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Abstract
Chronic infections with hepatitis B virus (HBV) and/or 
hepatitis C virus (HCV) are the major causes of cirrho-
sis globally. It takes 10-20 years to progress from viral 
hepatitis to cirrhosis. Intermediately active hepatic in-
flammation caused by the infections contributes to the 
inflammation-necrosis-regeneration process, ultimately 
cirrhosis. CD8+ T cells and NK cells cause liver damage 
via  targeting the infected hepatocytes directly and re-
leasing pro-inflammatory cytokine/chemokines. Hepatic 
stellate cells play an active role in fibrogenesis via  se-
creting fibrosis-related factors. Under the inflammatory 
microenvironment, the viruses experience mutation-
selection-adaptation to evade immune clearance. How-
ever, immune selection of some HBV mutations in the 
evolution towards cirrhosis seems different from that 
towards hepatocellular carcinoma. As viral replication 
is an important driving force of cirrhosis pathogenesis, 
antiviral treatment with nucleos(t)ide analogs is gener-
ally effective in halting the progression of cirrhosis, im-
proving liver function and reducing the morbidity of de-
compensated cirrhosis caused by chronic HBV infection. 
Interferon-α plus ribavirin and/or the direct acting anti-
virals such as Vaniprevir are effective for compensated 

cirrhosis caused by chronic HCV infection. The standard 
of care for the treatment of HCV-related cirrhosis with 
interferon-α plus ribavirin should consider the geno-
types of IL-28B. Understanding the mechanism of fi-
brogenesis and hepatocyte regeneration will facilitate 
the development of novel therapies for decompensated 
cirrhosis. 
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Core tip: Hepatic inflammation caused by viral infec-
tions contributes to the inflammation-necrosis-regen-
eration process, ultimately cirrhosis. Immune selection 
of some hepatitis B virus mutations in the evolution 
towards cirrhosis seems different from that towards he-
patocellular carcinoma. Hepatic stellate cells and mac-
rophages are important for the fibrogenesis. Antiviral 
treatment is generally effective in reducing the morbidi-
ty of decompensated cirrhosis. The standard of care for 
the treatment of hepatitis C virus-related cirrhosis with 
pegylated interferon-α and ribavirin should consider the 
genotypes of IL-28B. Stem cell-based therapy can be 
an option for the treatment of decompensated cirrhosis 
patients who fail to respond to antiviral treatment.
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INTRODUCTION
Liver cirrhosis represents a worldwide public health 
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problem and its mortality rate increases stably these 
years. Alcoholic hepatitis, non-alcoholic steatohepati-
tis, and chronic infection with hepatitis C virus (HCV) 
are the major causes of  cirrhosis in Western countries, 
while chronic infection with hepatitis B virus (HBV) 
contributes greatly to cirrhosis in HBV-endemic areas. 
Chronic HBV and HCV infections account for 57% of  
cirrhosis cases globally[1]. There are about 300 million 
subjects chronically infected with HBV and 130-170 mil-
lion subjects chronically infected with HCV worldwide. 
About one million people die from diseases related to 
chronic HBV and/or HCV infections each year, mostly 
end-stage liver diseases, namely, decompensated cirrho-
sis, liver failure, and hepatocellular carcinoma (HCC). In 
East Asia where HBV genotypes B and C are endemic, 
HBV genotype B is more apt to cause acute infection 
in young people and to be cleared than genotype C; 
whereas HBV genotype C leads to higher persistence 
following an acute course and is more apt to cause cir-
rhosis and HCC compared to genotype B[2-5]. HBV 
genotype C is associated with a lower rate of  sponta-
neous hepatits B e antigen (HBeAg) seroconversion 
than HBV genotype B. Cirrhosis is specifically found in 
HBeAg-negative subjects and more frequently found in 
subjects with genotype C than in those with genotype B. 
In HBeAg-negative subjects, high viral load is frequently 
associated with abnormal alanine aminotransferase (ALT) 
level, while ALT abnormality is more frequent in those 
with cirrhosis than those without[6]. In addition, older 
age (longer duration of  infection), high levels of  HBV 
DNA, habitual alcohol consumption, and concurrent 
infection with HCV, hepatitis D virus or human immu-
nodeficiency virus are significantly associated with an 
increased rate of  cirrhosis[7]. Most (70%-80%) HCV in-
fections may persist and about 30% of  individuals with 
persistent HCV infection will develop end-stage liver 
diseases, including cirrhosis and HCC. According to the 
most recent classification criteria, HCV variants are clas-
sified into 6 genotypes, of  which HCV-1b is the most 
common one worldwide[8]. HCV genotype 1b has been 
associated with an increased risk of  HCC in both Euro-
pean and Asian populations[9,10], but it remains uncertain 
if  this genotype of  HCV is specifically related to fibrosis 
and cirrhosis. An interesting cross-sectional study carried 
out in mainland China indicated that co-infection with 
HBV, low HCV viral load, low serum ALT, high serum 
aspartate aminotransferase, diabetes, and high pickled 
food consumption were significantly associated with the 
risk of  cirrhosis in HCV-infected patients[11].

