammation in histol-
ogy. Another important finding of  this study was the 
observation, that expression of  NKp46 could predict 
responses to IFN therapy. Patients with chronic hepatitis 
C, who successfully cleared their HCV infection, had 
lower mean frequencies of  activated NKp46+ NK cells 
than patients who did not respond to therapy. The pos-
sible identification of  NKp46 as a marker of  both IFN-
un-responsiveness and hepatic inflammation bears some 
similarity to the paradoxical relationship between IFN-
un-responsiveness and high baseline ISG expression and 
may be linked to chronic endogenous interferon expo-
sure. On the other hand, unlike Pembroke et al[115] the 
group of  Golden-Mason[113] reported increased NKp46 
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Figure 1  Central role of natural killer cells in the pathogenesis of hepatitis C. Natural killer (NK) cells regulate fibrosis by killing of activated hepatic stellate cells 
(HSC), which trigger NK cell activation via natural killer cell receptor with extracellular C-type lectin domains (NKG2D) signalling. The release of granzyme/perforin 
and cytotoxic cytokines, such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induce tissue damage. Interferon-γ (IFN-γ) released from NK cells 
can clear hepatitis C virus (HCV) infection from infected hepatocytes without cytolysis. On the other hand NK cell activity is critically dependent on sufficient supply 
with interleukin 2 (IL-2) from CD4+ T cells.
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expression in white female Americans as opposed to 
male African-Americans and proposed that a high pro-
portion of  functionally active NKp46+ NK cells could 
explain their higher response to IFN therapy. Thus, the 
precise role of  NKp46+ NK still remains elusive. 

Finally, NK cell-mediated cytotoxicity against hepatic 
stellate cells (HSC) may contribute to the regulation of  
intrahepatic fibrosis in hepatitis C. HSC store vitamin A, 
reside in the space of  Dissé, and produce extracellular 
matrix proteins upon activation, e.g., upon TLR stimula-
tion, exposure to cytokines or reactive oxygen species[116]. 
HSC activation leads to trans-differentiation into my-
ofibroblasts, which in the mouse also alters the balance 
in the expression between activating and inhibitory NK 
cell receptor ligands, so that they become target cells for 
NKG2D-, TRAIL- and granzyme-mediated killing by 
NK cells[117,118]. NKG2D- and TRAIL-mediated killing 
by NK cells has now also been reported for human HSC 
in chronic hepatitis C[119], and CXCR3 + CD56Bright as 
well as NKp46+ NK cells express particularly high cyto-
toxic capacity against HSC in chronic hepatitis C[114,120]. 
Importantly, when other processes, such as CD4 T cell 
depletion in HIV/HCV co-infection interfere with the 
regulation of  hepatic fibrosis by NK cells, this may re-
sult in accelerated fibrosis progression[121].

ADAPTIVE IMMUNITY IN HEPATITIS C
A coordinated immune response involving both antibod-
ies and T cell responses is normally required for efficient 
adaptive immunity. However, in hepatitis C the role of  
antibodies is complex: Circulating antibodies against 
structural and non-structural components are generated 
in virtually all patients irrespective from the outcome 
of  HCV infection. A rapid induction of  neutralizing 
antibodies early in the course of  hepatitis C has been 
demonstrated to contribute to HCV clearance[122], but 
broad antibody responses usually occur at the stage of  
chronic infection and are not neutralizing[123,124]. Neutral-
izing antibodies frequently recognize the HCV envelope 
proteins[125-127]. However, these proteins have a high de-
gree of  mutational diversity, so that antibody responses 
are frequently directed against only a single strain or are 
easily evaded by viral mutations[124]. It is also quite likely 
that glycosylation of  HCV proteins and the close as-
sociation of  the virus with lipoproteins further prevent 
antibody recognition. HCV antibodies are not required 
to clear HCV infection as has been demonstrated in 
patients with hypo-gammaglobulinemia[128]. HCV anti-
bodies gradually disappear after successful HCV elimina-
tion[129]. Conversely, there is circumstantial evidence that 
HCV-specific cellular immune responses can protect 
individuals at high risk for hepatitis C without serocon-
version[123,130,131]. Thus, adaptive cell-mediated immunity 
is considered a key mechanism for resolution of  primary 
HCV infection[132]. Cell-mediated immunity involves 
CD8+ cytolytic T lymphocytes (CTL), which recognize 
linear HCV peptides of  8 to 11 amino acids in length 

bound to self  HLA class I molecules, and CD4+ T help-
er lymphocytes, which respond to longer viral peptides 
bound to class Ⅱ molecules. Single source outbreaks 
further support a clear relationship between distinct 
HLA types and the outcome of  HCV infection: patients 
with HLA-A3, HLA-B27, and HLA-B57 exhibit greater 
chances to develop protective immunity, thus strength-
ening the importance of  effective antigen presentation 
and the generation of  efficient antigen-specific T cell 
responses for immune control of  HCV infection[133-136]. 

