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Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized 
as the most common type of chronic liver disease in 
Western countries. Insulin resistance is a key factor in 
the pathogenesis of NAFLD, the latter being considered 
as the hepatic component of insulin resistance or obe-
sity. Adiponectin is the most abundant adipose-specific 
adipokine. There is evidence that adiponectin de-
creases hepatic and systematic insulin resistance, and 
attenuates liver inflammation and fibrosis. Adiponectin 
generally predicts steatosis grade and the severity of 
NAFLD; however, to what extent this is a direct effect 
or related to the presence of more severe insulin re-
sistance or obesity remains to be addressed. Although 
there is no proven pharmacotherapy for the treatment 
of NAFLD, recent therapeutic strategies have focused 
on the indirect upregulation of adiponectin through 
the administration of various therapeutic agents and/
or lifestyle modifications. In this adiponectin-focused 
review, the pathogenetic role and the potential thera-
peutic benefits of adiponectin in NAFLD are analyzed 
systematically.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the most 
common type of  chronic liver injury in many countries[1,2]. 
NAFLD includes a spectrum of  syndromes, ranging from 
simple steatosis, non-alcoholic steatohepatitis (NASH) 
to fibrosis, cirrhosis and hepatocellular carcinoma[3]. The 
overall prevalence of  NAFLD is 15%-40% in Western 
countries and 9%-40% in the Asian population[4]. NAFLD 
has dramatically increased over the past 15 years, mainly 
as a consequence of  its close association with two major 
worldwide epidemics, obesity and type 2 diabetes mellitus 
(T2DM)[5]. Mortality in patients with NAFLD is signifi-
cantly higher than in the age and gender-matched general 
population[6]. Disease progression to NASH and cirrhosis 
appears to be very slow, and only a few patients develop 
life-threatening advanced liver disease.

In many cases of  NAFLD, the risks of  developing 
metabolic and cardiovascular morbidities are much higher 
than the risks of  developing hepatic diseases[7,8]. In fact, 
NAFLD is considered as the hepatic manifestation of  
the metabolic syndrome, which refers to a cluster of  car-
diovascular risk factors associated with insulin resistance, 
including central obesity, hypertension, dyslipidemia 
and T2DM[9]. The association between NAFLD and 
metabolic syndrome has been established in many cross-
sectional and prospective studies[8]. NAFLD significantly 
increases the risk of  diabetes and is a better predictor 
of  the development of  metabolic disorders than obesity 
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itself[10]. Some studies have reported an association of  
NAFLD with multiple classical and non-classical risk fac-
tors for cardiovascular diseases[7]. NAFLD predicts future 
cardiovascular events independently of  other prognostic 
factors, including the component of  metabolic syndrome. 
In summary, NAFLD is associated with a future high 
incidence of  cardiovascular and metabolic complications 
and should be considered beyond a liver disease confined 
to classical boundaries. Understanding the disease and its 
management is a vital issue in current clinical practice.