Since both HBV and HCV are preferentially hepato-
tropic, not directly cytopathic, virus-caused liver damage 
is attributed to immune-mediated mechanisms. Under 
inflammatory microenvironment caused by the infec-
tions, the continuous infiltration of  immune cells and 
the secreted inflammatory cytokines result in liver dam-
age. The hepatic lobule reconstruction following the 
damage promotes hepatic fibrosis and eventually leads to 
cirrhosis. Cirrhosis represents a consequence of  wound-

healing response to chronic stimulation. It is generally 
believed that cirrhosis is the outcome of  interaction 
between liver damage and tissue repair. Hepatic satellite 
cells (HSCs) play a critical role in the progression of  cir-
rhosis. However, the mechanisms by which HSCs modu-
late fibrogenesis and cirrhosis are less clarified. Active 
viral replication and intermediate inflammatory reactions 
facilitate hepatic fibrogenesis but the evolution of  fibro-
genesis might depart from HCC evolution[12]. In this pa-
per, we focus on virus-related cirrhosis and summarize 
recent progress on its molecular basis. Moreover, we also 
discuss possible therapeutic options for hepatic fibrosis, 
early cirrhosis, and even decompensated cirrhosis. 

MOLECULAR BASIS OF VIRUS-RELATED 
CIRRHOSIS
Immune response and liver damage
Roles of  immune cells and cytokines: The immune 
system is a complicated dynamic network constituted 
by various immune cells and cytokines. T and B lym-
phocytes, macrophages (macrophages residing in the 
liver are also called Kuffer cells), NK cells, neutrophils, 
HSCs, NKT cells, dendritic cells (DCs), and mast cells 
are all important in the maintenance of  chronic inflam-
mation. CD8+ cytotoxic T lymphocytes (CTL) and 
CD4+ T helper lymphocyte subpopulations [Th1, Th2, 
Th17, and regulatory T (Treg) cells] also play key roles 
in maintaining chronic inflammation. The immune ef-
fectors not only play critical roles in the HBV and HCV 
clearance, but also participate in liver damage. Toll-
like receptors (TLR)-3 and -7 can recognize the viruses 
and induce the production of  type I interferon (IFN) 
(IFN-α/β), proinflammatory cytokines and chemokines 
to inhibit the viruses[13-15], whereas TLR-4 activation by 
lipopolysaccharides (LPS) in HSCs enhances TGF-β 
signaling and hepatic fibrosis[16]. TGF-β, a pleiotropic 
cytokine produced by immune and non-immune cells, 
has receptors on several cell types. It induces fibrosis via 
increasing Th17 and HSCs and reducing NK cell acti-
vation[17]. A study using TLR-9-deficient mouse model 
has demonstrated that TLR-9 is also involved in liver 
fibrosis[18]. As important antiviral cytokines activated in 
the initial immune response, IFN-α/β can inhibit viral 
replication and lead to death of  the infected hepatocytes 
by inducing the expression of  multiple IFN-stimulated 
genes (ISG), including protein kinase R (PKR), Mx pro-
teins, ISG-15, RnaseL/2’,5’-oligoadenylate synthetase 
(2’,5’-OAS) and RNA helicases[19,20]. Additionally, it may 
activate the neighboring immune cells, including mac-
rophages, NK cells, NKT cells and DCs[21-23]. Both NK 
cells and CD8+ CTLs exert immunoregulatory functions 
via direct, non-MHC-restricted cytotoxic mechanisms 
and cytokine production[24,25]. IFN-γ and tumor necrosis 
factor-α (TNFα) produced by NK cells and CD8+ CTLs 
can not only inhibit the viruses, but also cause liver 
damage through TNF-related apoptosis-inducing ligand 
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(TRAIL)-mediated death of  hepatocytes[25,26]. More-
over, CD8+ CTLs can exert the bystander killing effect 
through perforin, Fas/Fas ligand and TNFα pathways[27], 
thus causing a wide range of  hepatocellular apoptosis. 
IFN-γ-induced chemokines such as CXC chemokine 
ligands CXCL9, CXCL10, and CXCL11 can induce the 
migration of  nonspecific mononuclear cells into the liv-
er[28], which are unable to control the infection but result 
in sustained liver damage. In addition, the antibody re-
sponse has also been associated with the extent of  liver 
injury during HCV chronic infection, and anti-E2 anti-
bodies can mediate liver damage via antibody-dependent 
cell-mediated cytotoxicity (ADCC)[29], but it just occurs 
after a prolonged HCV infection. The contributions of  
natural HCV antibodies to liver damage and fibrosis pro-
gression still need to be determined.

