
3778 April 14, 2014|Volume 20|Issue 14|WJG|www.wjgnet.com

Online Submissions: http://www.wjgnet.com/esps/
bpgoffice@wjgnet.com
doi:10.3748/wjg.v20.i14.3778

World J Gastroenterol  2014 April 14; 20(14): 3778-3794
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

Inhibition of host immune response in colorectal cancer: 
Human leukocyte antigen-G and beyond

Marica Garziera, Giuseppe Toffoli

Marica Garziera, Giuseppe Toffoli, Experimental and Clinical 
Pharmacology Unit, CRO Aviano National Cancer Institute, 
33081 Aviano, Italy
Author contributions: Garziera M and Toffoli G established 
the design and conception of the paper; Garziera M analyzed 
the literature data and provided the first draft of the manuscript; 
Garziera M created figures and tables; Toffoli G discussed and 
revised critically for intellectual content; Garziera M submitted 
the manuscript; and Toffoli G approved the final version prior to 
publication. 
Supported by Associazione Italiana per la Ricerca sul Cancro 
(AIRC), Special Program Molecular Clinical Oncology, 5X1000, 
No. 12214 (G.T.); European Research Council, Programme ‘‘Ide-
as’’, Proposal No. 269051 (G.T., F.R.)
Correspondence to: Marica Garziera, PhD, Experimental and 
Clinical Pharmacology Unit, CRO Aviano National Cancer Insti-
tute, via Franco Gallini 2, 33081 Aviano, Italy. mgarziera@cro.it
Telephone: +39-434-659816  Fax: +39-434-659799
Received: October 25, 2013    Revised: January 22, 2014
Accepted: February 26, 2014
Published online: April 14, 2014

Abstract
Colorectal cancer (CRC) is one of the most diffuse can-
cers worldwide and is still a clinical burden. Increasing 
evidences associate CRC clinical outcome to immune 
contexture represented by adaptive immune cells. Their 
type, density and location are summarized in the Im-
mune Score that has been shown to improve prognos-
tic prediction of CRC patients. The non-classical MHC 
class Ⅰ human leukocyte antigen-G (HLA-G), is a crucial 
tumor-driven immune escape molecule involved in im-
mune tolerance. HLA-G and soluble counterparts are 
able to exert inhibitory functions by direct interactions 
with inhibitory receptors present on both innate cells 
such as natural killer cells, and adaptive immune cells as 
cytotoxic T and B lymphocytes. HLA-G may play a promi-
nent role in CRC strategies to avoid host immunosurveil-
lance. This review highlights the current knowledge on 
HLA-G contribution in CRC, in related inflammatory dis-

eases and in other type of cancers and disorders. HLA-G 
genetic setting (specific haplotypes, genotypes and al-
leles frequencies) and association with circulating/soluble 
profiles was highlighted. HLA G prognostic and predictive 
value in CRC was investigated in order to define a novel 
prognostic immune biomarker in CRC.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Colorectal cancer (CRC) prognosis is strictly 
associated with the immune contexture of tumor micro-
environment. IS improves prognostic prediction in CRC. 
Human leukocyte antigen-G (HLA-G) through its direct 
inhibitory functions on NK cells and cytotoxic T and B 
lymphocytes represents a crucial tumor-driven immune 
escape molecule. This review highlights the current 
knowledge on HLA-G in CRC and in related inflamma-
tory diseases. HLA-G genetic setting and circulating/
soluble profiles need to be defined to comprehend CRC 
strategies to avoid host immune defences. We suggest 
that HLA G could represent a novel prognostic immune 
biomarker to associate with the Immune Score to bet-
ter characterize host immune response in CRC.
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INTRODUCTION
Colorectal cancer (CRC) remains one of  the leading 
causes of  cancer death worldwide[1-3]. CRC develops 
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sporadically[4], in the setting of  hereditary forms[5], or on 
the basis of  inflammatory bowel disease (IBD)[6]. The 
adenoma-carcinoma transition is the well-established 
known model for CRC onset[7] and, its genetic and mo-
lecular background have been widely described[5,8]. In the 
last years, the elaborate exchange among innate-adaptive 
immune cells of  the tumor microenvironment, the local 
inflammatory state, and the host immune response in 
solid tumors, generated the concept of  cancer immu-
noediting, characterized by the final escape phase exerted 
by the cancer from host defence immunity[9]. Increas-
ing evidences demonstrated that solid tumors such as 
CRC are infiltrated by different adaptive cells of  the im-
mune contexture that may influence the progression of  
the disease[10]. These experimental observations finally 
provided the design of  the Immune Score (IS) that is 
now considered as a novel and independent prognostic 
marker, in human cancer as well in CRC[11]. IS, is repre-
sented by densities of  adaptive immune cells: infiltrating 
CD8+ cytotoxic T lymphocytes (CTLs), and CD45RO+ 

memory T cells, detected in center and marginal tumor 
areas[12]. Higher number of  infiltrating CD8+ CTLs and 
CD45RO+ memory T cells correlates with an improved 
patient prognosis; lower numbers correlate with tumor 
relapse[13]. IS demonstrated to have a prognostic value for 
overall survival (OS) and disease free survival (DFS) in 
retrospective studies[14], and is currently being submitted 
for clinical validation in prospective CRC studies, in 16 
different Countries world wide[15].

The non-classical HLA-G is considered a tolerogenic 
molecule due to its inhibitory functions vs T lymphocytes, 
NK cells and other cell types of  immune contexture[16]. 
HLA-G is only recently been involved in tumor escape 
mechanisms from the host immune recognition and de-
struction[17], and is considered a tumor microenvironment 
molecule[16,18]. HLA-G shows a lower nucleotide vari-
ability in coding sequences, while is highly polymorphic 
in the untranslated regions (UTRs), both in 5’ and 3’ seg-
ments[19,20] (Figure 1). Polymorphic sites mainly present 
in the 3’UTR region, may affect the post transcriptional 
regulation and biological functions of  HLA-G[21]. Indeed, 
through alternative splicing, HLA-G can be expressed as 
seven different and specific molecules, four membrane 
bound (HLA-G1 to -G4) and three soluble (HLA-G5 to 
-G7)[22]. Most of  the published data concern the HLA-G1 
molecule and its soluble counterpart HLA-G5[23]. 
HLA-G1 can be shed generating a soluble isoform 
(sHLA-G1)[17]. The functional characterizations of  the 
five remaining HLA-G isoforms have been yet not clearly 
elucidated. HLA-G is over-expressed in CRC[24-26] and is a 
common signature in other types of  cancer, autoimmune 
disorders, viral infections and transplantations[16-18]. In-
crease in circulating sHLA-G has been detected in CRC 
in few studies[27,28] and in other malignancies[23,29-31]. Grow-
ing attention is focusing on the genetic setting related to 
the UTRs, especially the 3’UTR involved in micro RNA 
(miRNA) binding[32]. Single nucleotide polymorphisms 
(SNPs) in this region have been associated with the dis-

ease risk in cancer[33-35] and other disorders[36,37] (Table 1), 
but the association with CRC and the prognostic value 

in this type of  malignancy, remain to define. Aim of  this 
review was to investigate the HLA-G as a potential prog-
nostic biomarker in CRC and related inflammatory colon 
diseases, both at the genetic and circulating profiles (Table 
2). Genotypic-phenotypic correlation has been highlight-
ed and its potential role in IS explored (Figure 2). 

CRC AND CHRONIC COLONIC 
INFLAMMATION
CRC is one of  the most diffuse cancers worldwide with 
about 1.2 million new cases and 600000 deaths recorded 
annually[1].

Despite improvements and advances in diagnosis, 
surgery and treatment, CRC is still the 2nd most common 
cause of  cancer death in the United States and other in-
dustrialized countries[2,3].

