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Abstract
MicroRNAs are small endogenously expressed RNA 
molecules which are involved in the process of silencing 
gene expression through translational regulation. The 
polycistronic miR-17-92  cluster is the first microRNA 
cluster shown to play a role in tumorigenesis. It has 
two other paralogs in the human genome, the miR-
106b-25  cluster and the miR-106a-363  cluster. Collec-
tively, the microRNAs encoded by these clusters can be 
further grouped based on the seed sequences into four 
families, namely the miR-17, the miR-92, the miR-18 
and the miR-19 families. Over-expression of the miR-
106b-25  and miR-17-92  clusters has been reported 
not only during the development of cirrhosis but also 
subsequently during the development of hepatocellular 
carcinoma. Members of these clusters have also been 
shown to affect the replication of hepatitis B and hepa-
titis C viruses. Various targets of these microRNAs have 
been identified, and these targets are involved in tumor 
growth, cell survival and metastasis. In this review, we 
first describe the regulation of these clusters by c-Myc 
and E2F1, and how the members of these clusters in 

turn regulate E2F1 expression forming an auto-regula-
tory loop. In addition, the roles of the various members 
of the clusters in affecting relevant target gene expres-
sion in the pathogenesis of hepatocellular carcinoma 
will also be discussed.
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Core tip: The polycistronic miR-17-92  cluster has been 
characterized to play a role in tumorigenesis. Over-
expression of the miR-17-92 cluster  and its paralog, the 
miR-106b-25  cluster, has been reported in the develop-
ment of cirrhosis and hepatocellular carcinoma. Vari-
ous targets of these microRNAs have been identified, 
and these targets are involved in tumor growth, cell 
survival and metastasis. We describe the regulation of 
these clusters by c-Myc and E2F1, and discuss the roles 
of the various members of the clusters in affecting rel-
evant target gene expression in the pathogenesis of 
hepatocellular carcinoma.
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HEPATOCELLULAR CARCINOMA
Liver cancer is currently the fifth most common cancer 
in men. It is also the third most common cause of  death 
from cancer with 694000 deaths in 2008[1]. The majority 
of  liver cancers are hepatocellular carcinoma (HCC) and 
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the occurrence is most prevalent in developing nations in 
Asia and Africa. The incidence of  HCC is also sex asso-
ciated as HCC affects more males than females. 

The majority of  HCC cases develop from chronic liv-
er disease, which includes cirrhosis caused by long-term 
infection with hepatitis B (HBV) and C (HCV) viruses, 
exposure to hepatotoxins, excessive alcohol intake and 
steatohepatitis[2]. Damage to hepatocytes leads to increase 
in the generation of  reactive oxygen species (ROS) and 
oxidative stress, promoting necrosis and apoptosis of  
hepatocytes. The ROS produced activates Kupffer cells 
to generate more ROS and also secrete cytokines such as 
transforming growth factor-beta (TGF-β) and platelet-
derived growth factor (PDGF), which in turn activate he-
patic stellate cells (HSCs) to become proliferative, releas-
ing pro-fibrogenic, proinflammatory, and promitogenic 
cytokines[3,4]. The increased production of  extracellular 
matrix (ECM) components by these activated stellate cells 
leads to fibrosis, and chronic fibrosis results in cirrhosis, 
characterized by the formation of  regenerative nodules 
and the distortion of  liver parenchyma and vascular ar-
chitecture[4].

Regulation of gene expression by 
microRNAs
In recent years, research on post-transcriptional gene si-
lencing has progressed greatly following the discovery of  
endogenously coded microRNAs (miRNAs). MiRNAs 
are small, RNA molecules of  approximately 20-24 nucle-
otides in length. The genes encoding the miRNAs can be 
located in the introns of  protein-coding genes, or in both 
introns and exons of  non-coding transcripts[5]. In several 
instances, miRNAs are clustered together and transcribed 
as a single polycistronic primary transcript. 