Dysfunction of  T cells: In the phase of  chronic HBV 
and HCV infections, specific T cells present a condi-
tion of  dysfunction due to the persistent exposure to 
high levels of  viral antigens that exceed the capacity 
of  host immunity. It may be induced by the following 
mechanisms. First, genetic predisposition of  immune-
related genes contributes to persistence of  HBV and/or 
HCV infections. Genetic polymorphism of  class Ⅱ hu-
man leukocyte antigen (HLA) has been associated with 
HBV[30] and HCV persistence/clearance[31], possibly be-
cause this genetic predisposition affects T cell function 
upon HBV infection. Genetic polymorphisms of  other 
immune-related genes, notably, interleukin-28B (IL28B), 
have closely been associated with HCV clearance, pro-
gression, and treatment response[32,33]. Second, antigen 
presentation by DCs and macrophages may be impaired, 
resulting in ineffective priming of  T cells or deficient 
maintenance of  antigen-experienced T cells[34]. Addi-
tionally, dysfunctional specific T cells can express the 
inhibitory receptor programmed death-1 (PD-1), which 
inhibits immune activity and induces the apoptosis of  T 
cells[35-37]. Moreover, HCV core protein can inhibit T cell 
proliferation by binding to the complement receptor gC-
1qR[38,39]. During the prolonged infection, the expression 
of  chemokine (C-C) motif  ligand (CCL) 17 and CCL22, 
attractors for Tregs[40,41], can inhibit the proliferation and 
function of  T cells and other immune cells[42]. The dys-
functional T cells can hardly eliminate HBV or HCV. On 
the contrary, the consistent but insufficient immune re-
sponses break up several balances between the immune 
cells or cytokines, such as Th1/Th2 cells or Th17/Treg 
cells, neutrophils/lymphocytes, neutrophils/CD8+ T 
cells, and Th1/Th2 cytokines[43,44], which induces a high 
immune pressure and results in the evolution of  the vi-
ruses during chronic infection. 

Role of inflammatory signaling pathways
There are multiple inflammatory signaling pathways 
and molecules involved in the sustained inflammation 
caused by chronic infection, including nuclear factor-κB 
(NF-κB), Wnt/β-catenin, TGF-β/Smad, RAF/MEK/

ERK, JAK/STAT, PI3K-AKT/PKB, Ras-MAPK, and 
Vitamin A[45-48]. NF-κB as a dimeric transcription factor 
can be activated by proinflammatory stimuli, such as 
TNFα or interleukin-1β (IL-1β)[48]. The activated NF-
κB signaling pathway thereafter induced the expression 
of  a series of  growth factors and cytokines to regulate 
the inflammatory response. IL-6 can be released by 
macrophages and regulate the proliferation and differ-
entiation of  liver fibroblasts[49]. The PI3K-AKT/PKB 
and Ras-MAPK pathways are also important because 
they are involved in the activation of  HSCs. Platelet-de-
rived growth factor (PDGF) can lead to the Ras-MAPK 
activation by binding its receptor, and the activation of  
protein kinase C (PKC) family through PI3K-AKT/
PKB eventually induces cell proliferation and HSC acti-
vation[50]. These signaling pathways and molecules may 
play an active role in the pathogenesis of  HBV- and 
HCV-related cirrhosis, thus serving as therapeutic tar-
gets and prognostic markers. 