Development of  sporadic (88%-94%) and hereditary 
forms of  CRC are mainly related to the accumulation of  
genetic changes in gatekeeper and caretaker genes like 
APC and other oncoproteins (K-ras, erb-s, c-src, β -catenin, 
PI3K) and tumor suppressors (p53, Smad4)[4,5], according 
to the aberrant crypt foci (ACF)-adenoma-carcinoma 
transition model[7]. It is well-established that the acquisi-
tion of  these mutations in a multistep mechanism is part 
of  the genomic instability process that comprehends the 
chromosomal instability (CIN), microsatellite instability 
(MSI), and CpG island methylator phenotype (CIMP) 
pathways[8]. While CIMP exhibits gene silencing due to 
hypermethylation of  CpG islands, in CIN positive tu-
mors (about 70% of  sporadic CRCs) an imbalance in 
chromosome number (aneuploidy), subchromosomal 
genomic amplifications and a high frequency of  loss of  
heterozygosity (LOH) are observed[38]. About 15% of  
sporadic CRCs, mostly in the proximal colon anatomic 
site, are characterized by MSI with a large number of  
mutations at microsatellite sequences interesting the 
DNA mismatch repair (MMR) system, so the conse-
quence is the accumulation of  thousands of  unrepaired 
mutations[39,40].

Genesis of  most of  CRCs depends also from en-
vironmental factors like intestinal microbiota, dietary 
habits and lifestyle, associated with the patient genetic 
background[41]. The chronic colonic inflammation due to 
active ulcerative colitis (UC) or Crohn’s disease (CD), the 
two major forms of  inflammatory bowel disease (IBD), 
lead to the colitis-associated cancer (CAC) development 
that is a CRC subtype[6]. In UC, inflammation is limited 
to the mucosal layer and usually starts from the rectum 
spreading then into the colon, while in CD all the layers 
of  gut wall are interested with the terminal ileum and also 
the colon as the most common sites[42].

IBD subjects are at increased risk to develop the tu-
mor; it is estimated that about 20% of  patients affected 
by chronic UD and CD for a long time, within 30 years, 
develop CAC; thus CRC risk increases with the duration 
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of  the IBD and the severity of  inflammation[43].
Pathogenesis of  CAC in chronic colitis patients dif-

fers from the classical model sustained by sporadic CRC, 

for a transition from low-high grade dysplasia to carci-
noma and also for the sequence of  cellular and molecular 
events[44]. In CRC adenomatous polyposis coli (APC) 
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Figure 1  human leukocyte antigen-G single nucleotide polymorphisms involved in the biological features of the protein: nucleotide variants in the 5’-3’ 
untranslated regions may influence human leukocyte antigen-G expression levels by modifying the affinity of gene targeted sequences for transcriptional 
(5’) or post-transcriptional (3’) factors respectively. Polymorphisms in 5’UTR (fucsia) were previously described by Costa et al[113] those in 3’UTR (light blue) by 
Castelli et al[19]. In red 3’UTR SNPs involved in HLA-G mRNA stability and availability are highlighted. In orange the only one microRNA with a demostrated functional 
inhibitory role in the HLA-G expression[134] was highlighted . UTR: Untranslated region; SNPs: Single nucleotide polymorphisms; HLA-G: Human leukocyte antigen-G.

Table 1  List of associations found between single nucleotide polymorphisms/alleles in human leukocyte antigen-G untranslated 
regions and different pathologies; genotype-phenotype correlations were also reported

UTRs SNP Genotype and/or allele Disease Association with1 UTR SNP and 
sHLA-G correlation

sHLA-G 
level

Statistical 
significance2

Country Ref.

3’ 14 bp INDEL 14 bp I/I PE Increased disease risk ND ND Yes China [36]
3’ 14 bp INDEL 14 bp I/I RSA3 Increased disease risk ND ND No Denmark [112]
3’ +3142 C/G +3142 GG and G allele SLE Increased disease risk ND ND Yes Brazil [37]
3’ 14 bp INDEL 14 bp I/I SLE Increased disease risk ND ND No Brazil [37]
3’ 14 bp INDEL 14 bp I/I OvaC Increased disease risk ND ND Yes Canada [33]
3’ 14 bp INDEL 14 bp D/D EsophC Increased disease risk ND ND Yes China [34]
3’ 14 bp INDEL 14 bp D/D and D allele HCC Increased disease risk ND ND Yes Brazil [35]
3’ 14 bp INDEL 14 bp I/I and D allele HCC Increased disease risk ND ND No South Korea [137]
3’ 14 bp INDEL 14 bp I/I Allo-HSCT Lower OS and DFS ND ND Yes Italy [138]
3’ 14 bp INDEL 14 bp D/D RA MTX therapy 

(responder group)
Yes Higher  Yes4 Italy [114]

3’ 14 bp INDEL 14 bp I/I RR-MS sHLA-G Yes Lower  Yes4 Italy [139]
3’ +3142 C/G +3142 GG RR-MS sHLA-G Yes Lower  Yes4 Italy [139]
3’ 14 bp INDEL 14 bp I/I IVF3 sHLA-G Yes Absent Yes Denmark [141]
5’ -725C/G/T -725C>G IVF3 sHLA-G Yes Absent ND Denmark [141]
3’ 14 bp INDEL 14 bp I/I Heart T sHLA-G Yes Lower Yes Canada [142]
3’ 14 bp INDEL 14 bp I/I HD sHLA-G Yes Lower Yes China [143]
3’ 14 bp INDEL 14 bp D allele ERA Improved disease 

remission
Yes Higher  Yes4 Italy [144]

5’ -725C/G/T -725Callele RPL3 sHLA-G Yes Lower Yes Iraq [148]
3’ 14 bp INDEL 14 bp I/I PTC Increased disease risk not 

found
No Higher  Yes5 Italy [31]

1Data reported in this column are related to the association with SNPs in UTRs; the increased disease risk was compared with a HD control group; 2Statisti-
cal significance is referred to HLA-G SNP and disease status analysis; 3The disease status is related to infertility problems; 4A statistical significance was 
found also between HLA-G SNP and sHLA-G levels; 5A statistical significance was found between sHLA-G levels and the disease risk. UTR: Untranslated 
region; SNP: Single nucleotide polymorphism; sHLA-G: Soluble human leukocyte antigen-G; INDEL: Insertion/deletion polymorphism; I: Insertion; D: 
Deletion; PE: Pre-eclampsia; RSA: Recurrent spontaneous abortions; SLE: Systemic lupus erythematous; OvaC: Ovarian cancer; EsophC: Esophageal cancer; 
HCC: Hepatocellular carcinoma; Allo-HSCT: Allogeneic hematopoietic stem cell transplantation; RA: Rheumatoid arthritis; RR-MS: Relapsing-remitting 
multiple sclerosis; IVF: In vitro fertilization failure; Heart T: Heart transplantation; HD: Healthy blood donors; ERA: Early rheumatoid arthritis; RPL: Recur-
rent pregnancy loss; PTC: Papillary thyroid carcinoma; OS: Overall survival; DFS: Disease free survival; MTX: Methotrexate; ND: Not determined.
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carcinogen azoxymethane (AOM)[52].
A growing body of  evidence is focusing both on 

relationships between the immune contexture of  solid 
tumors like CRC, and patient prognosis in terms of  DFS 
and OS[53]. Tumor microenvironment is represented by a 
complex network of  stromal, inflammatory and immu-
nocompetent cells. Histopathological analyses show that 
solid cancers are infiltrated by innate-adaptive immune 
cells, that have a role in tumor growth[54,55].

The interplay among tumor cells and immune system 
is highly complex and suggested the concept of  cancer 
immunoediting, a dual process in which the main actors 
are the host-protective and the tumor-promoting actions 
of  immunity[9,56,57]. Cancer immunoediting occurs in three 
phases: elimination, equilibrium and escape. In the elimi-
nation phase (the modern concept of  the older notion 
“cancer immunosurveillance”)[58], innate and adaptive im-
munity work together to recognise and destroy nascent 
tumor cells. If  tumor cell variants are not completely 
eliminated, will enter into an equilibrium phase, in which 
adaptive immunity controls and stems the growth of  

protein loss of  function, is an early event during the for-
mation of  precocious adenoma, while it is less frequent 
and occurs in the late pathogenesis of  CAC[45]. p53-loss 
of  heterozygosity (LOH), p53 mutations or loss of  func-
tion are early molecular events characterizing CAC origin 
instead of  CRC in which they frequently occur in the late 
adenoma-carcinoma transition[46,47].