Most miRNA genes are transcribed by RNA Poly-
merase Ⅱ to generate primary transcripts[6]. The primary 
transcripts are first processed to smaller approximately 
70-nucleotide hairpin looped precursor molecules (pre-
miRNAs)[7,8]. The pre-miRNAs are then transported from 
the nucleus to the cytoplasm[9] and are further cleaved by 
the enzyme, Dicer[10,11], releasing approximately 22-nu-
cleotide duplexes. The two arms of  the duplexes do not 
have perfect complementation. One arm gives rise to the 
mature miRNA while the opposing arm is denoted as 
miRNA*. The duplex is recruited into the RNA-induced 
silencing complex (RISC) where it unwinds and miRNA* 
is degraded[12,13]. The mature miRNA that is bound to 
RISC then serves as a guide to provide the binding speci-
ficity to the target RNA. Binding of  the miRNA-RISC 
to the target RNA can result in two possible outcomes. 
When the miRNA is able to base-pair extensively with 
the target RNA, cleavage of  a single phosphodiester 
bond occurs in the target across nucleotides 10 and 11 
of  the miRNA[14,15]. In vertebrates including humans, 
there is usually only partial complementation between the 
miRNA and its target RNA, and cleavage of  the target 
does not occur. Instead, translation of  the target RNA is 

repressed[14,16]. It is now well documented that miRNAs 
are able to regulate the expression of  target genes either 
by blocking mRNA translation, or inducing mRNA de-
cay, or by affecting chromatin structure[17]. 

The miR-17-92 and miR-106b-25 
clusters
Initial identification and characterization of the 
miR-17-92 cluster 
In 2001, three groups of  researchers simultaneously re-
ported the identification of  hundreds of  miRNAs in hu-
man, fly and worm cells, triggering the upsurge of  miR-
NA studies[18-20]. It soon became evident that miRNAs are 
involved in multiple cellular and physiological processes 
and dys-regulation of  miRNAs could lead to disease. 
Current evidence suggests that miRNAs are contributors 
to oncogenesis.  They could serve as either oncogenes or 
tumor suppressors depending on their target genes and 
contexts. miR-15 and miR-16 were the first two miRNAs 
shown to be involved in the development of  chronic 
lymphocytic leukemia (CLL). Both miRNAs were deleted 
or down-regulated in CLL, consistent with the idea that 
miRNAs may act as tumor suppressors[21]. Following this 
initial study, a large number of  miRNAs has since been 
shown to be associated with human cancers. 

The polycistronic miR-17-92 cluster is one of  the 
earliest characterized miRNA clusters. The study of  this 
cluster began with the identification of  a novel gene 
designated as chromosome 13 open reading frame 25 
(C13orf25) by Ota et al[22] in 2004. This gene resides 
within the frequently amplified 13q31-q32 region in ma-
lignant lymphoma. Based on sequence analysis of  the 
gene, it was unlikely that the C13orf25 gene encoded for 
any protein product. Instead, the miR-17-92 cluster which 
is located in the third intron of  the C13orf  25 gene was 
hypothesized to be the actual effectors of  the 13q31-q32 
amplification and could play a role in tumorigenesis. Sub-
sequent work by various groups showed that this hypoth-
esis is indeed true. 

In MYC transgenic mice, lymphoma develop-
ment was accelerated following the transduction of  the 
miR-17-92 cluster into hematopoietic cells[23]. This obser-
vation strongly supported the concept that certain miR-
NA alterations could predispose a cell to carcinogenesis 
and abnormal expressions of  miRNAs are not just the 
consequence of  cellular transformation. The tumorigenic 
activity of  the miR-17-92 cluster was thus demonstrated 
and this cluster was termed as “OncomiR-1”.

Subsequently, c-Myc was shown to regulate the ex-
pression of  the miR-17-92 cluster by binding directly to 
it and up-regulating the expression of  all six miRNAs 
of  the cluster. Furthermore, the transcription factor 
E2F1 was identified as the target of  two members of  the 
miR-17-92 cluster: miR-17-5p and miR-20a. Thus, despite 
the induction of  E2F1 transcription by c-Myc resulting in 
high levels of  E2F1 mRNA, the E2F1 protein level was 
only modestly increased[24]. Interestingly, c-Myc is in turn 
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positively regulated by E2F1[25]. 
Following these two studies, there was a subsequent 

report on the oncogenic role of  the miR-17-92 cluster in 
lung cancers, especially those with small-cell lung cancer 
histology. An increase in the gene copy number of  this 
miRNA cluster resulted in its over-expression. Again it 
was confirmed that it was the marked expression of  the 
miR-17-92 cluster and not the putative C13orf25 gene 
product that promoted cell growth. These findings dem-
onstrated the oncogenic role of  the miR-17-92 cluster in 
the development of  lung cancers and confirmed that the 
real effectors of  the 13q31-q32 amplification in cancers 
are the miRNAs encoded within the miRNA-17-92 clus-
ter[26]. 