HBV and HCV escape strategies in chronic infection 
Spontaneous clearance of  the viruses can be achieved 
in some infected subjects by an efficient immune re-
sponse. However, following the early immune response, 
70%-80% of  HCV infected patients will develop chronic 
infection[51] and 8.5% of  adults with acute hepatitis B 
will develop chronic infection[2]. Chronic infection of  
HBV occurs frequently in those who acquired the infec-
tion perinatally (90%) or during childhood (20%-30%), 
when the immune system is thought to be immature[12]. 
It implies that HBV and HCV can produce a series of  
strategies to evade the clearance. Under immune pres-
sure, HBV and HCV can evade the immune clearance 
through persistent viral replication and mutations, mak-
ing themselves preferably adapt to the inflammatory 
microenvironment. However, HBV and HCV have dif-
ferent mutation patterns conforming to their distinct 
viral structures. HCV replicates at a rate of  1010-1012 

virions per day. The RNA-dependent RNA polymerase 
lacks a proofreading function, favoring the Darwinian 
selection of  viral variants by humoral and cellular im-
mune responses[52]. During the phase of  acute infection, 
there is a high rate of  nonsynonymous and synonymous 
substitutions due to the high levels of  selective pres-
sure exerted by antibodies and activated T cells, but 
the rate decreases at continuous infection stage[53]. The 
HCV E2 glycoprotein is thought to be a major target 
for HCV-specific antibody. The nucleotide substitutions 
at the hypervariable HCV E2 region 1 during anti-HCV 
seroconversion in acutely HCV-infected individuals are 
intensively correlated with the viral evasion. HBV exists 
in the form of  covalently closed circular DNA (cccDNA) 
in the nuclei of  hepatocytes and exhibits higher frequen-
cies of  mutations than other DNA viruses due to the 
spontaneous error rate of  reverse transcriptase. The rate 
of  HBV mutation in HBeAg-positive patients is 1.5 × 
10-5-5 × 10-5 nucleotide substitutions/site per year[54], 
and is even higher in HBeAg-negative patients. Under 
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C3116T are independently associated with an increased 
risk of  HCC[57]. In the EnhⅡ/BCP/precore region of  
HBV genotype C, C1673T, A1726C, A1727T, C1730G, 
C1766T, T1768A, C1773T, and C1799G are significantly 
associated with an increased risk of  cirrhosis, compared 
to CHB; whereas these mutations are inversely associ-
ated with HCC risk, compared to cirrhosis. T1768A, 
A1762T/G1764A, and A1846T are independently as-
sociated with an increased risk of  cirrhosis[57]. The fre-
quencies of  G1652A, T1673C, and G1730C increase 
successively from the ASC state to CHB to cirrhosis, but 
significantly decrease in HCC[58]. A study conducted in 
Taiwan has demonstrated that multiple HBV mutations 
including preS deletion, T1762/A1764, T1766 and/or 
A1768 are more often found than a single mutation pat-
terns in the process of  progression to cirrhosis[59]. The 
evidence indicates that immune selection of  some viral 
mutations in HBV evolution towards cirrhosis seems 
different from that in the evolution towards HCC. Even 
though, several important HCC-related HBV mutations, 
namely, preS deletion, C1653T, T1753V, and A1762T/
G1764A successively increase in their frequencies dur-
ing HBV evolution from ASC state, CHB, and cirrhosis 
to HCC[58,60]. This reflects the robustness of  HBV preS 
deletion, C1653T, T1753V, and A1762T/G1764A in pre-
dicting the entire evolutionary process from ASC state 
to HCC. Although cirrhosis is an important risk factor 
of  HCC, most of  the virus-related cirrhosis patients do 
not develop HCC. The difference in immune selection 
of  viral mutants between evolutionary processes towards 
cirrhosis and HCC should be further elucidated. 

Our previous study has demonstrated that genetic 
predisposition to HLA-DP function play an important 
role in immune selection of  cirrhosis-related HBV mu-
tations and a significant effect of  HBV mutations on 
cirrhosis is selectively evident in those with HLA-DP 
genotypes that promote HBV persistence[58]. HLA class 
Ⅱ loci are mainly associated with spontaneous clearance 
of  HBV and HCV. Interestingly, genetic polymorphisms 
within HLA Ⅱ loci have been frequently associated with 
chronic HBV or HCV hepatitis, hepatic fibrosis, and the 
development of  HCC[61]. Thus, HLA-DP affects HBV 
persistence, regulates immune selection of  viral muta-
tions, and influences cirrhosis risk contributed by HBV 
mutations.

