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Abstract
The incidence of colorectal cancer (CRC) is on the rise, 
and the prognosis for patients with recurrent or meta-
static disease is extremely poor. Although chemothera-

py and radiation therapy can improve survival rates, it 
is imperative to integrate alternative strategies such as 
immunotherapy to improve outcomes for patients with 
advanced CRC. In this review, we will discuss the effect 
of immunotherapy for inducing cytotoxic T lymphocytes 
and the major immunotherapeutic approaches for CRC 
that are currently in clinical trials, including peptide 
vaccines, dendritic cell-based cancer vaccines, whole 
tumor cell vaccines, viral vector-based cancer vaccines, 
adoptive cell transfer therapy, antibody-based cancer 
immunotherapy, and cytokine therapy. The possibility 
of combination therapies will also be discussed along 
with the challenges presented by tumor escape mecha-
nisms.

© 2013 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The prognosis for patients with recurrent or 
metastatic colorectal cancer (CRC) is extremely poor. 
Immunotherapy may be effective for treating CRC 
patients and/or preventing relapse. The immunothera-
peutic approaches for CRC, including peptide vaccines, 
dendritic cell-based cancer vaccines, whole tumor cell 
vaccines, viral vector-based cancer vaccines, adoptive 
cell transfer therapy, antibody-based cancer immu-
notherapy, and cytokine therapy have been demon-
strated. The blockade of multiple immune regulatory 
checkpoints combined with immunotherapy and/or 
conventional chemotherapy may be effective in treating 
patients with advanced CRC.
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INTRODUCTION
Colorectal cancer (CRC) is the third most common can-
cer in men (accounting for 10.0% of  all cancers) and the 
second most common cancer in women (accounting for 
9.4% of  all cancers) worldwide. Additionally, CRC is the 
fourth most common cause of  cancer-related death[1]. 
Optimization of  surgical resection for patients with local-
ized disease has dramatically improved 5 year and 10 year 
survival rates. The prognosis for patients with resectable 
tumors depends on the disease stage. CRC patients with 
distant metastasis have a 12% survival rate[2], and more 
than 20% of  CRC patients have metastatic disease at 
the time of  diagnosis[3,4]. Moreover, despite the fact that 
80% of  CRC patients with localized disease demonstrate 
complete macroscopic clearance of  the tumor by surgery, 
50% of  CRC patients will relapse due to the presence of  
micro-metastasis at the time of  surgery[5]. Chemotherapy 
is approved for the treatment of  regionally metastatic 
CRC, but it shows only modest efficacy and is ineffective 
against distant metastases[6]. The prognosis for patients 
with advanced disease remains unfavorable due to the 
frequency of  recurrence, distant metastasis, and resis-
tance to chemotherapy. Thus, novel treatment modalities 
are needed. Interestingly, tumors that develop chemo-
therapy or radiation resistance are still suitable targets for 
immunotherapy[7-10]. Therefore, cancer immunotherapy 
may be effective for treating CRC patients and/or pre-
venting relapse.

ANTITUMOR IMMUNE RESPONSES
T cells
Tumor cells degrade endogenous and exogenous tumor-
associated antigens (TAAs) into short peptides (usually 
8-10 amino acids) and present them on the cell surface in 
the context of  major histocompatibility complex (MHC) 
class Ⅰ molecules. T cell receptor (TCR) interaction with 
the complex of  peptides and MHC class Ⅰ molecules 
on tumor cells is a critical event in the T cell-mediated 
antitumor immune response. T cells that express the αβ 
TCR generally express CD4+ (helper T cells) or CD8+ 
(cytotoxic T cells) lineage markers[11]. In particular, CD8+ 
T cells recognize peptides (usually 8-10 amino acids) de-
rived from TAAs bound by MHC class Ⅰ molecules on 
tumor cells. Thus, immunotherapy may promote cancer 
cell killing by eliciting antitumor immune responses by 
recognizing specific TAAs on tumor cells.

To induce antigen-specific CD8+ cytotoxic T lym-
phocytes (CTLs), peptides derived from TAAs must 
be presented on the surface of  antigen presenting cells 
(APCs) in the context of  MHC class Ⅰ molecules. In 
contrast, CD4+ T cells recognize peptides (usually 10-30 

amino acids) in association with MHC class Ⅱ molecules 
on APCs and enhance the persistence of  antigen-specific 
CD8+ CTLs through secretion of  interleukin (IL)-2 
and interferon (IFN)-γ[12]. Therefore, the interaction 
of  the αβ TCR with complexes of  peptides and MHC 
class Ⅰ and class Ⅱ molecules on APCs is a central event 
in cancer immunotherapy. The αβ TCR expressed by 
CD8+ CTLs recognizes MHC class Ⅰ-peptide complex-
es on tumor cells and leads to tumor cell killing through 
effector molecules such as perforin and granzyme B[13]. 
Moreover, there is increasing evidence that CD4+ T cells 
play a more direct role in generating efficient antitumor 
immunity beyond simply assisting[14]. Therefore, effec-
tive antitumor responses depend on the presence and 
function of  T cells that recognize and eliminate tumor 
cells[14,15].