PATHOGENESIS OF NAFLD
Although the pathogenesis of  NAFLD remains largely 
unknown, insulin resistance, oxidative stress and inflam-
mation play important roles in the development and 
progression of  NAFLD[11,12]. Fatty liver itself  is a status 
of  insulin resistance. Hepatic fat accumulation can lead 
to hepatic insulin resistance, which may occur before the 
alterations in peripheral insulin actions and may induce 
peripheral insulin resistance[13,14]. Insulin regulates the 
uptake, oxidation and storage of  fuel within insulin-sen-
sitive tissues including the liver, skeletal muscle and fat. 
Peripheral insulin resistance impairs glucose uptake from 
blood into skeletal muscle and adipose tissue; serum non-
esterified fatty acid (NEFA) levels may also be elevated 
because of  the failure of  insulin to suppress lipolysis[15,16]. 
In the liver, insulin resistance is associated with increased 
cellular contents of  fatty acids and their metabolites (fatty 
acyl-CoAs, diacylglycerides and ceramides)[17-19]. Hyperin-
sulinemia caused by insulin resistance, in the presence of  
increased circulating levels of  NEFA, enhances the he-
patic uptake of  fatty acid and promotes lipogenesis[1,20]. In 
addition, defects in mitochondrial β-oxidation, enhanced 
fatty acid synthesis and impaired secretion of  triacylglyc-
eride-rich very low density lipoproteins also contribute to 
hepatic steatosis[21-23]. A growing body of  evidence from 
animal models suggests a “two-hit” hypothesis as being 
responsible for the development of  NAFLD[24-26]. Ac-
cording to this theory, the first hit is the occurrence of  
fatty liver (steatosis), followed by a second event leading 
to the development of  NASH. The potential secondary 
hits include endotoxin exposure, alcohol consumption 
and virus infections, which expand hepatic lipid stores, 
cause hepatocellular injury, and promote oxidative stress 
and inflammation in the liver. Lipotoxicity, and the release 
of  cytokines and other pro-inflammatory mediators, play 
important roles during this process. Moreover, inflamma-
tion in the development of  NASH can further impede 
insulin signaling[27]. Histologically, NASH is manifested 
by hepatocyte nuclear ballooning, hepatocyte apoptosis, 
Mallory’s hyaline and inflammation foci[28]. NAFLD pa-
tients have a high circulating free fatty acids (FFAs) level 
that correlates with the severity of  liver disease. Over-
loaded FFAs may exhibit lipotoxicity by inducing the 
expression of  proinflammatory cytokines, such as tumor 
necrosis factor alpha (TNF-α)[29].

VISCERAL OBESITY, ADIPOKINES AND 
NAFLD
Obesity, especially visceral obesity, is frequently associ-
ated with NAFLD and their coexistence in the same 
individual increases the likelihood of  having more ad-
vanced forms of  liver disease[30,31]. NAFLD occurs in 
60%-95% of  people with obesity[32]. Visceral fat is a key 
mediator of  NASH and is strongly associated with ala-
nine aminotransferase (ALT) levels in the nondiabetic 
obese population[31,33,34]. The importance of  visceral fat 
in the pathogenesis of  NAFLD has also been shown in 
many animal models, including fa/fa obese rats. In these 
animals, surgical resection of  intra abdominal fat depots 
reverses hepatic insulin resistance and steatosis[35].

Recent evidence suggests that visceral adipose tissue 
is a metabolic and inflammatory organ that signals and 
modulates the action and metabolism of  the brain, liver, 
muscle and cardiovascular system[36,37]. The imbalanced 
production of  pro- and anti-inflammatory adipokines 
secreted from fat contributes to the pathogenesis of  
NAFLD[38]. Modulation of  endocrine/immune/inflam-
matory interactions of  adipose tissue may provide novel 
therapeutic (pharmacological) targets for the treatment of  
NAFLD. For example, in patients with severe lipodystro-
phy, injection with leptin reverses nonalcoholic fatty liver 
diseases[39,40]. However, in cases of  NAFLD associated 
with obesity, serum levels of  leptin are increased, and the 
liver becomes refractory to the “anti-steatotic” effects of  
leptin[41-43]. Leptin infusion is therefore unlikely to be of  
therapeutic value for patients with NAFLD. TNF-α, a 
pro-inflammatory adipokine that interferes with insulin 
signaling and favors steatosis, may play a casual role in the 
pathogenesis of  NASH[38]. Circulating levels of  TNF-α 
and hepatic expression of  its type 1 receptor are increased 
in NASH, but could not discriminate steatohepatitis from 
steatosis[44-46]. Neutralization of  TNF-α activity improves 
fatty liver disease in animals[47]. Conversely, nutritional ste-
atohepatitis can still be produced experimentally in both 
TNF-α and TNF-α type 1 receptor knockout mice, sug-
gesting that this adipokine might not be an essential me-
diator of  NAFLD[48,49]. In contrast to leptin and TNF-α, 
adiponectin is more closely implicated in the pathogenesis 
of  NAFLD/NASH. Unlike other adipokines, serum 
levels of  adiponectin are decreased in obesity and its as-
sociated medical complications[50]. A negative association 
between serum levels of  adiponectin and liver enzyme 
levels has been shown in healthy subjects[51]. Numerous 
epidemiological investigations in diverse ethnic groups 
have identified lower adiponectin level as an independent 
risk factor for NAFLDs and liver dysfunctions[37]. Com-
pared with healthy controls, adiponectin levels are lower 
by more than 50% in NASH patients[52]. Adiponectin 
expression is decreased by 20%-40% during the develop-
ment of  NAFLD, from simple steatosis to NASH[52,53]. 
Moreover, NASH patients with lower levels of  adipo-
nectin show higher grades of  inflammation, suggesting 
that adiponectin deficiency is an important risk factor 
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for the development of  fatty liver, steatohepatitis and 
other forms of  liver injuries[52-55]. In patients with T2DM, 
plasma adiponectin concentrations are inversely related 
to hepatic fat content[56]. There is a direct relationship 
between hypoadiponectinemia and NASH, independent 
of  insulin resistance[52]. Animal-based studies have dem-
onstrated that adiponectin possesses potent protective 
activities against various forms of  liver injury, including 
those induced by carbon tetrachloride, lipopolysaccharide 
(LPS)/D-galactosamine, pharmacological compounds, bile 
duct ligations and methionine-deficient diet[57-61]. In animal 
models of  both alcoholic and nonalcoholic steatohepati-
tis, exogenous adiponectin reduces hepatomegaly, depletes 
lipid accumulation, quenches hepatic inflammation and 
decreases hepatic expression and plasma concentrations 
of  TNF-α[62]. Adiponectin knockout mice exhibit an 
enhanced pattern of  hepatic fibrosis induced by carbon 
tetrachloride[58]. The lack of  adiponectin expression could 
accelerate hepatic tumor formation in a NASH model in 
mice[63]. Among the known adipokines, adiponectin stands 
out for its insulin-sensitizing and anti-inflammatory roles, 
and may be used as a promising drug candidate for the 
treatment of  liver diseases.