Cirrhosis-related HBV mutations biologically affect 
the progression from chronic hepatitis to cirrhosis. Ap-
proximately 30.9% of  S gene mutations occur in the 
major hydrophilic region of  HBs antigen, which can 
change the epitopes of  the three-dimensional structure, 
and lead to immune escape of  HBV. C1766T/T1768A, 
an independent risk factor of  cirrhosis in HBeAg-
negative patients, can increase the pre-genome mRNA 
encapsidation and then promote viral assembly[62]. In ad-
dition, the X gene mutations such as G1386M, C1485T, 
and C1653T, can regulate the NF-κB signaling pathway 
which plays a crucial role in the progression to cirrhosis 
or HCC[63].

immune pressure, hypermutation provides viruses a 
choice not only for growth advantage, but also for long-
term survival. APOBEC3, an important member of  the 
APOBEC family of  cellular cytidine deaminases, can 
inhibit HBV through a series of  editing-dependent and 
-independent mechanisms. However, it is also involved 
in the viral genetic diversification and evolution[12]. The 
expression of  activation induced deaminase, an APO-
BEC3 paralog, has been observed in a variety of  chronic 
inflammatory syndromes including HCV infection. 
Introduction of  exogenous APOBEC3G into HCV-in-
fected Huh7.5 human hepatocytes inhibits HCV replica-
tion; knockdown of  endogenous APOBEC3G enhances 
HCV replication[55]. Some APOBEC3 genes in primary 
human hepatocytes are up-regulated by IFN-α and 
IFN-γ. Up-regulation of  APOBEC3 by inflammation 
inhibits HCV genome synthesis via viral editing. Two to 
five APOBEC3 genes are significantly up-regulated in 
cirrhotic livers in following order: HCV ± HBV-related 
cirrhosis > HBV-related cirrhosis > alcoholic cirrhosis, 
compared to normal livers. In HBV-related cirrhosis, 
HBV genome is particularly edited by APOBEC3G, 
and APOBEC3G is the dominant deaminase in vivo with 
up to 35% of  HBV genomes being edited[56]. Hepatic 
inflammation might provide a “fertile field” to facilitate 
“viral mutation-selection-adaptation” evolutionary pro-
cess via activating a series of  enzymes including APO-
BEC3 and promote immune escape of  HBV and HCV 
during chronic infection. 

Association of HBV mutations with cirrhosis
HBV DNA consists of  four overlapping open read-
ing frames that encoding the envelope (pre-S/S), core 
(precore/core), polymerase (P), and X proteins, respec-
tively. HBV preS region consists of  preS1 and preS2 do-
mains and they are essential for the immune responses 
because they contain several epitopes for T and/or 
B cells. In our previous studies, we defined wild-type 
nucleotides and mutations of  HBV genotypes B and 
C, respectively. A nucleotide with the highest frequency 
in the sequences of  HBV from asymptomatic HBsAg 
carriers (ASCs) seropositive for HBeAg was termed 
a wild-type nucleotide because HBeAg-positive HBV 
has been traditionally treated as a wild-type strain[6,57,58]. 
Under this definition, we found some of  the cirrhosis-
related HBV mutations (compared to ASCs and CHB 
patients) and HCC-related HBV mutations (compared 
to HBV-infected subjects without HCC) in the preS and 
enhancer Ⅱ (EnhⅡ)/basal core promoter (BCP)/pre-
core regions. In the preS region, 81.0% of  preS1 wild-
type nucleotide hotspots of  HBV genotype C are sig-
nificantly associated with an increased risk of  cirrhosis, 
as compared with CHB; 90.5% of  preS1 mutations of  
HBV genotype C are significantly associated with an 
increased risk of  HCC, compared to cirrhosis. Further-
more, wild-type nucleotides A2964C and T3116C are 
independently associated with an increased risk of  cir-
rhosis, whereas their mutation counterparts C2964A and 
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Tissue repair and liver fibrosis 
Tissue repair following liver damage as a consequence 
of  the inflammation through the accumulation of  ex-
tracellular matrix (ECM) proteins mainly secreted by 
HSCs will eventually result in the occurrence of  fibrosis. 
PDGF is the most potent mitogen for HSCs via the Ras-
MAPK and PI3K-AKT/PKB signaling pathways[50]. 
Moreover, TGFα and epidermal growth factor (EGF) 
can also stimulate the proliferation of  HSCs. The “inac-
tive” HSCs should undergo a process of  unidirectional 
activation, contributing to differentiate into myofi-
broblast-like phenotypes during fibrosis[64]. TGF-β1, 
the most important profibrogenic cytokine known for 
activated HSCs, is mediated by intracellular signaling 
via Smad proteins. Smad2 and Smad3 proteins are asso-
ciated with the activated receptor of  TGF-β1, whereas 
Smad7 is an effective inhibitor for TGF-β1 signaling. In 
addition, TGF-β1 also can increase α1 collagen mRNA 
stability via p38 MAPK. HSCs also can trigger an ac-
tivated process via phagocytizing the apoptotic bodies 
induced by virus infection[65]. The c-Jun N-terminal 
kinase-1 (Jnk1) as a profibrotic kinase in HSCs, but not 
in hepatocytes, significantly contributes to liver fibro-
sis development[66]. JNK is involved in HSC activation 
and fibrogenesis and represents a potential target for 
antifibrotic treatments[67,68]. These fibrosis-promoting 
proteins will increase the secretion of  fibrillar collagens, 
resulting in the deposition of  excess fibrotic matrix. The 
activated HSCs also can inhibit the expression of  matrix 
metalloproteinases (MMPs)-2, -9 and -14 which play a 
role because of  proteolytic activity towards ECM, via 
promoting the expression of  tissue inhibitors of  metal-
loproteinases (TIMPs), thus inhibit the matrix degrada-
tion[69]. The characteristics of  HSC-mediated fibrogen-