Many of  the known miRNAs appear in clusters on 
single polycistronic transcripts[27-29]. The human miR-17-92 
cluster contains six precursor miRNAs within about 1 
kb on chromosome 13. It has two paralogs in the human 
genome: the miR-106b-25 cluster on chromosome 7 and 
the miR-106a-363 cluster on chromosome X. Reconstruc-
tion of  the evolutionary history of  the miR-17-92 cluster 
and its two paralogs revealed that the evolution of  this 
cluster arose from tandem duplications of  individual 
miRNAs, followed by duplications of  entire clusters and 
subsequent loss of  individual miRNAs[30]. The miR-17-92 
cluster encodes for miR-17-5p, miR-18a, miR-19a, miR-
20a, miR-19b-1, and miR-92a-1 while the miR-106a-363 
cluster encodes for miR-106a, miR-18b, miR-20b, miR-
19b-2, miR92a-2 and miR-363. The miR-106b-25 cluster 
encodes for only three miRNAs; miR-106b, miR-93, and 
miR-25 and is embedded within the minichromosome 
maintenance protein 7 (MCM7) gene (Figure 1A). These 
miRNAs can be further grouped into four seed families, 
namely the miR-17, the miR-92, the miR-18 and the 
miR-19 families (Figure 1B). 

To provide insights into the functionality and redun-
dancy of  these clusters, studies in mice following the 
knock-out of  the clusters individually or in combination 
were carried out[31]. Defective embryonic development 
and postnatal death were observed in mice with homozy-
gous deletion of  the miR-17-92 cluster. Deletions of  both 
the miR-17-92 and the miR-106b-25 clusters led to more 
severe phenotypes including apoptosis in the fetal liver 
and regions of  the central nervous system. In contrast, 
there was normal development following the deletion of  
either the widely expressed miR-106b-25 cluster, or the 
rarely expressed miR-106a-363 cluster, or both clusters. 
Collectively, these observations indicate that members of  
the miR-17 and miR-92 families in both the miR-17-92 
and the miR-106b-25 clusters may perform specific yet 
overlapping functions while the miR-18 and miR-19 fam-
ilies which are only present in the miR-17-92 clusters are 
likely to be functionally important during development.

Interestingly, although most of  the studies point 
to the oncogenic property of  the miR-17-92 and miR-
106b-25 clusters, particular members of  the cluster may 
also serve as tumor suppressors in certain contexts. One 
example is miR-17. Over-expression of  miR-17 can re-

duce cell proliferation, affect cell adhesion and migration, 
and suppress the expression of  fibronectin and the fibro-
nectin type-Ⅲ domain containing 3A (FNDC3A)[32]. An-
other example is miR-25, a member of  the miR-106b-25 
cluster which can confer oncogenic or tumor suppressive 
properties in different types of  human cancers. miR-25 
is up-regulated and promotes tumorigenesis in stomach, 
liver and prostate tumor via its inhibition of  the target 
genes Bim, p57 and DR4[33-37]. In contrast, miR-25 is 
down-regulated in colon cancer where it targets SMAD7 
and exerts anti-tumor effects[38]. miR-93, another member 
of  the miR-106b-25 cluster, is be able to adversely affect 
cell proliferation and colony formation of  colon cancer 
stem cells[39]. All these findings raised the possibility that 
miRNAs encoded by these clusters can either positively 
or negatively affect tumorigenesis and depending on the 
tumor, may exhibit either oncogenic or tumor suppres-
sive activities. 