IMMUNE CONTEXTURE IN 
INFLAMMATION AND CRC
The chronic inflammatory status is a common feature of  
colorectal and colitis-associated tumors. Chronic inflam-
mation is modulated by immune innate/adaptive cells in-
filtration and immune microenvironment[48,49]. The crucial 
role of  inflammation in tumorigenesis is emerged only 
recently and now it is estimated that about 15%-20% of  
cancers are related to an underlying chronic inflammation 
process[50,51]. CAC is considered a classical inflammation-
driven cancer as demonstrated in mice models in pres-
ence of  dextran sodium sulphate (DSS) and the pro-
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Figure 2  Schematic representation of colorectal cancer tumor microenvironment: potential influence of human leukocyte antigen-G expression on Im-
mune Score and host immune local response. A: High HLA-G expression shows an inhibitory role against host immune defences, represented mostly by natural 
killer cells and CTLs. Increased HLA-G expression in the local microenvironment is also supported by exosome contribution through a hypothetical trogocytosis re-
lease mechanism that mediates HLA-G up-take. Another consequence is a direct association with a low IS value due to HLA-G inhibitory functions on CTLs in CT/IM 
areas of the tumor, and consequently with a worse patient prognosis (not represented); B: Lower HLA-G expression correlates with a high IS value and a favoureable 
immune contexture that improves host immune response and patient prognosis (not represented). Representation of IS is referred to recent quality and validation 
criteria[15] (see text for further clarifications). HLA-G: Human leukocyte antigen-G; CTLs: Cytotoxic T lymphocytes; IS: Immune Score; CT: Center of the tumor; IM: In-
vasive margin. 
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clinically undetectable tumor cells and blocks tumor cell 
immunogenicity. When dormancy of  tumoral cells stops, 
malignant cells with reduced immunogenicity shift into 
the escape phase and begin to grow and proliferate in an 
immunologically unrestrained way, establishing an immu-
nosuppressive tumor microenvironment, and becoming 
clinically detectable. Escape mechanism from immune 
host control is now considered one of  the hallmarks of  
cancer[59]. Innate immunity is the first line of  host defense 
and it is specialized in counteracting cancer cells and vi-
rally infected cells.

Innate immune cells i.e., myeloid derived suppres-
sor cells (MDSCs), macrophages, neutrophils, dendritic 
cells (DCs), mast cells (MCs), and NK cells, may have a 
pro- or anti-tumorigenic role in both CRC and CAC[60]. 
MDSCs under the control of  nuclear factor κB (NF-κB), 
produce interleukin (IL)-6 that activates transcription 
factor signal transducer and activator of  transcription 3 
(STAT3) resulting in survival, growth and progression 
signals in early CAC[61]. 

Macrophages are responsible mainly for pro-inflam-
matory cytokines release and are distinguished in two 
types. Type 1 macrophages (M1) that are activated by 
interferon (IFN)-γ or tumor necrosis factor (TNF) cy-
tokines, are efficient producers of  reactive oxygen and 
nitrogen species, have an interleukin (IL)-10low IL-12high 

IL-23high inflammatory phenotype, and tend to negatively 
control tumor growth[62]. Conversely, type 2 macrophages 
(M2) share an IL-10high IL-12low IL-23low anti-inflamma-
tory phenotype and stimulate cancer proliferation by 
secreting immunosuppressive cytokines like IL-10. Pro-

duction of  mediators promoting angiogenesis such as 
Vascular Endothelial Growth Factor A (VEGFA) and 
Cyclo-Oxygenase-2 (COX-2)-derived prostaglandin E2[63], 

hypoxia-dependent upregulation of  chemokines (C-
X-C motif), induces accumulation of  M2 macrophages 
that is the predominant phenotype in tumor microen-
vironment[64,65]. A macrophage polarization of  tumor-
associated macrophages (TAMs) due to the local colonic 
microenvironment during tumor progression is observed 
with a switching from M1 (inflammatory) to M2 (anti-
inflammatory) type and a gradual NF-κB inhibition[66]. 
TAMs are one of  the major components of  leukocyte 
infiltrates in tumors and represent an independent prog-
nostic factor of  poor prognosis in multivariate analysis in 
different malignancies[67]. In CRC, TAMs correlate with 
improved OS[68]. Finally, innate immune cells orchestrate 
a complex inflammatory environment that may be modu-
lated to either stimulate or inhibit CRC proliferation[69,70].

While innate immunity does not involve a specific 
antigen or peptide or particular tumor-associated antigen 
recognition, this is a prerequisite for adaptive immunity. 
Cells of  adaptive immune system are mainly represented 
by B lymphocytes, T helper 1 (Th1) and T helper 2 (Th2) 
CD4+ cells, CD8+ Cytotoxic T lymphocytes (CTL) cells 
and CD4+ T regulatory (Treg) cells[71]. Recent findings of  
memory responses by NK cells suggest that also NK may 
contribute to adaptive immunity[72]. To destroy cancer 
cells, CTLs need to recognize an antigen exposed on the 
tumor cells in association with the human leukocyte anti-
gen (HLA) class Ⅰ proteins[73]. Only through recognition 
of  this tumor cell antigen/HLA Ⅰ complex for which 

Table 2  Summary of human leukocyte antigen-G evaluations in colorectal cancer and related colonic diseases of the gastrointestinal 
tract

Sample type HLA-Gs Methods Disease, n Relevances Ref.

Tumor DNA HLA-G RT-PCR CRC, n = 39 HLA-G mRNA was significantly more expressed in CRC (87.2%) than in the extra 
neoplastic tissue

[24]

Tumor tissue HLA-G IHC CRC, n = 201 HLA-G is over-expressed in primary CRC sites (64.6%), but not in the normal 
CRC tissues or benign adenomas

[25]

Tumor tissue HLA-G IHC UC, n = 24; CD, n = 19 HLA-G and IL-10 are highly expressed in UC but not in CD tissue biopsies [154]
Tumor tissue HLA-G IHC CRC, n = 60; DA, n = 67; 

BC, n = 37; AC, n = 52
HLA-G is over-expressed in 52 % of CRC lesions 
and also in 79% of PDAs, 76% in BC and 75% AC

[26]

Tumor tissue HLA-G IHC CRC, n = 415 HLA-G is expressed in > 30% of CRC lesions 
(data summarize published data collected until 2008)

[16]

Tumor tissue HLA-G IHC CRC, n = 154 HLA-G is expressed in > 30% of CRC lesions (data summarize published data 
collected until 2005)

[17]

Serum sHLA-G ELISA CRC, n = 144 Higher sHLA-G levels in CRC (median 124.3 U/mL) compared to benign 
colorectal diseases (cut off value 88.6 U/mL). 