T CELL RESPONSES
The most conclusive experiments to suggest an im-
portant role for T cells in protective immunity against 
HCV stem from chimpanzee experiments: Depletion 
of  CD8+ T cells in animals, which had recovered from 
previous hepatitis C, resulted in prolonged viraemia, 
and viral clearance was correlated to recovery of  HCV-
specific CD8+ T cells[137]. Likewise, depletion of  CD4+ 
T cells resulted in abrogation of  a previously protective 
immune response[138]. In acute hepatitis C strong HCV-
specific CTL[139,140] and TH1 type CD4+ T helper cell re-
sponses[141] have consistently been reported to be closely 
associated with a self-limited course of  HCV infection. 
Moreover, several groups have reported an inverse rela-
tionship between the strength of  the CTL response and 
HCV viral loads[142-144] further suggesting that in princi-
ple it is possible for cellular immunity to control HCV 
infection[145]. A substantial proportion of  individuals 
who ultimately develop chronic hepatitis C also gener-
ate HCV-specific CD4(+) and CD8(+) T cell responses 
during the early acute phase of  infection and may tran-
siently gain some control over HCV[140,146-149]. However, 
early T cell responses decline to almost undetectable 
levels later on, and initial control over HCV replication 
is lost. If  present, HCV-specific CD4+ and CD8+ T cells 
are detected at only low frequency in peripheral blood 
although they are somewhat enriched in the liver[150,151]. 
Thus, chronic hepatitis C is characterized by a progres-
sive functional exhaustion and ultimately loss of  HCV-
specific CD4+ and CD8+ T cells[152,153]. 

Exhausted T cells exhibit a couple of  characteristic 
abnormalities: They show increased expression of  in-
hibitory receptors, such as programmed death-1 (PD-1), 
cytotoxic T lymphocyte antigen 4 (CTLA-4), T cell im-
munoglobulin and mucin domain-containing molecule 
3, corresponding to up-regulated expression of  their 
cognate ligands in the liver[154-159]. Conversely, functional 
recovery of  HCV-specific T cells can be achieved ex-
perimentally by the combined blockade of  CTLA-4 and 
PD-1 signalling[157,160]. 

HCV replicates by an RNA-dependent RNA poly-
merase which has a high error rate and consequently 
generates considerable genomic diversity of  HCV and 
T cell escape mutations. Mutations that affect CD8+ 
T cell epitopes and proteasomal processing have been 
observed in several HCV single source outbreaks[161-163]. 
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Due to the exhausted state of  T cells new epitope vari-
ants rarely elicit strong CD8+ T cell responses at this 
stage of  infection, and consequently further escape mu-
tation to secondary epitopes are selected infrequently in 
man and the chimpanzee[146,164,165]. Protective T cells seem 
to target epitopes that do not allow for escape muta-
tions owing to the associated loss of  viral replication fit-
ness[133-135]. Conversely, T cells that are not stimulated any 
more after HCV viral escape, do not show features of  
exhaustion[166]. Thus, prolonged exposure appears to be 
the mechanism that leads to T cell dysfunction in chron-
ic hepatitis C, and T cell exhaustion in hepatitis C seems 
to follow the same pattern as has been first described in 
mice for lymphocytic choriomeningitis virus (LCMV) 
infection[167,168]. In this model, persistent high level vire-
mia can be established in susceptible mouse strains by 
pathogenic virus variants. Initially, mice develop a robust 
T cell response but fail to eliminate the virus and sub-
sequently exhibit a gradual decline of  CD8+ and CD4+ 
T cell responses. T cells undergo T cell exhaustion in 
this model, and first lose production of  IL-2, a cytokine 
which supports T cell proliferation. Then, cytotoxicity 
and production of  tumour necrosis factor alpha and 
IFN-γ are lost sequentially. Finally, intracellular expres-
sion of  pro-apoptotic factors, such as Bcl2-interacting 
mediator (Bim), is up-regulated both in the LCMV mod-
el and hepatitis C[169]. In analogy to the LCMV model, 
virus-specific CD4+ and CD8+ T cell responses decline 
in chronic hepatitis C but full exhaustion with deletion 
of  antigen-specific CD8 T cells does not occur, because 
at least in vitro T cell responses can be rescued. 