Roles of the clusters in HBV and HCV infections
Approximately 80% of  HCC cases are associated with 
chronic HBV or HCV infections. It is well documented 
that the risk of  HCC development is greatly increased in 
individuals with such infections and anti-viral treatments 
can effectively reduce the risk[40].

miRNAs have been shown to affect HBV gene ex-
pression and inhibit HBV replication. miR-199a-3p, 
miR-210 and miR-122 can suppress HBV replication[41,42]. 
In contrast, HBV gene products may also affect miRNAs 
expressions. The hepatitis B virus X protein (HBx) has 
been shown to suppress the expression of  miR-148 in a 
murine model of  HCC and consequently promote prolif-
eration and metastasis via the upregulation of  hematopoi-
etic pre-B cell leukemia transcription factor-interacting 
protein (HPIP)[43]. Members of  the miR-17-92 cluster 
have also been shown to affect HBV replication. miR-20a 
and miR-92a-1 can directly bind to HBV genes and inhi-
bition of  these miRNAs enhances HBV replication[44]. 

Although the miR-106-25 cluster which is hosted in 
intron 13 of  the MCM7 gene has not been shown to 
directly affect HBV or HCV replication, it was interest-
ing to note that a single nucleotide polymorphism (SNP), 
rs999885 in the promoter region of  MCM7 can confer 
a protective effect against chronic HBV infection. In 
patients who have achieved clearance of  HBV infection, 
the A to G base change is associated with decreased risk 
of  chronic HBV infection. However, for persistent HBV 
carriers, this change results in increased risk for HCC 
with increased expression of  the miR-106b-25 cluster in 
the liver[45]. Another SNP, rs2596452, located within the 
5’ flanking region of  the MHC class I polypeptide-related 
sequence A (MICA), is associated with HBV- and HCV-
related progression to HCC[46,47]. MICA is usually highly 
expressed in viral-infected cells and in tumor cells. Its 
expression is necessary for the activation of  cell killing 
by natural killer cells and CD8 T cells. Over-expression 
of  the miR-106b-25 cluster has been shown to suppress 
MICA expression and inhibit the cell-killing function[48]. 
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miR-106b miR-93 miR-25

miR-106a miR-18b miR-20b miR-92a-2 miR-363

also alter hepatic miRNA expressions. The expression of  
miR-27 has been shown to be induced by HCV replica-
tion in Huh7.5 cells and in vivo HCV infection models. 
Consequently, this over-expression results in hepatic ste-
atosis[51]. The roles of  the miR-17-92 and the miR-106b-25 
clusters have not been examined for HCV infection. 
However, serum levels of  miR-20a and miR-92a have 
been shown to increase during acute and chronic HCV 
infections. Significant up-regulation of  these miRNAs 
were also observed in the sera of  HCV-infected patients 
with fibrosis[52]. 

To date, it is also well documented that miR-122 is 
critical for the replication of  HCV. miR-122 protects the 
HCV genome by binding to 2 sites on the 5’ non-coding 
region of  the HCV RNA and in doing so enhances 
the propagation of  the virus[49]. This makes targeting 
miR-122 for anti-HCV therapy very attractive and phase 
2a trials of  miravirsen, a locked nucleic acid modified 
antisense oligonucleotide complementary to part of  
miR-122, have resulted in significant reduction in viral 
RNA with no emergence of  resistant viruses[50]. 

As had been observed for HBV, HCV infection could 
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miR-106b miR-93 miR-25

miR-17-5p miR-18a miR-19a miR-20a miR-19b-1 miR-92a-1
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Figure 1  miR-106b-25/miR-17-92/miR-106b-363 clusters. A: Diagrammatic representation of the miR-106b-25, miR-17-92 and miR-106a-363 paralogs. The posi-
tions of the mature miRNAs are denoted by shaded boxes within the polycistronic primary transcripts. miRNAs sharing the same seed sequences are shaded with the 
same color; B: Sequences of the miRNA families. Members of each family have identical seed sequences which are shown as underlined texts. 