HEPATOPROTECTIVE FUNCTIONS OF 
ADIPONECTIN: STRUCTURAL BASIS 
AND SIGNALLING MECHANISMS
Four independent groups originally identified adiponec-
tin, also termed Acrp30, AdipoQ, apM1 or GBP28, in 
both mice and humans[64-67]. This adipokine has attracted 
much attention because of  its multiple beneficial effects 
on a cluster of  obesity-related metabolic and cardiovascu-
lar dysfunctions. Hypoadiponectinemia is a key etiological 
factor contributing to almost all the major pathological 
conditions associated with obesity[68]. The physiological 
functions and clinical relevance of  adiponectin in obesity-
related medical complications have been extensively re-
viewed elsewhere[50,69-72]. In the following sections, we will 
discuss recent advances on the structural regulations of  
adiponectin as well as the molecular evidence support-
ing the role of  adiponectin as a major protective agent 
against obesity-related NAFLD.

Polymorphism of the multimeric structures of adiponectin
A unique feature of  the structure of  adiponectin is 
its ability to assemble into several characteristic oligo-
meric isoforms, including trimers [low molecular weight 
(LMW)], hexamers [middle molecular weight (MMW)] 
and the oligomeric complexes comprising 18 protomers 
or above [high molecular weight (HMW)][73]. Adiponectin 
presents predominantly in the circulation as these three 
oligomeric complexes[74-79]. Trimeric adiponectin is the 
basic building block of  adiponectin. The subunits in the 
trimer are associated via hydrophobic interactions. Two 
LMW adiponectin molecules linked by disulfide bonds 
form hexameric adiponectin. The structural properties 