esis result in disruption of  the original architecture and 
liver dysfunction (Figure 1). 

Macrophages also are critical for both liver damage 
and fibrosis. The proinflammatory cytokines interleukin-
1β (IL-1β) and IL-18, which induced by macrophages in 
HCV-infected patients, can promote the inflammation 
via the NF-κB signaling pathway, resulting in liver dam-
age[70]. Activated macrophages release growth factors, 
cytokines and chemokines which induce the recruitment 
of  monocytes, thus affecting the function of  HSCs and 
fibroblasts[71]. In particular, TGF-β1 and insulin-like 
growth factor can activate the fibroblasts and promote 
a switch in fibroblast gene expression to initiate matrix 
remodeling[72]. Macrophages display a key role in the dif-
ferent stages of  fibrosis and these characteristics may be 
induced by either different cytokines in the microenvi-
ronment or the populations of  macrophages[73]. On the 
other hand, macrophages can exert antifibrotic activity 
and promote the resolution of  fibrosis by producing 
interstitial collagenases like MMP13[74]. In addition, the 
phagocytosis of  apoptotic hepatocytes has been shown 
to inhibit the development of  fibrosis. Understanding 
the mechanism of  fibrogenesis may pave the way for the 
treatment of  cirrhosis. 

THERAPERUTIC OPTIONS FOR VIRUS-
RELATED LIVER CIRRHOSIS
Without appropriate therapy for cirrhosis caused by 
HBV and/or HCV infections, liver injury may persist, 
thus facilitating the development of  decompensated cir-
rhosis and HCC, especially in those with active viral rep-
lication. As viral replication is an important driving force 
of  cirrhosis development, antiviral treatment should be 
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carried out before progression into decompensated cir-
rhosis[75,76]. In addition, as some signaling systems, such 
as JNK, have been recently associated with the forma-
tion of  cirrhosis[66-68], targeting these signaling systems 
might be an important option for the treatment of  liver 
fibrosis and cirrhosis. 

Antiviral treatment of HBV-related compensated 
cirrhosis
Around 30%-70% of  the patients with compensated 
liver cirrhosis still have active viral replication, and this 
active viral replication promotes the progression of  
liver injury. Successful antiviral treatment prior to the 
development of  cirrhosis is able to greatly reduce the 
morbidity and mortality of  HBV-related end-stage liver 
diseases. Currently approved nucleos(t)ide analogs (NAs) 
for the treatment of  HBV-related diseases include la-
mivudine (LAM), adefovir dipivoxil (ADV), entecavir 
(ETV), telbivudine (TBV), and tenofovir disoproxil fu-
marate (TDF)[77,78]. Antiviral therapy using newer NAs 
with lower resistance rates can suppress replication and 
re-activation of  HBV, improve liver function, and re-
store many patients to a state of  well compensated cir-
rhosis[79,80]. Long-term antiviral therapy can prevent the 
development of  liver decompensation in patients with 
compensated cirrhosis[77]. The antiviral treatment to halt 
the progression of  compensated cirrhosis should be car-
ried out as early as the diagnosis has been confirmed.