CEA showed less sensitivity e specificity

[27]

Plasma sHLA-G ELISA CRC, n = 37 sHLA-G as a diagnostic biomarker for the detection of early CRC 
(median 84 U/mL) with respect to BD (median 34 U/mL)

[28]

PBMC sHLA-G ELISA HD, n = 30; CD, n = 10; 
UC, n = 18

Spontaneous secretion of sHLA-G from cultured PBMCs of CD 
but not in UC and BD

[161]

Secretion of sHLA-G in CD patient cultures and BD but no in UC, 
after LPS stimulation

Plasma and 
PBMC

HLA-G ELISA UC, n = 27; CD, n = 22 Immunosuppressive therapy decreases sHLA-G hyperproduction in CD and 
induces its release in UD, in both plasma and in PBMC culture supernatants

[162]

HLA-G: Human leukocyte antigen-G; sHLA-G: Soluble HLA-G; CRC: Colorectal cancer; UC: Ulcerative colitis; CD: Crohn’s disease; PDA: Pancreatic ductal 
adenocarcinoma; BC: Biliary cancer; AC: Ampullary cancer; HD: Healthy blood donors; PBMC: Peripheral blood mononuclear cells; IHC: Immunohistoche-
mistry; LPS: Lipopolysaccharide; CEA: Carcinoembryonic antigen; IL: Interleukin; ELISA: Enzyme-linked immunosorbent assay.
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their T cell receptor (TCR) is specific, CTLs clonally ex-
pand and differentiate in memory T cells[74] (CD45RO+). 
CD45RO+ comprise CD3+, CD4+ and CD8+ T cells that 
have been exposed to antigen and respond faster and 
with an increased intensity after antigen stimulation com-
pared with naïve T cells[54]. 

Upon activation, CTLs release proteases and lytic 
components as perforin and mediate disruption of  tu-
mor cell membrane and activation of  apoptotic pathway. 
CD4+ T cells respond only to antigens presented by the 
HLA class Ⅱ proteins expressed by DCs in second-
ary or tertiary organs[75]. Many evidences highlight that 
one of  the cancer immunoediting topic is due to the 
fact that T-cell recognition of  tumor antigens drives 
the immunological destruction of  nascent and develop-
ing cancer cells. One of  the most well-known way used 
by tumors to escape from specific T-cell recognition 
mechanisms is down-regulation or total suppression of  
MHC Ⅰ molecules, and specific alteration leading to the 
inefficient presentation of  immunodominant antigens[76]. 

Recently, Matsushita et al[77], demonstrated that the 
immunoselection by CD8+ T cells of  tumor variants lack-
ing strong tumor-specific antigens represents one of  the 
mechanism by which cancer cells escape tumor immunity.

Th1 cells secrete cytokines like IFN-γ and TNF-α, 
support tissue destruction and CTLs by producing 
IL-2 required for CD8+ proliferation[78]. Th2 cells pro-
duce cytokines such as IL-10, IL-4 and IL-5, and limit 
CTLs proliferation. Tregs that also highly express CD25 
(CD4+CD25+) secrete IL-10 and Tumor Growth Fac-
tor (TGF)-β which dampen the immune response[79]. It 
should be emphasized that while CTLs, Th1 and Th17 
inhibit cancer growth, Th2 cells and Tregs stimulate 
cancer proliferation. Moreover, a shift in Th1 (tumor 
rejection)/Th2 (tumor promotion) immune response is 
observed in CRC[80]. Restoring of  normal immunological 
functions and pro-inflammatory cytokines after tumor 
resection in CRC were demonstrated, highlighting that 
CRC itself  has a direct immunosuppressive effect[81,82]. 

Overall, immune contexture should be considered as 
comprising the density of  CD8+ CTLs and CD45RO+ 

memory T cells, their location at the center of  the tumor 
(CT) and invasive margin (IM), combined with the qual-
ity of  tertiary lymphoid structures (TLS) and additional 
functionality entities such as Th1-related factors, che-
mokines, adhesion molecules and cytotoxic factors[83]. 
Indeed, in CRC, not only Th1 immunity markers (STAT1, 
IRF1, IFN-γ-SG pathway), cytotoxic markers (Granzyme 
Perforin, Granulysin, TIA1, Caspase pathway), but also 
chemoattraction (specific chemokines such as CX3CL1, 
CXCL10, CXCL9) and adhesion (molecules as ICAM1, 
VCAM1, MADCAM1) signatures are relevant in influ-
encing the density of  infiltrating immune cells[84,85].

CRC AND IMMUNE SCORE
Accumulating evidences since the late 1990s showed an 
association among tumor-infiltrating lymphocytes (TILs) 

able to inhibit cancer growth, and improved prognosis in 
CRC[10,86] and other malignancies such as melanoma[87] and 
ovarian cancer[88]. A particular phenotype in CRC is rep-
resented by MSI type tumors that are associated with a 
high TILs levels, loss or downregulation of  HLA class Ⅰ, 
better patient prognosis, a reduced metastatic potential, 
and a different response to chemotherapy[39,60]. 

In 2005-2006 the idea that the adaptive immune re-
sponse plays a role in preventing tumor recurrence in 
CRC emerged, mostly from the works of  Pagès et al[89] and 
Galon et al[13]. The authors first demonstrated that CRCs 
with high density of  infiltrating and effector memory T 
cells with a protective immune role, were less prompt to 
metastasize and can be associated with an increased sur-
vival of  patients[89]. Subsequently, using the same cohort 
of  patients, relationships among type, density and loca-
tion of  immune cells within the tumor and the clinical 
outcome, were investigated by using both genomic ap-
proaches and immunohistochemistry (IHC)[10]. Through 
the selection and the evaluation of  expression levels of  
genes involved in inflammation, Th1 adaptive immunity 
and immunosuppression, Galon et al[13] found a dominant 
cluster of  co-modulating genes for Th1 adaptive immune 
response (i.e., IFNG, CD8a, GLNY, GZMB, CD3z). Ap-
plying specific tissue microarrays and a dedicated image 
analysis work station, a quantification of  total (CD3+) T 
lymphocytes, CD8+ CTL effectors, associated molecule 
(GZMB), and CD45RO+ memory T cells, was performed 
both in CT and IM. 

High immune cell densities (CD3+, CD8+, GZMB 
and CD45RO+) in both CT and IM tumor regions were 
present in CRC patients without recurrence after adju-
vant therapy, while lower densities of  the same immune 
cell types correlated with disease recrudescence. Results 
highlighted an inverse correlation among expression of  
these genes and CRC relapse suggesting that Th1 adap-
tive immunity improve clinical outcome[13]. Camus et al[14] 
demonstrated the association between loss of  coordi-
nated functional immune reaction and the progression 
of  CRC to a metastatic phenotype. These preliminary 
results demonstrated for the first time that the host im-
mune response plays an important role in determining 
the outcome of  CRC patients. Type, density, and location 
of  immune cells in CRCs increase the prediction accuracy 
of  DFS and OS, and started to represent a superior and 
independent prognostic parameter with respect to the 
UICC-TNM well accepted classification[90]. 

Finally, all these data and evidences, culminated in 
the concept of  “Immune Score” that emerged for the 
first time in 2011 in the work of  Pagès et al[12]. A multi-
variate Cox proportional hazard regression model was 
used to assess the hazard ratio of  the immune score 
combination (CD45RO/CD8) in specific tumor regions 
(CT/IM), together with clinical and histopathological 
tumor markers. Pagès et al[12], analyzing a large cohort 
of  CRC patients with early (Ⅰ-Ⅱ) stage, showed that 
the combined analysis of  cytotoxic (CD8+) and memory 
(CD45RO+) T cells confirmed its prognostic discrimina-
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tory power in the prediction of  tumor recurrence and 
survival[12]. Subsequently, the concept of  IS as a clinical 
prognostic marker improving the standard TNM classi-
fication at any stage of  CRC, has been established evalu-
ating infiltrating lymphocytes of  599 CRC specimens 
by Mlecnik et al[91]. Patients with high IS had increased 
DFS and OS, and patients with a low IS were likely to 
experience a disease relapse[92]. IS represents a standard-
ized, simple and powerful immune stratification system 
proposed as a novel prognostic immune marker for rou-
tine testing potentially helpful for CRC management to 
better identify and stratify high-risk patients who would 
benefit most from adjuvant therapy[12].