of  the HMW adiponectin remain poorly characterized 
because of  the heterogeneous nature of  this isoform. 
Analysis of  adiponectin oligomers by non-denaturing 
and non-heating gel electrophoresis shows that the hu-
man HMW adiponectin composes of  a mixture of  18-30 
mers, or even larger molecular weight species[73,78,80,81]. 
Dynamic light scattering and transmission electron mi-
croscopy shows that the bovine HMW adiponectin forms 
a bouquet-like architecture resembling that of  comple-
ment C1q[82]. Six globular objects can be seen atop a thin 
stalk, which presumably correspond to the six LMW 
adiponectins. The stalks bunch together in a manner that 
is consistent with the requirement for NH2-terminal 
disulfide bonding. The side views of  HMW adiponec-
tin suggest a conical structure of  the oligomer with the 
COOH-terminal portion forming the base. Interestingly, 
these globular domains are arranged in a tight ring. This 
circular arrangement might enable polyvalent interactions 
of  the globular domains with a single receptor. Recently, 
the HMW oligomeric structures formed by multiples 
of  adiponectin trimers have been determined by single-
particle analysis of  electron micrographs[83]. Pleiomorphic 
ensembles of  collagen-like stretches of  the trimers lead 
to a highly dynamic structure of  HMW adiponectin, 
which can be classified into two major classes: the fan-
shaped (Class Ⅰ) and bouquet-shaped (Class Ⅱ). In both 
of  these conformations, the globular domains assume a 
variety of  arrangements, covering an area of  up to 4.9 × 
105 Å2 and up to 320 Å apart. The conformational flex-
ibility of  the HMW oligomer can allow it to access and 
cluster disparate target ligands or receptors, which may 
be necessary to activate cellular signaling leading to the 
remarkable functional diversity of  adiponectin. 

HMW adiponectin as a major bioactive form in liver
Obese individuals have different distribution of  adipo-
nectin oligomers compared with lean controls. Relatively 
lower content of  HMW adiponectin is closely associated 
with obesity-related metabolic complications[81]. The in-
creases in the ratio of  HMW vs total adiponectin, but not 
total adiponectin level per se, correlate well with improved 
insulin sensitivity during treatment with the insulin-sensi-
tizing drug thiazolidinediones, in both diabetic mice and 
patients with T2DM. On the other hand, weight reduc-
tion by either calorie restriction or gastric bypass surgery 
results in a selective elevation of  the HMW adiponectin, 
but not the trimeric and hexameric complexes[84-86]. An 
independent inverse association exists between ALT and 
HMW adiponectin[87]. Taken together, these epidemio-
logical and genetic data suggest that the beneficial effects 
of  adiponectin in humans might be mediated primarily 
by its HMW isoform, and the deficiency of  this oligomer 
is an important etiological factor that links obesity with 
its medical complications.

Evidence from both in vitro and animal-based stud-
ies also supports the role of  the HMW oligomer as the 
major active form in mediating the multiple actions of  
adiponectin in liver tissue. Recombinant adiponectin pro-
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adiponectin in the regulation of  glucose and lipid metabo-
lism. Despite this information, the detailed roles and ex-
pression of  adipoRs in NAFLD are not conclusive[38,99-102]. 

Adiponectin stimulates AMPK in almost all its major 
target tissues, including skeletal muscle, liver, heart, en-
dothelium, adipocytes and brain[75,89,103-106]. Notably, most 
biological effects of  adiponectin in these target tissues 
are abrogated by expression of  a dominant negative ver-
sion of  AMPK, supporting its obligatory role in mediat-
ing adiponectin’s multiple actions. The precise mecha-
nisms whereby adiponectin activates AMPK through its 
receptors remain to be determined. APPL1, an adaptor 
protein containing a pleckstrin homology domain, a 
phosphotyrosine binding domain and a leucine zipper 
motif, appears to be a key signaling molecule that couples 
adiponectin receptors and its downstream AMPK activa-
tion[103,107]. Adiponectin enhances the binding of  APPL1 
to both adipoR1 and adipoR2, and these interactions are 
essential for subsequent phosphorylation and activation 
of  AMPK. Studies also indicate the important role of  
APPL1 in the metabolic syndrome[108,109]. AMPK acti-
vation in turn phosphorylates acetyl Coenzyme A car-
boxylase (ACC) and attenuates ACC activity. Inhibition 
of  ACC reduces lipid synthesis and enhances fatty acid 
oxidation by blocking the production of  malonyl-CoA, 
an allosteric inhibitor of  carnitine palmitoyl transferase 1, 
the rate-limiting enzyme in fatty acid oxidation. In addi-
tion, activation of  AMPK downregulates the expression 
of  sterol regulatory element-binding protein 1c (SREB-
P1c), a transcription factor that regulates cholesterol 
and lipid synthesis. Reduction of  SREBP1c results in 
downregulation of  genes involved in lipogenesis, includ-
ing ACC, fatty acid synthase, and glycerol-3-phosphate 
acyltransferase[104,110,111].