Antiviral treatment of HBV-related decompensated 
cirrhosis
About 2%-5% of  patients with HBV-related com-
pensated cirrhosis developed decompensation every 
year[81]. The prognosis of  patients with decompensated 
cirrhosis is usually poor, with a 5-year survival rate of  
14%-35%[82]. All oral antivirals can prevent viral replica-
tion efficaciously and improve biochemical and clinical 
parameters in patients with viral-related decompensated 
cirrhosis. The selection of  antivirals with high efficiency 
and a low rate of  resistance is necessary to attain fast 
and enduring viral suppression. The use of  LAM or 
TBV is restricted by drug resistance. ADV is restricted 
by its slower initiation of  effect and potential risk of  re-
nal injury, which is fatal in decompensated patients. Fur-
thermore, with the more use of  TBV, serum creatinine 
phosphokinase levels frequently increase. Therefore, 
TBV should be used as a second-line drug for patients 
with decompensated cirrhosis because of  the safety 
is not guaranteed. A meta-analysis of  clinical trials on 
NA-naive patients with HBeAg-positive CHB has dem-
onstrated that TDF is associated with the highest prob-
ability of  achieving undetectable HBV DNA at 1 year of  
all NAs considered[83]. A randomized open-label study 
has shown that ETV has a virological efficacy precede 
that of  ADV in HBV-related hepatic decompensation[84]. 
TDF and ETV are well tolerated in these patients, with 
an improvement in virological, biochemical and clini-
cal parameters[85]. Recently, a meta-analysis showed that 

LAM and TBV significantly decrease the mortality rate 
and disease severity in patients with decompensated cir-
rhosis. Also, both of  them promote HBeAg seroconver-
sion in these patients[86]. NAs with low rates of  inducing 
drug-resistant mutations and powerful and rapid HBV 
suppressive function, such as ETV or TDF, could be 
regarded as the first-line drugs for NAs-naive patients 
with decompensated cirrhosis for long-term therapy[84-91]. 
Even with low doses, the application of  IFN-α in pa-
tients with HBV-related decompensated cirrhosis can fa-
cilitate clinical decompensation and increase the risk of  
bacterial infection[92]. IFN is contraindicated in patients 
with HBV-related decompensated cirrhosis in the era of  
NAs. The studies using antivirals for the treatment of  
cirrhosis are listed in Table 1. 

Antiviral therapy using newer NAs could delay or 
obviate liver transplantation in some patients[76]. Some 
clinical guidelines suggest that the clinical improvement 
in some wait-listed patients with antiviral therapy could 
lead to their retreat from the transplant list[93,94]. How-
ever, if  the decompensation is caused by superimposed 
viral infection, the effect of  anti-HBV therapy would 
be limited. In this situation, liver transplantation should 
be the most immediate option. Standard of  therapy for 
patients with HBV-related decompensated cirrhosis in 
accordance with their clinical manifestations, including 
control of  ascites, infection or encephalopathy, should 
be instituted quickly and sufficiently[93]. Monitoring of  
HCC and timely transferring consultation for liver trans-
plantation are also mandatory[93,94]. 

Antiviral treatment of HCV-related cirrhosis
The antiviral treatment of  HCV-related cirrhosis poses 
much greater challenges. IFN remains an essential ele-
ment of  HCV antiviral treatment, but has reduced ef-
ficacy and significant toxicity at this stage of  cirrhosis[79]. 
The current standard of  care for HCV patients is the 
therapy with pegylated interferon (Peg-IFN) and ribavi-
rin (RBV), leading to 45% of  cure for genotype 1 HCV 
patients and approximately 80% for patients infected 
with HCV genotypes 2 and 3[95]. The current standard 
of  care for chronic hepatitis C is the combination of  
PEG-IFNα and RBV[96]. A recent study provides solid 
evidence that anti-HCV treatment using recombinant or 
pegylated IFN plus RBV is equally effective in compen-
sated cirrhosis both before and after liver transplanta-
tion[97]. Several clinical trials have demonstrated that the 
new direct acting antivirals, such as Sofosbuvir, Daclasta-
vir, Asunaprevir, ABT-450, Faldaprevir, Simeprevir, and 
Deleobuvir, interact with several of  vital components of  
HCV (NS3/4, NS5A, NS5B polymerase, etc.) and have 
a chance of  viral eradication of  80%-90%, with a few 
negligible side effects[98]. The combination of  vanipre-
vir (a NS3/4A protease inhibitor) with Peg-IFN plus 
RBV significantly increase rates of  sustained virologic 
response (SVR) among treatment-experienced patients 
with chronic HCV genotype 1 infection, compared to 
re-treatment with Peg-IFN plus RBV alone. Vaniprevir 
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is generally well-tolerated for up to 48 wk in those with 
compensated cirrhosis[99]. Eltrombopag (an oral, non-
peptide, thrombopoietin receptor agonist) can signifi-
cantly increase platelet numbers in thrombocytopenic 
patients with HCV-induced cirrhosis, allowing otherwise 
ineligible or marginal patients to begin and maintain an-
tiviral therapy and leading to significantly increased rates 
of  SVR[100]. It has been well-established that the CC gen-
otype of  the genetic polymorphism rs12979860 located 
at 3 kilobases upstream of  the IL28B gene, encoding 
IFN-lambda-3, is associated with spontaneous clearance 
of  HCV infection and an approximately 2-fold change 
in response to treatment with Peg-IFN plus RBV[101,102]. 
The frequency of  C allele of  rs12979860 is 80.3% in 
subjects of  European ancestry and 56.2% in those of  
African ancestry[101], which might be one of  reasons 
why the European population is more apt to eradicate 
HCV than the African population. The frequency of  
rs12979860 CC genotype is 84.1% in Chinese HCV-
positive patients[11], indicating that HCV-related cirrhosis 
in Chinese HCV carriers should not be as common as 