Cancer outcomes can vary significantly among pa-
tients with the same stage and this could be related to dif-
ferences in immune cells densities from patient to patient 
as in CRC[93]. This argues the limit of  traditional AJCC/
UICC TNM classification in providing limited prognos-
tic information and predicting response to therapy[94]. A 
worldwide task force representing 22 Institutions from 
16 different countries, is working now for IS validation 
in clinical practise, with the aim to introduce it as a new 
component of  classical cancer classification, that will 
maybe designate in future as TNM-I (TNM-Immune)[15]. 
To improve quality and validation in standard labora-
tories, IS will be quantified by the combination of  the 
two easiest membrane stains CD3 and CD8 to avoid any 
background noise due to CD45RO and GZMB stains[15]. 
Special emphasis will be focused in the prognostic signifi-
cance of  validated immunologic parameters in CRC that 
with the primary goal to validate the prognostic power 
of  the IS in routine settings of  stage Ⅰ/Ⅱ/Ⅲ CRC 
patients and for recurrence prediction for stage Ⅱ CRC 
patients[95]. Thus, the bases to revise and renegotiate the 
clinical outcome based on classical clinical parameters 
have been seeded[96].

Recently, a great emphasis has been done in an at-
tempt to define the prognostic role of  another subtype 
of  tumor infiltrating cells. Treg cells also positive for 
the nuclear transcription factor protein forkhead box P3 
(Foxp3), showed a strong and independent prognostic 
significance in CRC, superior to CD45RO+ and CD8+ 
cells[97]. Foxp3+ Tregs cells are generally associated with 
immunosuppressive properties and poor prognosis in dif-
ferent solid tumors such as hepatocellular[98], prostate[99] 
and pancreatic carcinoma[100], but conversely were report-
ed to be associated with improved prognosis in CRC[97]. 
Although Foxp3 is a well accepted marker used to iden-
tify tumor infiltrating CD4+ CD25+ Tregs, it is known 
that a small proportion of  Foxp3+ cells may also be 
CD8+. CD8+ CD25+ Foxp3+ T cells showed suppressive 
capacities in CRC[101], suggesting that Foxp3+ role should 
be more explored. Foxp3 expression evaluated in tumor 
cells was associated with worse outcome of  patients in 
different solid tumors[102-104] but not in CRC, highlighting 
a new independent prognostic factor. Recently, Foxp3+ 
expression in tumor cells was compared to Foxp3+ Treg 
infiltration in CRC, demonstrating for the first time an 

inverse correlation between the number of  Foxp3+ Treg 
and the level of  Foxp3+ in tumor cells, suggesting an anti-
proliferative effect of  TGF-β on Tregs[105]. Furthermore, 
patients with high Foxp3+ expression profile in CRC 
tumor cells were correlated with a poorer prognosis that 
was not observed for Foxp3+ Treg in the tumor[106].

HLA-G: A CRUCIAL TUMOR-DRIVEN 
IMMUNE ESCAPE MOLECULE
HLA-G is considered as a tolerogenic molecule exerting 
its inhibitory functions by direct interaction with differ-
ent inhibitory receptors of  the immunoglobulin family 
present on NK cells (ILT2/CD85j, KIR2DL4/CD158d), 
T lymphocytes (ILT2/CD85j, KIR2DL4/CD158d), B 
cells (ILT2/CD85j), endothelial (CD160), macrophages, 
monocytes and DCs (ILT2/CD85j, ITL4/CD85d)[16]. 
HLA-G expression was originally detected in non-patho-
logic conditions and restricted to extravillous cytotropho-
blast, thymic epithelial cells, cornea, pancreas, erythroid 
and endothelial precursor cells[18]. Recent studies showed 
that HLA-G proteins can be detected also in pathological 
conditions, such as in allografts and infiltrating immune 
cells within transplanted tissues, inflammatory diseases, 
virus infections and cancer[107-109]. Originally, durings the 
1990s, HLA-G role in maternal-fetal tolerance prevent-
ing attack of  the fetus by the maternal immune system by 
its interaction with uterine NK cell inhibitory receptors 
was demonstrated[110]. This binding through KIRDL4 
receptor stimulates secretion of  cytokines and angiogenic 
factors from NK cells, which favours implantation and 
placental vascularisation and development. Trophoblast 
itself  secretes HLA-G modulating balance among these 
proangiogenic and antiangiogenic factors. The tolero-
genic role of  HLA-G in pregnancy is strongly supported 
by the correlations between HLA-G down regulation 
and preeclampsia/spontaneous abortions events[111-113]. 
These preliminary evidences observed in maternal-fetal 
tolerance suggested also that microenvironment factors 
may modulate HLA-G expression in tissues. Ectopic 
expression of  HLA-G in damaged cells or tissues may 
be enhanced by stress, nutrient deprivation, hypoxia, hor-
mones such as progesterone, cytokines (GM-CSF, IFNs, 
IL-10, TNF-α, TGF-β, LIF)[16] and immunosuppressive 
drugs[114].

HLA-G gene is composed of  eight exons and seven 
introns with a stop codon at exon 6, a quite large 5’UTR 
extending at least 1.4 kb from ATG, and a 3’UTR[32]. 
The coding exons transduce only the heavy chain of  the 
molecule and are located on chromosome 6, while β2-
microglobulin (β2m) is encoded by a separated gene on 
chromosome 15. Exon 1 encodes the signal peptide, 
exons 2, 3 and 4 the extracellular α1, α2 and α3 domains 
respectively, and exons 5 and 6 the transmembrane and 
the cytoplasmic domain of  the heavy chain. Exon 7 and 
8 are not translated. The 3’UTR is included in the exon 
8[21]. Classical HLA class Ⅰ molecules are characterized 
by nucleotide sequence variations around the peptide-
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binding cluster encoded by exon 2 (α1 domain) and exon 
3 (α2 domain), while HLA-G nucleotide variability spans 
through exon 2, 3 and 4 (α3 domain)[21,22]. HLA-G coding 
sequence has a limited genetic variability in contrast to 
the classical HLA class Ⅰ molecules that exhibit hundreds 
of  alleles and, to date, 49 different alleles and 15 related 
proteins have been recognized[115]. On the other hands, 5’
UTR and 3’UTR segments are high polymorphic, both 
influencing HLA-G expression modifying the affinity 
of  gene targeted sequences for transcriptional or post-
transcriptional factors, respectively[19] (Figure 1). 

Indeed, HLA-G may presents 7 protein isoforms gen-
erated by alternative splicing of  the primary transcript. 
4 isoforms are membrane-bound (HLA-G1, G2, G3 
and G4) and 3 are soluble (G5, G6 and G7) species[23]. 
HLA-G1 and HLA-G5 are the most common isoforms 
observed, but HLA-G1 was the first isoform to be dis-
covered in healthy tissues and first implicated in materno-
fetal tolerance[116]. HLA-G1 is the complete protein 
similar to the other classical membrane bound HLA-I 
molecules associated with β2m[23]. Crystal structure of  the 
protein have shown that the full-length HLA-G1 is com-
posed of  a heavy chain non-covalently associated with 
the β2m molecule, and a peptide of  about 8-10 amino ac-
ids similar to that found in the other classical Ⅰ HLAs[117]. 
HLA-G2 isoform has no α2 domain, HLA-G3 has no 
both α2 and α3 domains, HLA-G4 does not present 
α3 domain[21]. This high post transduction availability in 
HLA-G molecules suggests a deeper modulation due to 
alternative splicing involving mostly 3’UTR region. We 
speculate that it could be tissue specific considering that 
miRNA are differentially expressed, and this modulation 
may be influenced by inflammation status and immune 
contexture microenvironment. It is known that KIR2DL4 
present on NK and T cells binds HLA-G through α1 do-
main, or ITL-4 (DCs, monocytes and macrophages) and 
CD8 (T and NK cells) bind via α3 domain, or ITL-2 via 
α3 domain in association with β2m, however, the exact 
role of  the less common HLA-G isoforms has not been 
elucidated[118]. HLA-G dimers may also be formed via a 
Cys42-Cys42 intermolecular disulfide bond on the α1 
domains of  the heavy chains from two HLA-G mono-
mers. These HLA-G dimers exhibit enhanced binding 
avidity for ITL2/4-mediated signaling[119]. Soluble and not 
bound HLA-G5, HLA-G6 and HLA-G7 species have 
the same extraglobular domains of  HLA-G1, HLA-G2 
and HLA-G3 respectively[21]. It should be pointed that 
another form of  HLA-G may be generated by proteolytic 
shedding of  the isoform HLA-G1 (sHLA-G1)[120] and 
potentially anchored HLA-G2-G4, can also be shed from 
the cell surface if  expressed. It should be highlighted that 
sHLA-G1 is analogue to the sHLA-G5 isoform. Soluble 
isoforms consequent to secretion or shedding, especially 
the most common sHLAG5 and sHLA-G1, can be 
detected in body fluids such as plasma, serum, ascites, 
cerebro spinal fluids exudates from patients with inflam-
matory diseases o cancer[17,121,122]. Similarly to membrane 
bound HLA-G1, sHLA-G exerts immunosuppressive 