A unique subset of  human T cells expresses the 
TCR-γδ. Human γδT cells include several subsets of  
cells defined by their TCR. The most common subset of  
TCR-γδT cells in circulating blood express the Vγ9Vδ2 
receptor[16,17]. Although cancer immunotherapy strategies 
primarily focus on activation of  these MHC-restricted 
T cells, γδT cells and αbT cells share certain effector 
functions such as cytokine production and potent cyto-
toxic activity. However, they recognize different sets of  
antigens, usually in a non-MHC-restricted fashion[16,18]. 
Thus, T cells can attack tumors in their HLA-unrestricted 
cytotoxic capacity, as well as by secreting cytokines. In-
deed, tumor-infiltrating γδT cells have been detected in 
a broad range of  cancers, including CRC[19]. Importantly, 
activated γδT cells can kill cells from metastatic renal cell 
carcinomas, mammary carcinomas, prostate carcinomas 
and colorectal carcinomas, while sparing normal, untrans-
formed cells[18,19].

Natural killer cells
Natural killer (NK) cells are component of  innate im-
munity responses to tumor cells[20]. NK cells can rapidly 
kill certain target cells, including tumor cells with down-
regulated MHC class Ⅰ molecules[21]. Thus, NK cells play 
a critical role in antitumor immunity. NK cells recognize 
tumor cells via cellular stress or DNA damage signals[22]. 
Activated NK cells directly kill target tumor cells through 
several mechanisms, including[23]: (1) cytoplasmic granules 
such as perforin and granzyme B[24]; (2) tumor necrosis 
factor-related apoptosis-inducing ligand and Fas ligand 
(FasL)[25,26]; (3) effector molecules such as IFN-γ and ni-
tric oxide (NO)[24,27]; and (4) antibody-dependent cellular 
cytotoxicity (ADCC)[28]. NK cell activators (IL-2, IL-12, 
IL-15, and IL-18), have also been validated in preclinical 
cancer models[23].

Dendritic cells
Dendritic cells (DCs) are potent APCs that have been 
used in cancer vaccines due to their ability to initiate an-
titumor immune responses[12]. DCs are characterized by 
expression of  MHC class Ⅰ, class Ⅱ, and costimulatory 
molecules (B7, ICAM-1, LFA-1, LFA-3, and CD40)[29-31]. 
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These molecules function in concert to generate a net-
work of  secondary signals essential for reinforcing the 
primary antigen-specific signal in T-cell activation[29-31]. 
DCs process endogenously synthesized antigens into 
antigenic peptides, which are presented on the cell sur-
face in MHC class Ⅰ-peptide and recognized by the αβ 
TCR on naïve CD8+ T cells[12]. DCs can also capture and 
process exogenous antigens, which are then presented by 
MHC class Ⅰ molecules through an endogenous pathway 
in a process known as “cross-presentation”[32]. Moreover, 
exogenous antigens from the extracellular environment 
are also captured by DCs and delivered to the endosom-
al/lysosomal compartment, where they are degraded to 
antigenic peptides by proteases and peptidases. These an-
tigens then complex with MHC class Ⅱ for recognition 
by the αβ TCR of  naïve CD4+ T cells[12]. Efficient anti-
gen presentation by MHC class Ⅰ and class Ⅱ on DCs is 
essential for evoking tumor-specific immune responses[33]. 
Mature DCs are significantly better at processing and 
presenting MHC-peptide to the TCR and inducing CTLs 
due to higher expression of  MHC class Ⅰ and class Ⅱ 
and costimulatory molecules[33].

Immature DCs reside in peripheral tissues where 
they take up and process antigens that are degraded 
to peptides. These peptides are then bound to MHC 
class Ⅰ molecules for presentation to CD8+ CTLs or 
bound to MHC class Ⅱ molecules for presentation to 
CD4+ T helper (Th) cells. Differentiation of  the im-
mature DCs into mature DCs is triggered by molecular 
stimuli that are released in response to tissue disturbance 
and local inflammatory responses caused by pathogens[34]. 
After antigen uptake and stimulation by the inflammatory 
response, immature DCs in the peripheral tissues under-
go a maturation process characterized by the up-regula-
tion of  MHC class Ⅰ and class Ⅱ and costimulatory mol-
ecules, the up-regulation of  chemokine receptors such as 
CCR7, and the secretion of  cytokines such as IL-12[34,35]. 
The mature DCs migrate to secondary lymphoid organs, 
where they present antigens to CD4+ and CD8+ T cells 
through the MHC class Ⅰ and class Ⅱ pathways, respec-
tively[12,34]. Therefore, the aim of  immunotherapy is to 
simultaneously activate CD8+ CTLs (which recognize 
TAA) and CD4+ Th cells.