miR-17-5p	CAAAGUGCUUACAGUGCAGGUAG
miR-20a	 UAAAGUGCUUAUAGUGCAGGUAG
miR-20b	 CAAAGUGCUCAUAGUGCAGGUAG
miR-106a	 AAAAGUGCUUACAGUGCAGGUAG
miR-106b	 UAAAGUGCUGACAGUGCAGAU
miR-93	 CAAAGUGCUGUUCGUGCAGGUAG

miR-17 family

miR-92a-1	UAUUGCACUUGUCCCGGCCUGU
miR-92a-2	UAUUGCACUUGUCCCGGCCUGU
miR-25	 CAUUGCACUUGUCUCGGUCUGA
miR-363	 AAUUGCACGGUAUCCAUCUGUA 

miR-18a	 UAAGGUGCAUCUAGUGCAGAUAG
miR-18b	 UAAGGUGCAUCUAGUGCAGUUAG

miR-19a	 UGUGCAAAUCUAUGCAAAACUGA
miR-19b-1	UGUGCAAAUCCAUGCAAAACUGA
miR-19b-2	UGUGCAAAUCCAUGCAAAACUGA

miR-92 family

miR-18 family

miR-19 family

A

B
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Roles of the clusters in liver fibrosis and cirrhosis
Liver cirrhosis is the single most significant predisposing 
factor for HCC. In addition, death from liver cirrhosis 
itself  is estimated at 800000 annually[53]. A complex net-
work of  signaling pathways together with contributions 
from HSCs and inflammatory cells such as Kupffer cells 
during the course of  repetitive and chronic liver damage 
eventually results in liver cirrhosis. Thus, liver cirrhosis 
arises from chronic liver disease and is characterized by 
the development of  regenerative nodules which are sur-
rounded by fibrous connective tissues[54].

Differential miRNA expressions have been shown 
to be not only associated with hepatic viral infections 
but also with different stages of  liver diseases including 
cirrhosis. Members of  the miR-29 family were found to 
be significantly down-regulated in murine and human 
fibrotic livers. Down-regulation of  miR-29 is dependent 
on TGF-β and nuclear factor kappa B (NF-κB) in HSCs 
while over-expression of  miR-29 can suppress activation 
of  the HSCs leading to reduced collagen expression[55]. 
In contrast, the expression of  the miR-199 and -200 
families increases with progression of  liver fibrosis[56]. In-
terestingly, during rat liver regeneration after 70% partial 
hepatectomy, selective up-regulation followed by global 
down-regulation of  miRNAs was observed in a nega-
tive feedback mechanism[57]. These studies reiterated the 
possible functional importance of  miRNAs during liver 
regeneration and liver fibrosis.

Members of  the miR-17-92 and the miR-106b-25 clus-
ters have been implicated in the progression of  liver fi-
brosis. In fibrotic rat and human livers, the expression of  
miR-19b was significantly down-regulated. miR-19b has 
been shown to play an inhibitory role in HSC-mediated 
fibrogenesis through its effect on the TGF-β signaling 
pathway. Over-expression of  miR-19b inhibited the ex-
pression of  TGF-β receptor Ⅱ (TGF-βRⅡ) leading to 
decreased SMAD3 expression and reduced type-1 col-
lagen production[58]. In contrast, miR-93 and miR-106b 
were observed to be consistently up-regulated during 
the development of  cirrhosis, although the actual targets 
have yet to be confirmed[59]. Serum levels of  miR-106b 
have also been shown to be useful for the prediction of  
liver cirrhosis. Together with miR-181, both miR-106b 
and miR-181 were shown to serve as biomarkers for liver 
cirrhosis irrespective of  the etiology[60]. 

Roles of the clusters in HCC
Changes in the expression of  miRNAs have been ob-
served in all human cancers. Dys-regulation in the 
expression of  the miR-106b-25 and miR-17-92 clusters 
have been reported for various tumors, including B-cell 
lymphoma and solid tumors derived from breast, colon, 
lung, pancreas, prostate and stomach[23,26,61,62]. The first 
few reports on miRNA expression in human and rodent 
HCC also showed that members of  the miR-17-92 and 
miR-106b-25 clusters were aberrantly expressed. These 
include significant up-regulation of  miR-18 together 
with its precursor, pre-miR-18, miR-17, miR-20, miR-93, 

and miR-106[63,64]. Subsequent studies from various other 
groups also showed this to be true[34,59,65-71].