REGULATORY T CELLS 
Recently CD8+ T cells have been reported in the livers 
of  patients with chronic hepatitis C which were con-
sidered to represent CD8+ regulatory T cells, because 
they secrete IL-10 and suppress in vitro proliferation of  
liver-derived T cells[170]. In general, regulatory T cells 
(Tregs) actively control induction and activity of  other 
immune cells by suppressing their functional activity via 
contact-dependent mechanisms and by release of  immu-
nosuppressive cytokines, such as IL-10 and transform-
ing growth factor beta. The major cell type with these 
properties constitutes CD4+CD25highCD127- T cells, 
which express the transcription factor Foxp3 (forkhead 
box P3). They can be divided into thymus-derived natu-
ral regulatory T cells, that prevent autoreactivity to self-
antigens and induced regulatory T cells, that are gener-
ated in the peripheral immune system as a regulatory 
response to antigenic stimulation. Foxp3+ Tregs were 
rarely detected in acute hepatitis C[171] and they are also 
not found in patients who had managed to resolve HCV 
infection[172], suggesting that effector T cells in acute and 
self-limited hepatitis C are not under active suppression 
by Tregs. In chronic hepatitis C, however, numbers of  
CD4+ Tregs were increased in the peripheral blood of  
patients, and depletion of  CD4+ CD25+ T cells was as-

sociated with increased numbers and function of  CD8+ 
T cells in in vitro assays[173-176]. Such regulatory T cells 
may reduce inflammatory activity and are considered to 
contribute importantly to preventing immune-mediated 
pathology in chronic hepatitis C. Functional analysis of  
regulatory T cell clones generated from patients with 
chronic hepatitis C revealed that Tregs were directed 
against HCV antigens and showed the same pattern of  
HLA class Ⅱ restriction and epitope specificity as ef-
fector T cells[172]. Importantly, Treg clones from chronic 
hepatitis C inhibited in vitro proliferation and IFN-γ 
production of  autologous reporter T cells via release of  
inhibitory cytokines, such as IL-10 and IL-35. Of  note, 
intrahepatic regulatory T cells in chronic hepatitis C 
also produced substantial amounts of  IL-8, and isolated 
Tregs as well as Treg clones activated fibrogenic genes 
of  hepatic stellate cells in vitro[177]. High intrahepatic IL-8 
mRNA levels in chronic hepatitis C have been linked 
with progression of  fibrosis[178,179] and CD4+ Tregs are 
enriched in the liver[175,177,180-182]. Moreover, some but not 
all studies also reported a correlation between numbers 
of  intrahepatic Tregs and the stage of  fibrosis. Beyond 
that, IL-8 counter-acted the antiviral activity of  IFN-α 
in the replicon model by down-regulation the expression 
of  ISGs[183,184]. Moreover, in vitro studies suggest that part 
of  the superior antiviral activity in IFN/ribavirin combi-
nation therapy may be due to preferential inhibition of  
Tregs by ribavirin[185] (Figure 2). 

Thus, once the immune system has failed to clear 
HCV infection, regulatory T cells in chronic hepatitis 
C seem to exert multiple different effects: they dampen 
inflammatory responses associated with reduced antiviral 
activity of  the immune system, facilitate HCV persis-
tence, and also contribute to the regulation of  fibrosis in 
the liver. 

CONCLUSION
When an individual becomes infected with HCV, the im-
mune system has to make a choice between Scylla and 
Charybdis. If  it takes a course close to Scylla, it generates 
strong antiviral immune responses, which eliminates vi-
rus infected liver cells by the combined action of  its sev-
eral innate and adaptive defense mechanisms. This may 
cause extended liver damage and eventually liver failure. 
To avoid this risk, immune responses may be softer. 
Then, the virus has a chance to escape from control 
by immunity, and functions of  innate and adaptive im-
mune mechanisms become diverted owing to continued 
antigenic stimulation. An inflammatory state is induced, 
which, however, is refractory to stimulation by antiviral 
cytokines, and NK cells as well as cells in the adaptive 
immune system take over regulatory functions. Necro-
inflammatory and pro-fibrotic activities maintained by 
diverted immune responses inevitably take a course 
towards Charybdis, and may ultimately result in liver cir-
rhosis, liver cancer and death of  the individual. Thus, the 
immune system holds the steer to find the way between 
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Scylla and Charybdis. 
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