Immune suppressive cells
CD4+ Th cells are critical for inducing and regulating im-
mune responses. Immune homeostasis is primarily con-
trolled by two distinct helper T cell subsets, Th1 and Th2 
cells[36]. Th1 cells secrete IFN-γ, which can further sen-
sitize tumor cells to CTLs by inducing the up-regulation 
of  MHC class Ⅰ molecule expression on tumor cells and 
antigen-processing machinery in DCs[12]. Th2 cells secrete 
type Ⅱ cytokines such as IL-4 and IL-10 that enhance 
humoral immunity (the antibody-based antitumor re-
sponse)[12]. Importantly, tumor cell-derived soluble factors 
such as transforming growth factor-β (TGF-β) and IL-10 
induce tolerance by promoting the expansion of  the 
CD4+α-2R (CD25)+ forkhead box P3 (Foxp3)+ natural 

Treg subset[37]. Induced Tregs (CD4+CD25+Foxp3-) se-
crete TGF-β and IL-10 and suppress Th1 and Th2 phe-
notypes[38,39]. Therefore, Tregs play a pivotal role in tumor 
progression and the suppression of  antitumor immunity.

The cancer microenvironment consists not only of  
cancer cells but also stromal cells such as cancer-associ-
ated fibroblasts, tolerogenic DCs, myeloid-derived sup-
pressor cells, immunosuppressive tumor-associated mac-
rophages (TAMs), and Tregs. These immune suppressive 
cells secrete vascular endothelial growth factor (VEGF), 
IL-6, IL-10, TGF-β, soluble FasL, and indolamine-2,3-
dioxygenase (IDO)[40], which inhibit antitumor immunity 
by various mechanisms, including depletion of  arginine 
and elaboration of  reactive oxygen species (ROS) and 
NO. Moreover, the tumor microenvironment promotes 
the accumulation of  Tregs that suppress CD8+ CTL 
function due to the secretion of  IL-10 or TGF-β from 
Tregs and tumor cells[40] (Figure 1).

IMMUNOTHERAPY
Immunotherapy is an active therapeutic approach de-
signed to trigger the immune system to respond to 
tumor-specific antigens and attack tumor cells. Immu-
notherapy strategies include the use of  peptides derived 
from TAAs, whole tumor cells, in vitro-generated DCs, or 
viral vector-based cancer vaccines (Table 1).

Peptide vaccines
A peptide vaccine is based on the identification and syn-
thesis of  epitopes, which can induce TAA-specific anti-
tumor immune responses. CRC cells express TAAs such 
as carcinoembryonic antigen (CEA)[41,42], mucin 1[41-43], 
epidermal growth factor receptor (EGFR)[44], squamous 
cell carcinoma antigen recognized by T cells 3 (SART3)[45], 
β-human chorionic gonadotropin (β-hCG)[46], Wilms’ 
Tumor antigen 1 (WT1)[47], Survivin-2B[48], MAGE3[49], 
p53[50], or mutated KRAS[51], which are potential targets 
for immunotherapy. Peptide vaccines targeting these 
TAAs may be a useful approach for immunotherapy in 
CRC patients.

Peptide vaccines are simple, safe, stable, and economi-
cal. Multiple MHC class Ⅰ-binding peptides have been 
identified and tested for immunogenicity. Several peptide 
vaccines for CRC have been tested in phase Ⅰ clinical tri-
als. Fifteen patients with advanced or recurrent CRC ex-
pressing survivin were vaccinated with a peptide derived 
from HLA-A*2402-restricted epitopes[48]. In 6 patients, 
tumor marker levels (CEA and CA19-9) decreased tran-
siently during the survivin-2B peptide vaccination. More-
over, in phase I trial of  peptide-cocktail vaccines derived 
from ring finger protein 43 (RNF43) and translocase of  
the outer mitochondrial membrane 34 (TOMM34), 8 of  
21 patients exhibited antigen-specific CTL responses to 
both RNF43 and TOMM34, and 12 patients exhibited 
CTL responses to one of  the peptides only[52]. The pa-
tients who did not demonstrate any CTL responses had 
the lowest survival rates. By vaccination with a 13-mer 
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exist[13]. Synthetic long peptides may be more attractive 
candidates for peptide-based vaccines. In a phase I/Ⅱ 
trial, 10 CRC patients were vaccinated twice with a set of  
10 overlapping p53 synthetic long peptides[50]. p53-spe-
cific CD4+ and CD8+ T-cell responses were observed 
in 9 of  10 CRC patients, and 6 of  9 tested patients main-
tained p53-specific T-cell reactivity for at least 6 mo. New 
trials may focus on improving the long peptide vaccine-
induced antitumor immune responses.