The role of  c-Myc in liver and HCC has been well 
studied and documented. c-Myc is a transcription factor 
which is frequently up-regulated in HCC, in patients with 
advanced liver fibrosis, and in experimental liver fibro-
sis in mice[72,73]. The expression of  c-Myc is controlled 
by the different phosphorylated forms of  Smad2 and 
Smad3. During acute liver injury, TGF-β binds to TGF-β 
type Ⅰ receptor (TβRI), which then phosphorylates 
Smad2 and Smad3 at their C-termini. These Smads then 
complex with Smad4 and translocate to the nucleus to 
repress the expression of  its target genes, including c-Myc. 
In chronic liver injury, PDGF activates c-Jun N-terminal 
kinase (JNK), and the activated JNK then phosphorylates 
Smad2 and Smad3 in their linker regions. These dually 
phosphorylated Smads can up-regulate the expression of  
c-Myc[74]. The up-regulation of  c-Myc in hepatocytes dur-
ing chronic fibrosis or as a consequence of  gene ampli-
fication may promote or repress the expression of  many 
genes including those encoding for miRNAs. Indeed 
recent studies have characterized Myc-repressed as well 
as Myc-induced miRNAs in HCC[44,75]. The latter includes 
miRNAs of  the miR-17-92 cluster and the miR-106b-25 
cluster. 

Given that the miR-106b-25 cluster is embedded in the 
thirteenth intron of  the MCM7 gene, it is not surprising 
that in HCC, gastric and prostate cancers, the expression 
of  the precursors of  the miR-106b-25 cluster has been 
shown to correspond to that of  Mcm7 transcripts[34,76,77]. 
The transcription of  the miR-106b-25 cluster is thus 
regulated through the expression of  the MCM7 gene and 
both c-Myc and E2F1 have been shown to up-regulate 
Mcm7 expression[77-80]. The expression of  the miR-17-92 
cluster, which is located on human chromosome 13, 
can also be promoted by c-Myc and the E2F family of  
transcription factors[24,81,82]. In HCC, there is significant 
up-regulation of  members of  the miR-17-92 and miR-
106b-25 clusters. In addition, in a study by Pineau et al[59], 
miR-93 and miR-106b were observed to be consistently 
up-regulated during the development of  cirrhosis and 
subsequently during the development of  HCC. The con-
sistent up-regulation of  the miR-106b-25 and miR-17-92 
clusters from chronic liver fibrosis onwards indicate that 
these two miRNA clusters are likely to be involved in 
the initiation of  tumorigenesis, as well as at subsequent 
stages of  HCC. 

To date, various targets of  these two clusters have 
been identified in HCC and other cancers, and these 
targets are involved in tumor growth, cell survival and 
metastasis (Figure 2). It is also noteworthy that the ex-
pression of  these clusters is likely to be regulated by the 
expression of  the oncogene Myc and that the targets 
of  these clusters include genes which exhibit significant 
changes during HCC. Such targets include phosphatase 
tensin homolog (PTEN) and members of  the Wnt/
β-catenin pathway. Multiple genetic alterations have been 
documented for HCC and these can be fitted broadly 
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into four distinct groups. These include the inactivation 
of  tumor suppressor genes such as p53, retinoblastoma 
(RB), PTEN and runt-related transcription factor 3, as 
well as the activation of  oncogenes such as that of  Myc, 
Ras and Raf. The activation of  growth factors and their 
receptors such as transforming growth factor-α, insulin-
like growth factor-2 receptor as well as the reactivation 
of  developmental pathways including that of  the hedge-
hog and Wnt/β-catenin pathways are also contributors to 
HCC[83]. 

These two miRNA clusters can suppress the protein 
expression of  tumor suppressor PTEN[35,84-86]. Down-
regulation of  PTEN leads to hyper-proliferative and anti-
apoptotic activities via the AKT pathway[87]. PTEN-defi-
cient mice exhibit hepatomegaly, steatohepatitis, fibrosis 
and eventually develop HCC[88]. PTEN down-regulation 
was also observed in fibrotic livers of  bile duct ligated 
mice[89]. In contrast, over-expression of  PTEN inhibited 
HSC activation[90]. In HCC tissues, there is usually low or 
no PTEN expression[86,87]. Together, these data indicate 
that the up-regulation of  these two miRNA clusters can 
result in hepatic down-regulation of  PTEN during fibro-
sis and in the progression towards tumorigenesis.