functions vs cells of  the immune contexture. Further-
more, sHLA-G produced by immune cells and/or by 
cancer cells induces apoptosis of  activated CD8+ T cells 
by binding to CD8 and by triggering a Fas/FasL-depen-
dent pathway[119]. Moreover, the release of  IL-3, IL-4 and 
IL-10 is stimulated by sHLA-G[17]. Increased sHLA-G 
levels compared to healthy controls have been reported 
in successful pregnancy after in vitro fertilization (IVF)[121], 
in patients with lymphoproliferative disorders[29], mela-
noma[30], and different type of  cancers[23,31]. sHLA-G has 
been proposed as a diagnostic biomarker in CRC with 
increased specificity and sensibility respect to the well 
known carcinoembryonic antigen (CEA) protein[27]. Due 
to the possibility that serum sHLA-G is trapped within 
during the clot formation, to evaluate true biological 
sHLA-G levels, it is recommended to detect sHLAG in 
plasma[123]. Anyway, many studies still present data from 
serum samples. 

sHLA-G levels are commonly detected with classi-
cal ELISA assay by the use of  the monoclonal antibody 
(MoAb) MEM-G9 which recognizes (the precise epitope 
is unknown) the native HLA-G molecule in β2m as-
sociated forms, HLA-G1 and HLA-G5 soluble and not 
membrane bound isoforms[124]. It should be noted that re-
cently, Zhao et al[125] demonstrated by flow cytometry that 
the MEM-G9 antibody it is able to bind also HLA-G3 
isoform that is β2m free, thus speculating that an epitope 
on MEM-G/9 localized on the α1 domain of  HLA-G. 
HLA-G may be expressed at the cell surface and also se-
creted. Anyway, sHLA-G can also be produced into the 
cells and subsequently incorporated in microvesicles, the 
exosomes such as in cancer[126] (Figure 2). In exosomes, 
HLA-G molecules form high molecular weight com-
plexes through disulfide bridges, share partially an ubiq-
uitinated phenotype and can be released by exosomes as 
demonstrated recently in vivo[127]. Moreover, very prelimi-
nary data coming from the HLA-G Conference held in 
Paris in 2012, showed that in plasma samples of  healthy 
controls sHLA-G is preferentially exosomal-bound, while 
in plasma samples of  lung cancer patients the level of  
free “not exosomal-bound” sHLA-G is increased[128]. 
Intriguing, it was demonstrated a mechanism of  protec-
tion and immune evasion for HLA-G negative tumor 
cells that are in proximity of  HLA-G positive tumor cells. 
These HLA-G expressing tumor cells by “trogocytosis” 
transfer membrane patches containing HLA-G molecules 
to active and surrounding NK cells[129]. Upon acquisition 
of  HLA-G1-containing membranes from tumor cells, 
effector NK cells stop proliferating, stop being cytotoxic 
toward legitimate targets, and behave as regulatory cells 
capable of  inhibiting the cytotoxic functions of  other 
NK cells. This immediate functional inversion from an 
effector cell to a regulatory cell is directly due to acquired 
cell-surface HLA-G1[16]. We hypothesize that this mecha-
nism could be related also to exosome sHLA-G release 
in the extracellular medium (Figure 2) for its re-capture, 
under the influence of  unknown factors, may be chemo-
kines and/or cytokines, but experimental investigations 
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are needed. Moreover, we hypothesize a direct role of  
HLA-G in affecting the IS value considering its direct in-
hibitory properties over NK cells and CTLs[130] (Figure 2). 
This topic could represent a matter of  debate in the early 
future, not only for CRC.

HLA-G MODULATION REFLECTS 5’UTR 
AND 3’UTR GENETIC VARIABILITY
A growing body of  evidence has been focusing in the 
last years on the 3’UTR polymorphisms and haplotypes, 
due to the microRNAs (miRNAs) interaction and their 
influence on expression. In particular, at least eight dis-
tinct haplotypes and eight SNPs have been described 
so far: the14-bp Insertion/Deletion (INDEL), +3003 
T/C, +3010 C/G, +3027 C/A, +3035 C/T, +3142 C/G, 
+3187 A/G, and +3196 C/G[19] (Figure 1). INDEL and 
+3187 A/G SNPs have been associated with HLA-G 
mRNA stability and degradation processes even if, the ex-
act mechanisms are not already been well elucidated[21,131]. 
In presence of  the 14-bp Insertion (5’-ATTTGTTCAT-
GCCT-3’) sequence, HLA-G alleles have been associated 
with lower mRNA production[132]. In the other hand, it 
has been demonstrated that a smaller fraction of  HLA-G 
mRNA transcripts presenting the 14-bp Insertion (Ins) 
can be alternative spliced from the mature HLA-G with 
the removal of  92 bases of  exon 8 (include SNPs +3003 
and +3010)[19]. mRNA producing smaller mRNA tran-
scripts, reported to be more stable than the complete 
forms[20]. Interestingly, some AU-rich elements (ARE) are 
present in the 3’UTR of  HLA-G, and it is known that 
these sequences are recognized by proteins causing rapid 
changes in mRNA stability[19,32]. The 14-bp sequence 
begins with AUUUG, and the absence of  such motif  in 
the 92 base-deleted transcripts might give an explanation 
of  their resistance to degradation processes[20]. The pres-
ence of  a guanine in the position +3142 increases the 
affinity of  specific miRNAs (miR-148a, miR-148b and 
miR-152) to the HLA-G mRNA, decreasing HLA-G ex-
pression[32,133] (Figure 1). The influence of  +3142G allele 
was demonstrated by functional studies in which HLA-G 
high expressing JEG-3 cells were transfected with miR-
148a: decreased soluble HLA-G levels were detected[134]. 

In Table 1 are listed the associations found among 
HLA-G UTR SNPs and alleles, in particular the 14 bp 
INDEL polymorphism, and various disorders includ-
ing cancer. Associations with circulating HLA-G levels 
were also reported if  investigated. Recently, the risk of  
invasive cancer of  uterine cervix was found to be signifi-
cantly increased in presence of  the 14 bp I/I and also the 
HLA-G*01:01:01:02 genotype in a large Canadian study 
of  539 women with histologically confirmed HG-CIN 
and invasive cancer; 833 women with normal cytology 
served as controls[33]. Moreover, 14 bp I/I genotype cor-
relates with disease progression from high-grade cervi-
cal intraepithelial neoplasia (CIN3) to invasive cancer[33]. 
Previous data provided evidences of  HLA-G expression 
in association with tumor metastasis and poor survival in 

an ovarian cancer animal model[135], and also with NK cell 
cytotoxicity inhibition and MMP-15 expression in ovar-
ian cancer cell line[136]. In Kazakh population the risk of  
developing esophageal carcinoma was significantly higher 
in individuals carrying the 14 bp Del/Del (D/D) geno-
type[34], while Teixeira et al[35] showed that the 14 bp (D/D) 
genotype increases hepatocellular carcinoma (HCC) sus-
ceptibility in Brazilian population. Conversely, the 14 bp 
INDEL was no associated with HCC and liver cirrhosis 
susceptibility in a Korean study[137]. The 14 bp I/I was 
also found to be related to lower OS and DFS in patients 
with haematological malignancies undergoing allogeneic 
Hematopoietic Stem Cell Transplantation (allo-HSCT) 
and Methotrexate (MTX) treatment in univariate and 
multivariate analysis[138]. The 14 bp I/I genotype was also 
suggested to represent a therapy marker in Rheumatoid 
Arthritis (RA), able to identify responder patients treated 
with MTX[114].