DC vaccines
Three signals were required for induction of  efficient 
CTL responses: (1) simultaneous presentation of  multiple 
TAAs by both MHC class Ⅰ and class Ⅱ molecules; (2) 
costimulation by membrane-bound receptor-ligand pairs; 
and (3) cytokines to direct polarization of  the resultant 
antitumor immune responses. DCs can provide all three 
of  these signals that are essential for the induction of  
antitumor immunity[33]. Therefore, many clinical trials of  
antigen-pulsed DCs have been conducted in patients with 
various types of  tumors, including CRC.

To date, various strategies for delivering TAAs to DCs 
have been developed to generate potent CTL responses 
against tumor cells. DCs have been pulsed with synthetic 
peptides derived from the known TAAs[56], tumor cell 
lysates[57], apoptotic tumor cells[32], and tumor RNA[58], or 

mutant ras peptide, 2 of  7 CRC patients showed antitu-
mor immune responses that were significantly associated 
with prolonged overall survival[53]. Moreover, in a phase 
Ⅱ trial, vaccination with the β-hCG peptide induced anti-
β-hCG antibody production in 56 of  77 CRC patients[46]. 
Interestingly, anti-β-hCG antibody induction was associ-
ated with longer overall survival[46]. However, some clini-
cal trials report a discrepancy between clinical and immu-
nological responses. In SART3 peptide vaccine therapy, 
IgE-type anti-peptide antibodies were detected after 
vaccination; however, immunological responses were not 
detected in the patients[45]. Peptide vaccines for CRC pa-
tients are generally well-tolerated, with no patients requir-
ing cessation due to toxicity; however, a high frequency 
of  reactions were observed at the injection site due to the 
use of  adjuvants such as incomplete Freund’s adjuvant, 
IL-2, granulocyte-macrophage colony-stimulating factor 
(GM-CSF), and bacillus Calmette-Guerin (BCG). Impor-
tantly, peptide vaccines have shown only limited success 
in clinical trials. There are several drawbacks to the pep-
tide vaccination strategy, including: (1) limitations due to 
the patient’s HLA type[54]; (2) ineffectiveness of  CD8+ 
CTLs due to the down-regulation of  certain antigens and 
MHC class Ⅰ molecules; (3) impaired DC function in pa-
tients with advanced cancer[55]; and (4) tumor microenvi-
ronments, where immune suppressive cells such as Tregs 

TAM MDSC

Cancer cell

CAF

Tolerogenic 
DC

Immunosuppressive factors
VEGF, IL-6, IL-10, TGF-b, Fas-L, 

PD-L1, IDO

 CD4 
Naive
 T cell

Treg CD8 
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Secretion of 
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Figure 1  Immunosuppression in the tumor microenvironment. Cancer cells secrete various factors such as vascular endothelial growth factor (VEGF), interleukin 
(IL)-6, IL-10, transforming growth factor-β (TGF-β), Fas ligand (FasL), PD1 ligand 1 (PD-L1), and indolamine-2,3-dioxygenase (IDO), all of which promote the accu-
mulation of heterogeneous populations of cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), 
and tolerogenic dendritic cells (DCs). These immunosuppressive cells inhibit antitumor immunity by various mechanisms, including depletion of arginine and elabora-
tion of reactive oxygen species (ROS) and nitric oxide (NO). The tumor microenvironment promotes the accumulation of Tregs that suppress CD8+ cytotoxic T lym-
phocyte (CTL) function through secretion of IL-10 and TGF-β. 
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physically fused with whole tumor cells[59] to induce ef-
ficient antitumor immune responses (Figure 2). Because 
CEA is a tumor-associated antigen expressed by most 
CRCs, DCs have been pulsed with CEA peptides[60-64] 
or CEA mRNA[63,65]. In these phase Ⅰ clinical trials, the 
majority of  vaccinated CRC patients demonstrated the 
induction of  CEA-specific T cell responses. Moreover, 
disease progression stabilized in several patients, and the 
vaccine was safe and well-tolerated. As CEA is a self-
antigen and poorly immunogenic, Fong et al[64] generated 
altered peptide ligands that were derived from native T 

cell epitopes and contained amino acid substitutions that 
either increased the peptide affinity for the MHC peptide-
binding groove or modified interactions with the T cell re-
ceptor. In this trial, 12 patients were immunized with DCs 
loaded with altered peptides derived from CEA and the 
Flt3 adjuvant ligand. Two of  12 patients showed disease 
stabilization for 3 mo and 6 mo, 2 patients showed com-
plete responses for more than 10 mo, and one patient had 
a mixed response with some regression of  liver metasta-
ses. To improve the clinical efficacy of  DC-based cancer 
vaccines, it is crucial to design novel strategies that boost 

Table 1  Immunotherapy strategies for colorectal cancer

Vaccine Clinical response Immunological response Ref.