The transcription factor E2F1 is a target gene for the 
miR-17 seed family. Members of  this family can interact 
with the 3’ UTR of  the E2F1 transcripts and inhibit its 
translation in HCC cell lines. In HCC tumors, it is likely 
that the miR-17 family prevents excessively high E2F1 
expression, which may then cause apoptosis[24,34]. Both 
the miR-17-92 and the miR-106b-25 clusters have been 
shown to participate in the auto-regulatory feedback loop 
involving c-Myc and E2F transcription factors. These 
factors regulate the expression of  the clusters while 
members of  the clusters in turn regulate the expression 
of  E2F1. This mode of  action has been also observed 
for these clusters in other tumors including prostate can-
cer and gastric cancer[76,77]. In addition, the RB protein 
which regulates the transactivation function of  E2F tran-
scription factors, was also found as a target of  miR-106b 
in laryngeal carcinoma[91]. In mice, RB loss significantly 
increased liver tumor multiplicity and proliferation, and 
had higher expression of  E2F target genes compared to 

the wild-type controls[92].
Current evidence also showed that members of  these 

clusters can confer resistance to apoptosis. This is achi
eved by miR-25 targeting components of  the mito-
chondrial-dependent and the death receptor-dependent 
apoptotic pathways. In HCC, miR-25 has been shown to 
target the pro-apoptotic Bim[34]. Bim is a member of  the 
BH3-only domain family of  proteins which regulates the 
mitochondrial-dependent apoptosis pathway. It inhib-
its the anti-apoptotic activities of  Bcl-2 or Bcl-xL by its 
interactions with these molecules on the mitochondria 
membrane[93]. In addition, miR-25 has also been shown to 
target the TNF-related apoptosis inducing ligand (TRAIL) 
death receptor-4 (DR4) in cholangiocarcinoma[37]. The 
binding of  TRAIL to DR4 results in the formation of  the 
death-inducing signaling complex and the activation of  
caspases in the apoptotic signaling pathway[94].

The Wnt/β-catenin signaling pathway is often acti-
vated in HCC and is regulated by the miR-106b-25 cluster. 
Adenomatous polyposis coli (APC), which is a member 
of  the complex of  proteins that targets cytosolic β-catenin 
for proteasomal degradation, is targeted by miR-106b in 
HCC[70]. Over-expression of  miR-106b decreased APC 
protein expression, promoted nuclear accumulation of  
β-catenin and activated the transcription of  cyclin D1, 
resulting in the proliferation and anchorage-independent 
growth of  hepatoma cells. The epithelial cell adhesion 
molecule E-cadherin, which links β-catenin and α-catenin 
to actin to stabilize cell adhesion[95], is also targeted by 
miR-92a and miR-25 in esophageal cancer[96,97]. Loss of  
E-cadherin in HCC has been shown to correlate with in-
trahepatic metastasis[98].

During HCC progression, both intra- and extra-
hepatic metastasis can occur and efforts have been made 
to identify miRNAs that may contribute to metastasis in 
HCC. Some miRNAs are pro-metastatic while others are 
considered to be anti-metastatic. For the former, vari-
ous miRNAs including miR-29a, miR-135a and miR-155 
have been shown to promote cell migration, cell invasion 
and metastasis in HCC. miR-29a targets PTEN while 
miR-135a inhibits metastasis suppressor 1 (MTSS1)[99,100]. 
Expression of  miR-155 has been shown to be predictive 
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of  poor survival in HCC patients following liver trans-
plant[101]. In contrast, miR-124 and miR-29b are examples 
of  anti-metastatic miRNAs. miR-124 is able to inhibit 
HCC invasion and migrating by targeting the 3’-UTR of  
Rho-associated, coiled-coil containing protein kinase 2 
(ROCK2) and enhancer of  zeste homolog 2 (Drosophila), 
EZH2[102] while miR-29b suppresses tumor angiogenesis, 
invasion and metastasis by inhibiting expression of  ma-
trix metalloproteinase 2 (MMP-2)[103].