To date, an association among the +3142 C>G SNP 
and a specific disease status, was recently described only 
in the Systemic Lupus Erythematous (SLE) autoimmune 
disorder[37] and in Relapsing-Remitting Multiple Sclerosis 
(RR-MS)[139] (Table 1). 

A first attempt to find possible correlations be-
tween HLA-G genotype and phenotype (sHLA-G) was 
performed by Rebmann et al[140] in 2001, analyzing 94 
healthy subjects. In particular, individuals carrying the 
HLA-G*01041 allele had significantly higher sHLA-G 
levels, while individuals with HLA-G*01031 allele and 
HLA-G*0105N allele, presented significantly lower of  
plasmatic and circulating HLA-G[140]. It should be noted 
that the 5’UTR and 3’UTR HLA-G regions were not 
investigated. The 14 bp I/I was then associated with 
significantly lower levels of  sHLA-G in blood plasma or 
serum in different studies[141,142] (Table 1). Chen et al[143] 
reported a dramatic and significantly lower expression of  
sHLA-G in plasmatic samples from healthy donors (n = 
150) of  Chinese etnicity in the presence of  the 14 bp I/I 
genotype with respect to the 14 bp D/D. Another recent 
investigation performed in MS patients in serum and 
cerebro spinal fluid (CSF), demonstrated an association 
among higher sHLA-G levels and +3142 C/C, 14 bp 
D/D genotypes and lower sHLA-G levels in +3142 G/G, 
14 bp I/I combination[139] (Table 1). 

Rizzo et al[144] identified a subgroup of  Early Rheuma-
toid Arthritis (ERA) patients characterized by prevalence 
in 14 bp D/D, 14 bp D/I polymorphisms, and improved 
disease remission, therefore highlighting a protective role 
for the 14 bp Del allele. Moreover, the 14 bp Del allele 
was associated with higher sHLA-G and mHLA-G pro-
duction and ITL2 expression. In 2010 Castelli et al[19] de-
fined almost eight distinct 3’UTR haplotypes named from 
UTR-1 to UTR-8, that include the eight common poly-
morphisms of  this nucleotide segment described above. 
Furthermore, HLA-G alleles were associated with each 
haplotype, and high Linkage Disequilibrium (LD) among 
most of  the variants was observed, according to Hardy-
Weimberg test. In particular, it was evidenced that the 14 
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bp Ins allele is always associated with the +3142G and 
+3187A alleles, both previously related with low mRNA 
availability, thus suggesting the implication of  these two 
polymorphisms in lower mRNA production is associated 
with 14 bp insertion (Figure 1). The+3187G allele is only 
associated with the 3’UTR-1 haplotype carrying the 14 
bp deletion[19].

It should be emphasized that 4-bp upstream the 
SNP +3187A/G there is an AUUUA motif, and 9-bp 
downstream to +3196C/G there is the presence of  an 
UUAUUU motif. These (AU)-rich elements may modu-
late mRNA degradation and therefore expression level, 
and are also influenced by close sequence variations. 
Some authors, according to this nomenclature, started to 
analyze data from 3’UTR region in terms of  haplotypes 
using different algorithm approaches such as EM algo-
rithm, PHASE method, and FBAT. This haplotype analy-
sis could represent an amazing way to correlate genetic 
data to the specific phenotypes of  the study grouped also 
in a dominant or in a recessive model, or used to com-
pare a single common haplotype with other phenotypes 
grouped together. To date, 3’UTR haplotypes analyses 
were performed in few studies and not regarded to can-
cer disease and so to CRC[113,131,145].

Recently, the functional impact of  3’UTR and in 
particular the 14 bp INDEL polymorphism, was deeply 
investigated by Svendsen et al[146], with particular attention 
on the processing and stability of  the full-length mem-
brane bound transcript of  HLA-G1 (mHLA-G1). Au-
thors, transducing different HLA-G1 DNA sequences in 
K562 human cell line, demonstrated that mRNA from 14 
bp I/I had a higher degree of  stability than the others, in 
accordance to the data reported in literature. Moreover, 
transductants carrying the 14 bp Ins, presented lower 
sHLA-G1 levels per mHLA-G1 ratio with respect to the 
constructs lacking the 14 bp Ins, but were the most ef-
ficient in inhibiting NK cytotoxicity[146].

In regard to the 5’UTR region, it has been less in-
vestigated and only recently, 16 SNPs in the 5’UTR 
region (Figure 1) and the 14-bp INDEL polymorphism 
in 3’UTR were analyzed in the same study in Brazilian 
patients who underwent assisted reproduction treat-
ments (ART), characterized by failure implantation of  
embryos[113]. Larsen and Hviid[133], presented a complex 
panel of  haplotypes related to the 5’UTR and in part of  
the 3’UTR regions showing clear LD between several of  
the polymorphisms centered around two main lineages 
of  HLA-G alleles named G*010101xx and G*010102xx, 
in accord to WHO classification. The HLA-G promoter 
region is considered unique among the HLA genes with 
many regulatory sequences, such as tissue specific regula-
tory element (TSRE) from position -1350 to -1100, and 
IFN-stimulated response element (ISRE) from -726 to 
-725 position[21,147]. The 5’UTR tri-allelic polymorphism 
-725C/G/T was evaluated in relation to plasma sHLAG 
concentration in a recent study in Iraqi women with 
recurrent pregnancy loss[148] A significantly association 
among lower levels of  sHLAG in presence of  the CC 

genotype was found vs the CG and CT condition[148] (Table 
1). Of  note, the presence in this position of  a G nucleo-
tide may alter the methylation profile of  CpG di-nucle-
otides resulting in a modification of  gene expression[113], 
and also influences binding of  ISRE or other regulatory 
elements.

HLA-G IN CRC AND FUTURE 
APPLICATIONS
Despite the advances in knowledge and increasing in-
terest in the immune contexture involvement, HLA-G 
has been poorly investigated in CRC and inflammation 
associated diseases of  the gastrointestinal tract. A com-
mon mechanism present in CRC and in various types of  
cancer used by tumor cells to avoid recognition by CTLs, 
is the HLA class Ⅰ down-regulation or total loss[149]. Al-
tered HLA Ⅰ class phenotypes regard reversible down 
regulation or irreversible mutational genes inactivation 
and are usually related to LOH of  classical HLA-A, -B 
and -C heavy chains located in the chromosome region 
6p21. HLA-G (protein and/or mRNA) is frequently over-
expressed in tumors[16,17], including CRC[16,17,24-26] (Table 
2). HLA-G expression was associated with malignant 
transformation and was never detected in the surround-
ing and closest areas near the tumor[17]. MHC class Ⅰ loss 
or down-regulation due probably in defects or alterations 
in Processing Machinery (APM) components have been 
found in different malignancies and associated to reduced 
MHC class Ⅰ recognition vs tumor-associated antigen 
(TAA)-specific CTL and disease progression[150]. LOH 
in the 15q21 region was observed in progressing lesions 
after immunotheraphy such as in melanoma[151]. Intrigu-
ingly, while classical HLA Ⅰ proteins are frequently down 
regulate in in about 15% up to 75% of  colon carcinoma 
lesions[150,152,153], HLA-G (related to isoform G1) results 
over-expressed in CRC malignant and pre-malignant 
tissues[26] (Table 2), in accord to his role in the host im-
mune escape. Strong positive HLA-G expression was 
also detected in UD biopsies but no in tissues taken from 
patients affected by CD, thus it was proposed as a tool to 
better distinguish these inflammatory diseases[154] (Table 2).