PPARα is a transcription factor controlling the tran-
scription of  a panel of  genes encoding fatty acid oxidation 
enzymes, such as FATP, acyl-CoA oxidase and long chain 
acyl-CoA synthetase. Adiponectin stimulates PPARα ac-
tivity possibly through PPARγ coactivator-1α[112]. These 
adiponectin-mediated signaling pathways lead to enhanced 
fat oxidation, reduced lipid synthesis and prevention of  
hepatic steatosis (Figure 1).

Cellular mechanisms contributing to the 
anti-inflammatory activities of adiponectin in NAFLD
Inflammatory cytokines are key mediators of  hepatic in-
flammation, cell death, and fibrosis, as well as regenera-
tion after massive or focal liver injury[38,113]. Adiponectin 
levels are negatively associated with mediators of  inflam-
mation, including interleukin-6 (IL-6) and C-reactive 
protein; but positively related to anti-inflammatory 
cytokine IL-10[114,115]. It suppresses TNF-α functions 
by inhibiting its expression and antagonizing its activi-
ties[61,62,116,117]. In the liver, cytokines such as IL-6 and 
TNF-α, are mainly produced from Kupffer cells and 
hepatic stellate cells (HSC), and partly from inflamed 
hepatocytes[52,118,119]. Adiponectin ameliorates NASH and 
liver fibrosis by suppressing the activation of  Kupffer 

duced from mammalian cells, which can form the HMW 
oligomers, potently decreases hyperglycemia in diabetic 
mice through inhibition of  hepatic glucose production[88]. 
However, bacterially generated full-length adiponectin, 
which lacks the capacity to form the HMW adiponectin, 
is almost inactive. Intravenous injection of  the HMW 
adiponectin, but not the hexameric adiponectin, leads 
to a dose-dependent decrease in serum glucose levels[81]. 
The formation of  the HMW oligomers is obligatory to 
mediate the insulin sensitizing effects of  adiponectin on 
suppression of  hepatic gluconeogenesis in primary rat 
hepatocytes[80]. Acute injection of  recombinant adipo-
nectin enriched with the HMW oligomers results in a 
marked activation of  AMP-activated kinase (AMPK) in 
the liver, while chronic infusion with this protein leads 
to prolonged alleviation of  hyperglycemia and insulin 
resistance in db/db diabetic mice[89]. This animal-based 
evidence is consistent with the clinical observations 
showing that the ratio of  HMW/total adiponectin cor-
relates closely with hepatic insulin sensitivity[81]. The role 
of  the HMW oligomer as a predominant active form 
of  adiponectin mediating its hepatic actions is also sup-
ported by two recent independent reports demonstrat-
ing that the insulin-sensitizing effects of  the peroxisome 
proliferator-activated receptor gamma (PPAR-γ) agonists 
thiazolidinediones were diminished in ob/ob obese mice 
with the targeted mutation of  the adiponectin gene[90,91]. 
Notably, treatment with thiazolidinediones causes a selec-
tive elevation of  the HMW oligomeric adiponectin[79,81]. 
In addition to the hepatic insulin-sensitizing activity, the 
HMW adiponectin has also been suggested to be the 
most potent isoform for alleviation of  fatty liver disease 
in high fat diet-induced obese mice[92], and inhibition of  
apolipoprotein B and E release from human hepato-
cytes[93]. HMW adiponectin dose-dependently suppressed 
growth factor-induced hepatic stellate cell proliferation[94]. 
Taken together, these data suggest that the HMW form 
predominantly mediates the beneficial effects of  adipo-
nectin in hepatic tissue. 