Various studies to date have pointed to the miR-
106b-25 and the miR-17-92 clusters playing a role in HCC 
metastasis. Over-expression of  miR-17-5p leads to sig-
nificant cell proliferation and intrahepatic metastasis of  
HCC. It was postulated and verified that increased miR-
17-5p expression led to the down-regulation of  its target 
E2F1 thereby causing the down-regulation of  Wip 1 
which is an E2F1-regulated gene. Wip 1 is a known sup-
pressor of  p38 mitogen-activated protein kinase (MAPK). 
The down-regulation of  Wip 1 can trigger the activation 
of  the p38 (MAPK) pathway, leading to an increase in 
phosphorylated heat shock protein 27 (HSP27) and as a 
result, enhances the migration of  HCC cells[104]. Increased 
expression of  miR-106b was observed to correlate with 
high HCC tumor grade. Over-expression of  miR-106b 
was shown to activate the epithelial-mesenchymal transi-
tion process leading to cell migration and metastasis[71]. 

Although these studies suggest that the miR-106b-25 
and the miR-17-92 clusters may play a pro-metastatic role, 
there are also reports which showed that miRNAs encod-
ed by these clusters are anti-metastatic. miRNA-19a was 
among the 20 metastatic signature miRNAs which were 
down-regulated in metastatic HCC, suggesting a possible 
anti-metastatic role[105]. However, it has been documented 
that the global miRNA expression was down-regulated 
in the venous metastases compared to non-tumorous tis-
sues[106]. In addition, miR-17 was observed to be down-
regulated in metastatic cell lines. This down-regulation 
is dependent on the action of  thyroid hormone on its 
receptor and the knockdown of  miR-17 increased p-AKT 
expression resulting in enhanced cell invasion. Matrix 
metalloproteinase 3 (MMP3) was shown to be a direct 
target of  miR-17 in this context[107]. Given the complexity 
and heterogeneity of  HCC, it is possible that the role of  
these miRNA clusters in regulating metastasis is context-
dependent, affecting different targets not only at different 
stages of  HCC but also dependent on the genetic aberra-
tions within the tumor. 

Other targets for miR-17-92 and its 2 paralogs, espe-
cially the miR-106b-25 cluster, have been identified for 
other tumors. It is likely that some of  these may also 
be relevant for HCC. Of  relevance here is the modula-
tion of  the TGF-β signaling pathway by these clusters. 
Smad7, which is induced by TGF-β to negatively regulate 
the TGF-β signaling pathway, is targeted by the miR-
106b-25 cluster in human breast cancer[108]. TGFBR2 is 
also targeted by miR-93 and miR-106b[109,110]. The de-
crease in Smad7 and TGFBR2 expression in HCC could 
promote the TGF-β-independent JNK-Smad3 pathway 

and increase intrahepatic metastasis[111]. Another pos-
sibility is the tumor protein 53-induced nuclear protein 
1 (TP53INP1) which is a stress-induced p53-target gene 
that enhances p53 stability and transcriptional activity[112]. 
In gastric cancer, miR-17 and miR-20 were found to tar-
get TP53INP1[113]. In HCC, the expression of  TP53INP1 
in the tumor samples was reduced when compared to the 
paired non-tumor liver tissues[114]. Thus, although various 
targets for the miR-106b-25 and the miR-17-92 clusters 
have already been identified for HCC, chronic liver infec-
tions and cirrhosis, it is evident that much more work 
has to be done to fully dissect out all the targets of  these 
clusters not only for HCC but also for the progression 
from liver fibrosis to tumorigenesis.

CONCLUSION
In this review, we focused on the miR-17-92 cluster and 
its paralog the miR-106b-25 cluster. miRNAs encoded by 
both clusters are consistently dys-regulated in diseased 
liver including chronic viral infection, fibrosis, cirrhosis 
and HCC. Although some work has been done to exam-
ine the targets and the interplay of  these clusters with 
key tumor suppressors (PTEN), oncogenes (c-Myc) and 
signaling pathways that are relevant to HCC (TGF-β and 
Wnt/β-catenin pathways), more work has to be done to 
fully understand the regulation and roles of  the various 
members of  these clusters, as well as MCM7 which is the 
host gene for the miR-106b-25 cluster. A thorough under-
standing of  the roles of  these clusters could provide new 
therapeutic, prognostic and diagnostic approaches for 
HCC. 
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