Peptide
   Survivin-2B PR (1/15)

SD (3/15)
  PD (11/15)

Temporary decrease of CEA level 40% (6/15)

Increase of Survivin-2B-specific CTL frequency 
DTH 40% (6/15)

[48]

   Combination chemotherapy with peptide 
   vaccine against RNF43 and TOMM34

  SD (16/19)
PD (3/19)

8 of 21 patients exhibited antigen-specific CTL 
responses to both RNF43 and TOMM34, and 12 
patients exhibited CTL responses to one of the 

peptides only

[52]

   13-mer mutant ras Of nine patients who completed all six 
vaccinations, seven patients showed no 

remaining evidence of disease

Two CRC patients showed immunological 
responses, and the antitumor immune response 

was significantly associated with prolonged 
overall survival

[53]

   β-hCG Prolongation of survival in patients with a 
high level of antipeptide antibodies

Induction of serum antipeptide antibody (56/77) [46]

   SART3 Diagnosis at 5 mo after first vaccination:
SD (1/19)

  PD (10/19)

Increased CTL activity (2/11), induction of 
serum antipeptide IgG (2/12), IgE (5/12),              

DTH (0/12)

[45]

   A set of 10 overlapping p53 synthetic long 
   peptides 

Induction of p53-specific CD4+ and CD8+ T-cell 
responses (9/10), maintained p53-specific CTL 

reactivity for at least 6 mo (6/9)

[50]

DC
   DC pulsed with CEA peptide or CEA mRNA Disease stabilization was observed in several 

patients
The majority of CRC patients demonstrated 
induction of CEA-specific T cell responses

[60-65]

   DCs pulsed with CEA-derived altered 
   peptides combined with the adjuvant Flt3 
   ligand

2 of 12 patients exhibited SD for 3 and 6 mo; 
2 patients exhibited CR for more than 10 mo; 

1 patient had a mixed response with some 
regression of liver metastases

Expansion of CD8+ T cells that recognize both 
the native and altered epitopes and possess an 

effector CTL phenotype

[64]

Whole tumor cell
   Autologous tumor cells combined with BCG No significant clinical benefit was seen with 

whole tumor cell vaccines in surgically 
resected patients with stage Ⅱ or Ⅲ CRC

When treatment compliance was evaluated, 
the trend indicated benefits from vaccination 

in terms of disease-free survival (P = 0.078) and 
overall survival (P = 0.12)

[68]

   NDV-infected irradiated autologous tumor 
   cells

A randomized phase Ⅲ study of 50 patients 
with resectable CRC liver metastases 
demonstrated that vaccination with 

NDV-infected whole tumor cell did not 
significantly improve overall survival.

DTH (21/31) [74,75]

Viral vector
   Replication-defective recombinant fowlpox 
   and vaccinia viruses encoding the CEA antigen 
   and TRICOM (B7.1, ICAM-1, and LFA-3)

SD (3/9) Induction of CEA-specific CTL (3/9) [79]

   Combination chemotherapy and vaccination 
   with a nonreplicating canarypox virus (ALVAC) 
   expressing the CEA and T-cell costimulatory 
   molecule B7.1 (ALVAC-CEA/B7.1)

Objective response
(42/118)

Increases in CEA-specific T cells were detected 
in patients treated with chemotherapy and 

booster vaccination

[80]

Immunotherapy strategies including peptides derived from tumor-associated antigens, whole tumor cells, in vitro-generated dendritic cells (DCs), or viral 
vector-based cancer vaccine. PD: programmed cell death protein; CTL: cytotoxic T lymphocytes; CEA: carcinoembryonic antigen; CRC: colorectal cancer; 
RNF43: ring finger protein 43; TOMM34: translocase of outer mitochondrial membrane 34; β-hCG: β-human chorionic gonadotropin; SART3: Squamous 
cell carcinoma antigen recognized by T cells 3; NDV: Newcastle disease virus. 
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adaptive antitumor immunity to overcome tolerance.