LOH frequency for classical HLA genes in CRC was 
reported to be 40% evaluating 95 patients[155]. In CRC, 
higher LOH percentages were found in other chromo-
somal regions containing tumor suppressor genes i.e., 
43%-79% at 18q, 43%-76% at 17p and 17%-43% at 
5q[156]. The irreversible total loss of  HLA class Ⅰ is gen-
erally referred to mutations affecting the β2m gene that 
are usually followed to loss of  the second copy by LOH 
within his locus in the 15q21 region[157,158]. Expression of  
the β2m protein should be taken in consideration due its 
fundamental role in associate to HLAs molecules for cor-
rect antigen presentation. If  β2m is lost, stable antigen-
HLA class Ⅰ complexes cannot be produced[156]. Of  note, 
the major function of  HLA-G is not antigen presentation 
and, if  β2m is necessary to assemble the most studied 
HLA-G1, sHLA-G1 and sHLA-G5 isoforms, it should 
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be discussed the function of  alternative spliced isoforms 
lacking β2m. We speculate that HLA-G alternative 
spliced isoforms without β2m assembly could represent 
another way to escape from immune control, especially 
in tumor such as CRC in which β2m downregulation or 
loss is a frequent event[158]. Moreover, their role should 
be established and explored (which are their interactors?) 
providing new insides of  the HLA-G planet. 

Alterations due to LOH have been reported in 
25%[159]-35%[156] of  CRCs in β2m 15q21 and in 6p21 in 
40% of  the same patients[156], demonstrating a strong cor-
relation that may impact on disease progression in terms 
of  immune escape exert by the tumor[160]. To date in 
CRC, HLA-G polymorphisms and haplotypes have not 
been investigated to find correlations with prognosis or 
phenotype (circulating sHLA-G proteins) even if, recent-
ly, some authors started to report complex and intriguing 
analysis not related to cancer[147,148].

Data about the soluble HLA-G has been reported 
only for CRC patients of  Chinese ethnicity[27,28] suggesting 
that sHLA-G should be considered as a good diagnostic 
tool superior to classical CEA[27], and also a useful indica-
tor to distinguish benign colorectal related disease from 
CRC. Of  note, Cao et al[28] collected and analyzed plasma 
samples from a limited patient series, while Zhu et al[27] 
quantified sHLA-G in a quite large cohort of  patients 
in serum that is not the recommended biological sample 
(Table 2). Both authors did not genotype patients at the 
germinal level to search for a possible phenotype correla-
tion and/or to assess specific HLA-G alleles and geno-
types related to CRC. No correlations were performed 
with clinical outcome of  CRC patients in terms of  surviv-
al, disease relapse and response to therapy treatment. In 
our opinion, detection of  sHLA-G is not sufficient alone 
and should be associated to genotyping of  the gene, with 
particular attention on the regulatory untranslated regions 
that are susceptible to post translational modifications 
such as methylation, transcription factors and miRNA 
binding (Figure 1). Moreover, sHLA-G assay should be 
standardized and defined by precise guidelines to improve 
its clinical application. Recently, preliminary data that need 
further investigations, showed that higher sHLA-G ex-
pression in mucor secretory vs non-mucosecretory CRC, 
correlate with worse prognosis of  patients[128].

A differential spontaneous sHLA-G secretion from 
PBMC was reported in CD (high levels of  the secrete 
molecules) and a lack of  sHLA-G in UC also after in-
flammatory stimulus by Lipopolysaccharide (LPS) activa-
tion[161] (Table 2). Conversely, opposite results were pre-
viously described analyzing HLA-G protein expression 
by IHC in CD and UC biopsies, with higher expression 
levels in UC and negative staining in CD samples[154] (Ta-
ble 2). Subsequently, these controversial data were not 
confirmed with novel studies. However, authors who 
reported a lack of  sHLA-G in UC[162], showed that im-
munosuppressive drugs influence the sHLA-G secretion 
in UC and CD patients, stimulating its release in UC and 
decrease it in CD[162] (Table 2). Halama et al[163], basing on 

the evidence that CRC patient prognosis is dependent on 
the local immune contexture, characterized NK and T 
cells localization and densities in primary CRC liver me-
tastasis, adenomas and normal tissues. NK cells were rare 
in tumor tissue independently of  HLA class Ⅰ expression, 
and also not depending from chemokine levels that 
were rather elevated and correlated to T cells infiltra-
tion[163] Subsequently, for the first time Rocca et al[164], 
characterized tumor-associated NK cells (TANKs), with 
respect to autologous peripheral blood NK cells (PB-
NKs), from CRC patients, and compared the latter with 
PB cells from healthy donors. Authors demonstrated an 
altered phenotype for TANKs in CRC patients, with a 
low expression of  activating receptors and also with an 
impaired degranulation and release of  cytokines (IFN-γ) 
capacity. It should be pointed that HLA-G evaluation 
would be of  interest in both these analysis, especially 
considering recent data about sHLA-G role in impair NK 
cells by (1) modulation of  specific chemokine secretion 
(CXCR3, CX3CR1, and CCR2); (2) functional inhibition 
on CD94/NKG2A receptor; and (3) modulation of  NK 
chemokines and cytokines secretion[165]. 

Finally, the host-immune reaction could be the criti-
cal element in determining response to therapy, and the 
effect on the immune response could be the underlying 
factor behind many of  the predictive markers[13]. In ovar-
ian cancer, positive HLA-G cells from peritoneal and 
pleural effusions decrease in number after chemotherapy 
and this result correlates with improved survival of  the 
related patients[166]. These data suggest that HLA-G-
expressing cells are more susceptible to elimination by 
the immune response or treatment[162,166].

On the opposite, IFN-α immunotherapy showed to 
further increase circulating sHLA-G levels in melanoma 
patients[30], thus in accord to the presence of  ISRE ele-
ment in the 5’UTR region[21]. It is of  knowledge that 
common therapies in cancer (chemotherapy and radio-
therapy) have an impact on immune system[54], that could 
be different depending from the therapy regiment, often 
associated to different grades of  toxicity and neutro-
penia[167]. A favourable prognosis correlated with TILs 
in stage Ⅲ CRC patients treated by surgery alone (n = 
851) or 5-fluorouracil (5-FU) adjuvant chemotherapy (n 
= 305), was observed[168]. Moreover, high densities TILs 
in metastatic liver lesions at the invasive margin revealed 
strong association with chemotherapy efficacy and prog-
nosis in advanced CRC patients[169,170]. These studies based 
on infiltrating lymphocytes in correlation with therapy, 
have provided the scientific basis to implement the con-
cept of  IS and, in the future, we hope that IS validation 
will provide a well defined tool to assess CRC prognosis 
and clinical outcome based also on patient treatment. 
Due to HLA-G functional properties in the direct inhibi-
tion of  cytotoxic and memory T lymphocytes, we stress 
the possible association between IS and HLA-G (Figure 2) 
and therefore patient prognosis. 

Moreover, particular HLA-G haplotypes and/or gen-
otypes and allelic variants could be identified as predictive 
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genetic marker of  response treatment, to better stratify 
patients. 

In particular, further investigations in large cohort of  
patients are needed to define: HLA-G haplotypes, geno-
types, and alleles frequencies and association with: (1) the 
risk of  CRC (possible distinctions comparing them with 
those of  UD and CD diseases); (2) the prognostic power: 
relation with OS, DFS, and predictive value of  response 
to therapy; (3) plasma sHLA-G levels as predictive and 
prognostic markers; and (4) genotype-phenotype cor-
relations among soluble and HLA-G genotypes/alleles 
(especially 5’UTR and 3’UTR nucleotide variations).

We suggest that HLA-G could represent a novel 
prognostic immune biomarker with a prominent role in 
inhibiting host immune response in CRC. We also sug-
gest to assess an association with IS and HLA-G (Figure 
2) to better characterize host immune response and com-
plete the immune contexture overview in CRC patients.
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