Receptors and postreceptor signaling pathways 
mediating the hepato-protective functions of adiponectin
Two adiponectin receptors (adipoR1 and adipoR2) have 
been identified and found to be expressed in various 
tissues[95]. AdipoR1 is abundantly expressed in skeletal 
muscles, whereas adipoR2 is present predominantly in the 
liver, suggesting a role of  adipoR2 in hepatic adiponectin 
signaling[68,96]. Recently, several laboratories have inves-
tigated the physiological roles of  adipoR1 and adipoR2 
in adipoR1/2 knockout mice. Both adipoR1 and adipoR2 
knockout mice exhibit mild insulin resistance[97]. In adi-
poR1/R2 double knockout mice, the binding and actions 
of  adiponectin are abolished, resulting in increased tissue 
triglyceride content, inflammation and oxidative stress[97]. 
AdipoR2 knockout mice reported by Liu et al[98] displayed 
reduced diet-induced insulin resistance, but promoted 
T2DM. These data support the physiological roles of  
adipoR1 and adipoR2 as the predominant receptors for 
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cells and HSC (Figure 2). In porcine blood-derived mac-
rophages, adiponectin suppresses both TNF-α and IL-6 
production stimulated by LPS and induces IL10 expres-
sion. The attenuation of  proinflammatory cytokine pro-
duction by adiponectin is mediated in part by attenuating 
the translocation of  nuclear factor kappa B (NF-κB) to 
the nucleus[120]. Adiponectin can also induce the expres-
sion of  the anti-inflammation cytokine interleukin-1-
receptor antagonist[121,122]. The anti-inflammatory effects 
of  adiponectin in macrophages may involve the toll-
like receptor-4 (TLR-4) signaling pathway. However, the 
mechanisms by which adiponectin suppresses TLR-4 
mediated responses are not well understood[123].

The transformation of  HSC into myofibroblasts is 
the key step that initiates the fibrotic process during liver 
injury[124,125]. The activated hepatic stellate cells increase 
the accumulation of  extracellular matrix. Both adipo-
nectin receptors, adipoR1 and adipoR2, are expressed in 
HSC. Adiponectin treatment maintains HSC quiescence, 
inhibits platelet-derived growth factor-stimulated prolif-
eration and migration of  human HSCs, and reduces the 
secretion and of  monocyte chemoattractant protein-1 
through AMPK-dependent mechanisms[94,125,126]. Ad-
ditionally, adiponectin also regulates hepatic expression 
of  TGFβ1, a pro-fibrotic factor involved in HSC activa-
tion[58,127] that plays an important role in neofibrogenesis 
of  NAFLD[128].

Inhibition of  adipoR2 expression by short hairpin 
RNAi-expressing adenovirus can induce TGFβ1 expres-

sion, and overexpression of  adipoR2 diminishes TGFβ1 
mRNA level. 

Regulatory role of adiponectin on mitochondria 
activities
Mitochondrial dysfunction represents a central mecha-
nism linking obesity with associated metabolic compli-
cations[129]. In patients with NASH, the hepatic mito-
chondria exhibit ultrastructural lesions and decreased 
activity of  the respiratory chain complexes[130,131]. In 
this condition, the decreased activity of  the respiratory 
chain results in accumulation of  reactive oxygen species 
(ROS) that oxidize fat deposits to form lipid peroxidation 
products, which in turn, cause steatohepatitis, necrosis, 
inflammation and fibrosis. The increased mitochondrial 
ROS formation in steatohepatitis could directly damage 
mitochondria DNA and respiratory chain polypeptides, 
induce NF-κB activation and the hepatic synthesis of  
TNFα[132]. Oxidative phosphorylation reactions mediated 
by mitochondria respiratory chain (MRC) complexes are 
directly involved in regulating intracellular ROS activities 
and preventing accumulation of  lipids and lipid peroxida-
tion products in the liver. 