Whole tumor cell vaccines
Because autologous tumor cells express a whole TAAs 
including those known and unidentified, using whole 
tumor cells could greatly diminish the chance of  tumor 
escape compared to using a single epitope peptide[41,42]. A 
significant disadvantage to this approach is the difficulty 
in generating a “universal” vaccine that could be applica-
ble to all patients with a given cancer. Autologous whole 
tumor cells have been used as cancer vaccines to induce 
polyclonal CTL induction in several cancer types[66,67], in-
cluding CRC[68]. A randomized phase Ⅲ clinical trial of  a 
combined autologous whole tumor cell plus BCG vaccine 
was conducted to determine whether surgical resection 
plus vaccination was more beneficial than resection alone 
in 412 stage Ⅱ and Ⅲ CRC patients. This study showed 
no significant clinical benefit from whole tumor cell vac-
cination in surgically resected patients with stage Ⅱ or Ⅲ 
CRC. However, effective immune responses were associ-
ated with the improved disease-free and overall survival. 
Only a small proportion of  the proteins in an autologous 
whole tumor cell vaccine are specific to tumor cells, while 
a vast majority of  antigens in the vaccine are shared with 
normal cells. Moreover, whole tumor cell vaccines are 
likely to be poorly immunogenic. Therefore, the immune 
response generated by whole tumor cell vaccines is gener-

ally insufficient to provide benefit to patients. To improve 
the immunogenicity of  whole tumor cell vaccines, autolo-
gous tumor cells have been genetically modified to se-
crete GM-CSF and then re-administered to the patient[69]. 
The trials have shown promising results in patients with 
prostate carcinoma[70], renal cell carcinoma[71], metastatic 
non-small-cell lung carcinoma[72], and melanoma[73]. This 
approach is based on the fact that GM-CSF is required at 
the site of  the tumor to effectively prime TAA-specific 
immunity[69]. Another tumor cell vaccine approach utilizes 
Newcastle disease virus (NDV)-infected irradiated tumor 
cells as autologous CRC vaccines[74]. This approach re-
sulted in a 97.9% two-year survival rate in patients with 
resected CRC, compared to 66.7% when treated with 
autologous tumor cells combined with BCG. However, a 
randomized phase Ⅲ study of  50 patients with resectable 
CRC liver metastases demonstrated that vaccination with 
NDV-infected whole tumor cells did not significantly im-
prove overall survival, disease-free survival or metastases-
free survival, although subgroup analyses suggested that 
the vaccines were somewhat beneficial[75]. The immuno-
genicity of  whole tumor cells needs to be improved for 
this vaccination strategy to be effective. However, it is 
unclear which specific agents (such as cytotoxic chemo-
therapeutics, ionizing irradiation, and chemical agents) 
are best suited for killing tumor cells to generate highly 
immunogenic whole tumor cell vaccines.

CTL
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MHC class Ⅰ

MHC class Ⅱ 
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Costimulatory 
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Figure 2  Dendritic cell vaccines. Dendritic cells (DCs) are loaded with antigens, which are taken up and degraded into peptide fragments by antigen-presenting 
cells such as immature DCs. DCs process tumor-derived peptides and major histocompatibility complex (MHC) class Ⅰ peptides derived from DCs. They form MHC 
class Ⅰ-peptide complexes in the endoplasmic reticulum, which are then transported to the surface of the DCs and presented to CD8+ T cells. DCs also synthesize 
MHC class Ⅱ peptides in the endoplasmic reticulum, which are transported to the cytoplasm where MHC class Ⅱ-peptide complexes are assembled with tumor-
derived peptides and presented to CD4+ T cells. CD8+ T cells become cytotoxic T lymphocytes (CTLs), which destroy cancer cells through effector molecules such as 
perforin and granzyme B. TCR: T cell receptor. 
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Viral vector vaccines
Recombinant viral vectors are potentially useful vaccine 
vehicles for cancer therapy. Many types of  recombinant 
viruses are naturally immunogenic, infect APCs (specifi-
cally DCs), and express TAAs[76]. The natural immuno-
genicity of  viral vectors acts as an adjuvant to help boost 
TAA-specific immune responses. In one study, CRC 
patients were immunized with vaccinia virus or a repli-
cation-defective avian poxvirus encoding CEA. In this 
phase I study, viral-based vaccination with replication-
defective recombinant fowlpox and vaccinia viruses en-
coding the CEA antigen and TRICOM (B7.1, ICAM-1, 
and LFA-3) induced CEA-specific T cell responses[77] and 
disease stabilization in 40% of  patients with metastatic 
cancer (including CRC) for at least 4 mo[78]. A phase Ⅱ 
clinical trial in patients with metastatic CRC examined 
the efficacy of  chemotherapy combined with vaccina-
tion with a nonreplicating canarypox virus (ALVAC) 
expressing the CEA and T-cell costimulatory molecule, 
B7.1 (ALVAC-CEA/B7.1). Anti-CEA-specific T cell re-
sponses were successfully generated in 50% of  patients 
undergoing chemotherapy and booster vaccination. Ob-
jective clinical responses were observed in 40% of  the 
patients[79,80]. Interestingly, chemotherapy does not appear 
to inhibit vaccine-mediated immunity.

ADOPTIVE CELL TRANSFER THERAPY
Cancer immunotherapy can be either active or passive. In 
passive cellular immunotherapy, specific effector cells are 
directly infused and are not induced or expanded within 
the cancer patient. Because most tumor cells express 
MHC class Ⅰ-peptide, which can be recognized by anti-
gen-specific CD8+ CTLs. Therefore, adoptive transfer 
of  activated CTLs successfully used in patients with ad-
vanced cancer[81]. In adoptive cell transfer therapy (ACT), 
autologous T cells are removed from patients, activated, 
expanded to large numbers in vitro and transferred back 
into the patients. ACT overcomes tolerogenic mecha-
nisms by enabling the selection and activation of  highly 
reactive T cell subpopulations and manipulating the host 
environment into which the T cells are introduced. In-
deed, upon the successful induction of  specific CTLs 
in vitro, a clinical response to adoptive immunotherapy 
can be expected even in patients with advanced CRC[82]. 
Moreover, injection of  IFN promotes the MHC class Ⅰ-
peptide on the cell surface, thus antitumor immune 
responses are augmented. However, there are several 
drawbacks to ACT that should be considered, including 
a potential lack of  immune memory, poor persistence 
of  activated effector cells in patients, the prohibitive ex-
pense, and the time required to expand the cells.

A new approach using T cells genetically modified to 
express receptors that recognize TAAs with high speci-
ficity to tumor cells may provide significant clinical ben-
efits, especially for large solid tumors[83]. Recently, several 
clinical trials have demonstrated the therapeutic potential 
of  this approach, which lead to impressive tumor regres-
sion in cancer patients[84]. A phase I trial in CRC patients 

examined human T cells engineered to express a high-
avidity CEA-specific TCRs[85]. In this study, autologous 
T cells genetically engineered to express a murine TCR 
against human CEA were administered to three patients 
with metastatic colorectal cancer that was refractory to 
standard treatments. All patients experienced profound 
decreases in serum CEA levels (74%-99%), and one pa-
tient had an objective regression of  cancer metastatic to 
the lung and liver. However, all three patients developed 
severe transient inflammatory colitis.

ANTIBODY-BASED CANCER 
IMMUNOTHERAPY
Monoclonal antibodies (mAbs) that target surface anti-
gens expressed on tumor cells are clinically effective as 
cancer therapeutics[86]. Three mAbs (Cetuximab, Bevaci-
zumab and Panitumumab) are approved for the treatment 
of  CRC in the United States, and many other mAbs are 
being tested in clinical trials[87]. Treatment with mAbs can 
induce tumor cell death by several mechanisms, includ-
ing interference with vital signaling pathways. Moreover, 
it is becoming apparent that innate immune effector 
mechanisms that engage the Fc portion of  the antibody 
via Fc receptors are equally important[88]. The immune 
cytotoxicity includes ADCC, complement-mediated cy-
totoxicity, and antibody-dependent cellular phagocytosis. 
Bevacizumab, a recombinant humanized monoclonal 
antibody that selectively binds to human VEGF, is effec-
tive in KRAS wild-type CRC patients[89]. Recent evidence 
has also shown clinical benefits from treatment with anti-
EGFR, Cetuximab and Panitumumab in KRAS wild-type 
CRC patients[90].

CYTOKINE THERAPY
Cytokines are substances proteins and glycoproteins that 
are secreted by immune cells. They have autocrine and 
paracrine functions and function locally or at a distance 
to enhance or suppress antitumor immunity. To date, 
IL-2 and IFN-α are two cytokines approved by the FDA 
for cancer therapy. Cytokines may be useful for treating 
hematologic malignancies (hairy cell leukemia and chron-
ic myelogenous leukemia) or immunogenic tumors (mela-
noma and renal cell carcinoma). The major cytokines 
currently in use or under evaluation for cancer therapy 
are IFN-α, IL-2, GM-CSF, and IL-12.

COMBINED IMMUNOTHERAPY
It is well known that even if  CRC appears to have been 
eradicated by chemotherapy and radiation, a small cancer 
stem cell (CSC) fraction that can self-propagate and sus-
tain tumor growth frequently persists, leading to relapse 
and therapeutic failure. Although CSC is often resistant 
to a variety of  treatments, including chemotherapy and 
radiotherapy, immunotherapy may still be effective[8-10]. A 
combined approach that uses conventional chemotherapy 
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or radiation to kill the bulk of  cancer cells and immuno-
therapy to keep residual CSCs and differentiated cancer 
cells in check may abrogate the replenishing pool of  CRC 
cells[91]. In addition, treatment with chemotherapy such 
as cyclophosphamide or gemcitabine can augment the 
antitumor effects of  cancer immunotherapy by deplet-
ing Treg, potentially enhancing antitumor immune re-
sponses[92]. Therefore, chemotherapy can kill cancer cells 
and boost antitumor immune responses all at the same 
time[93,94]. A recent study reported that immune check-
point blockade with monoclonal antibodies targeting the 
inhibitory immune receptors cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4), PD-1, and PD-L1 can be 
used to successfully treat patients with advanced melano-
ma (Figure 3)[95-98]. Combined, these approaches have the 
potential to significantly improve patient outcomes com-
pared to treatment with conventional cancer therapies 
such as chemotherapy, radiation, monoclonal antibodies, 
hormonal therapy, and photodynamic therapy.