Mice without adiponectin show an increased lipid 
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accumulation even under normal chow feeding[117]. This 
pre-existing hepatic steatotic condition might be the 
direct consequence of  dysregulated mitochondria func-
tions[117]. Adiponectin treatment restores the MRC activi-
ties, decreases the levels of  mitochondrial lipid peroxida-
tion products through regulating hepatic mitochondrial 
functions, which might represent a common mechanism 
underlying the multiple beneficial activities of  this hor-
mone in various obesity-related pathologies. Moreover, 
we have provided evidence supporting an essential role 
of  uncoupling protein 2 (UCP2), a mitochondria inner 
membrane transporter, in mediating the beneficial ef-
fects of  adiponectin on MRC activities. The protein and 
mRNA levels of  UCP2 are decreased in the liver tissues 
of  adiponectin knockout mice and can be significantly 
upregulated by adiponectin treatment. Overexpression 
of  adipoR2 upregulates mRNA levels of  UCP2, catalase, 
and superoxide dismutase 1 in the liver[97]. Furthermore, 
the effects of  adiponectin on MRC activities are dra-
matically attenuated in Ucp2-deficient mice, suggesting 
that the increased UCP2 expression might be obligatory 
for adiponectin to elicit its activities on mitochondria 
functions (Figure 2). UCP2 possesses anti-oxidant activi-
ties through inhibition of  ROS production from mito-
chondria[133]. It can also inhibit the production of  pro-
inflammatory cytokines in both macrophage and Kupffer 
cells[134]. A growing body of  evidence suggests that UCP2 
may play a beneficial role in various stages of  fatty liver 
diseases[134,135]. These results suggest the existence of  a 
reciprocal relationship between uncoupling proteins and 
adiponectin. However, the detailed signaling mechanisms 
underlying adiponectin-induced UCP2 expression are not 
clear and warrant further investigation.

ELEVATION OF ADIPONECTIN 
PRODUCTION AS A THERAPEUTIC 
STRATEGY FOR TREATMENT OF NAFLD
To date, there have been very few effective drug treat-
ments for NAFLD and NASH. Early diagnosis and 
management of  the underlying condition remains the 
mainstay of  treatment. The present “gold standard” for 
treatment of  NAFLD is weight reduction or a reduction 
of  central obesity[4]. These “life-style adjustment” or anti-
obesity measures (including bariatric surgery) impressively 
reduce liver cell injury, inflammation and hepatic fibrosis, 
as well as steatosis[136,137]. The potential for correcting ste-
atosis by dietary or pharmacological approaches should 
provide a sound therapeutic approach for the treatment 
of  steatosis and steatohepatitis. Strategies to block oxida-
tive stress are of  great interest, with some evidence that 
ALT normalization or histological improvement occurs 
with vitamin E (alone or with vitamin C or pioglitazone) 
and betaine[138].

Adiponectin and its agonists might represent emerg-
ing therapeutic agents for the treatment and/or preven-
tion of  liver dysfunctions[139-141]. Adiponectin replacement 

therapy is not yet available as a treatment option. Phar-
macological intervention aimed at elevating adiponectin 
production might hold promise for the treatment and/or 
prevention of  NAFLD.

CONCLUDING REMARKS
Based on our data, polymorphic UCP1 (AG + GG) 
obese patients with low adiponectin levels appear to be 
high-risk subjects for worsening of  liver steatosis, an 
NAFLD, possibly requiring a second-step evaluation by 
liver biopsy[142].

The role of  adiponectin in systemic inflammation 
and critical illness is not well defined. Early data suggest 
that plasma levels of  adiponectin are decreased in critical 
illness[143]. Whether this is a result of  the disease process 
itself  or whether patients with lower levels of  this hor-
mone are more susceptible to developing a critical illness 
is not known. This observation of  lower adiponectin 
levels then raises the possibility of  therapeutic options to 
increase circulating adiponectin levels[143]. The various op-
tions for modulation of  serum adiponectin (recombinant 
adiponectin, thiazolidinediones) are discussed.

Nevertheless, adiponectin-based therapeutics for NAFLD 
represent a promising area for further investigation. 

CONCLUSION
Adiponectin is an abundant adipocyte-derived hormone 
with well established anti-inflammatory and insulin sen-
sitizing properties. The significance of  adiponectin in 
protecting obesity-related NAFLD has been increasingly 
recognized. Despite the advances made in recent years, the 
detailed molecular and cellular mechanisms underlying its 
hepato-protective functions remain largely uncharacterized.
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