FUTURE PERSPECTIVE
Improved treatment options that selectively target 
cancer-dependent pathways with little or no toxicity to 

normal tissues are urgently needed. Work in our labora-
tory focuses on these key aspects by combining the use 
of  DCs pulsed with MHC class Ⅰ and Ⅱ peptides and 
conventional chemotherapy. Immunotherapy may be 
combined with conventional therapy to reduce Tregs 
and enhance CTL responses. Knockdown of  PD-L1 and 
PD-L2 on monocyte-derived DCs and tumor cells may 
help decrease tolerance (Figure 3). DCs electroporated 
with PD-L small-interfering RNAs are highly effective in 
enhancing T cell proliferation and cytokine production 
and are therefore attractive candidates for improving the 
efficacy of  DC vaccines in cancer patients[99]. Moreover, 
combined blockade of  PD1 and CTLA-4, which play 
key roles in inhibiting T-cell activation, enhances antitu-
mor immune responses compared to either agent alone 
(Figure 3)[100]. Combining immunotherapies, particularly 
agents that target different immune checkpoints, may be 
a promising approach. Preliminary clinical findings indi-
cate that combined targeted therapies and simultaneous 
blockade of  multiple immune checkpoints could promote 
therapeutic synergy and long-term antitumor immunity 
to improve clinical outcomes for melanoma patients[101]. 
In the metastatic CT26 CRC mouse model, simultaneous 
blockade of  CTLA-4 and PD-L1 enhanced antitumor 
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Figure 3  Immune regulatory checkpoints in cancer immunotherapy. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 
1 (PD1) are two well-described co-inhibitory molecules that are expressed on naïve or memory T cells and decrease antitumor immune responses. The CTLA-4-
mediated immune checkpoint is induced in T cells at the initial response to antigen (early activation phase). After the T cell receptor (TCR) is triggered by antigen en-
counter, CTLA-4 is transported to the surface of naïve or memory T cells. In contrast, the major role of the PD1 pathway is not at the initial T cell activation stage but 
rather the regulation of inflammatory responses by effector T cells that recognize antigen in peripheral tissue cells. Thus, PD-1 is highly expressed by antigen-specific 
cytotoxic T lymphocytes (CTLs) in malignancies and is associated with impaired T-cell function. The best-characterized signal for PD1 ligand 1 (PD-L1) induction is 
interferon‑γ (IFN-γ), which is predominantly produced by Th1 cells. Although PD-L2 expression is limited to dendritic cells (DCs) and macrophages, PD-L1 is broadly 
expressed in tissues and is considered a molecular shield that protects cells from auto-reactive attack. In some tumors, PDL1 is not constitutively expressed but is 
induced in response to inflammatory signals that are produced by an active antitumor immune response. Loading DCs with soluble PD1 decreases their function. 
Therefore, antibodies can be used to block inhibitory ligand:receptor interactions by acting on tumor cells, DCs (e.g., anti-PD-L1) or T cells (e.g., anti-CTLA-4 or anti-
PD1). Combining the blockade of multiple inhibitory pathways synergistically decreases T cell anergy and improves T cell responsiveness against tumors.
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activity in an interleukin-15-dependent manner[102].

CONCLUSION
The limitations of  surgery and adjuvant chemo/radio/
antibody therapies in treating CRC patients necessitate 
the development of  novel approaches, including immu-
notherapy. Despite tremendous progress in basic immu-
nological research, effective immunotherapies for most 
types of  cancer, including CRC, are still lacking. Immu-
notherapy alone may be insufficient for treating advanced 
CRC patients. The most promising therapeutic approach 
for activating antitumor immunity in cancer patients may 
be blockade of  inhibitory immune regulatory proteins 
such as immune checkpoint ligands and receptors. There-
fore, it is important to develop cancer vaccines that do 
not express inhibitory molecules such as PD-L1, but do 
express high levels of  molecules that enhance CTL prim-
ing, such as CD80 and 4-1BBL. The blockade of  multiple 
immune regulatory checkpoints combined with immuno-
therapy and/or conventional therapy may be effective in 
treating patients with advanced CRC.
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