in HCV carriers of  African ancestry. Subsequent studies 
have also demonstrated that the IL-28B rs8099917 geno-
type TT significantly predict SVR in patients chronically 
infected with HCV genotype 1 to PEG-IFN-RBV thera-
py[96,103]. The prediction of  nonresponse to the treatment 
is mandatory to avoid side effects and reduce costs[104]. 
Genotyping the IL-28B rs12979860 and/or rs8099917 
should be considered before the treatment of  HCV-
related cirrhosis. The baseline mean model of  end stage-
liver disease (MELD) score predicts the risk of  hepatic 
decompensation during antiviral therapy[105], and should 
be considered for the treatment of  HCV-related cir-
rhosis with peg-IFN and RBV. Thus, antiviral treatment 
with PEG-IFN+RBV and/or DAAs is recommended to 
prevent the progression of  HCV-related cirrhosis in pa-
tients with the CC genotype of  rs12979860 and/or the 
TT genotype of  rs8099917 polymorphisms. 

Potential stem cell treatment for decompensated 
cirrhosis
Liver transplantation is the currently last option for the 
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Table 1  Current regimes of antiviral treatment for virus-related cirrhosis

Medicine used Number of patients Virological responses Survival Ref.

HBV-related cirrhosis
   ETV (1.0 mg/d) 
   or ADV (10 mg/d)

100 subjects treated with ETV, 91 
subjects treated with ADV

57% and 20% of subjects achieve HBV 
DNA undetectable after 48 wk (ETV and 

ADV, respectively)

Overall 1-yr patient survival 
rates were 84% and 83% (ETV 

and ADV, respectively)

[83]

   TBV (600 mg/d) 
   or LAM (100 mg/d)

114 in the TBV group, another 114 
in LAM group

49.1% and 39.5% of subjects achieve HBV 
DNA undetectable after 104 wk (TBV and 

LAM, respectively)

Overall 1-yr patient survival 
rates were 94% and 88% (TBV 

and LAM, respectively)

[85]

   ETV (0.5 mg/d) 144 compensated and 55 
decompensated cirrhosis patients 

treated with ETV

78.5% and 89.1% of subjects achieve 
HBV DNA undetectable after 12 mo 
(compensated and decompensated, 

respectively)

Not analyzed [86]

   TDF (300 mg/d) 
   or TDF (300 mg/d) 
   + FTC (200 mg/d) 
   or ETV (0.5 mg/d)

45 in TDF group, 45 in TDF plus 
FTC group and 22 in ETV group

70.5%, 87.8% and 72.7% achieve HBV 
DNA undetectable after 48 wk (TDF, TDF 

plus FTC, ETV, respectively)

Not analyzed [84]

   ADV (10 mg/d) 226 wait-listed and 241 post-LT 
patients

59% and 40% achieve HBV DNA 
undetectable after 48 wk (wait-listed and 

post transplantation, respectively)

Overall 1-yr patient survival 
rates were 86% and 91% (wait-
listed and post transplantation, 

respectively)

[87]

HCV-related cirrhosis
   Group 1: PegIFN-2a + RBV2 
   Group 2: PegIFN-2b + RBV3 
   Group 3: PegIFN-2a + placebo4

453 in group 1, 444 in group 2 and 
224 in group 3

69%, 52% and 59% achieve SVR1 after 
24 wk (group 1, group 2 and group 3, 

respectively)

Not analyzed [81]

   Treated: IFN5 Untreated: placebo 72 patients in both treated group 
and untreated group

Not analyzed 5-yr overall survival is 50% and 
39% in treated and untreated 

group, respectively

[89]

   Non-LT and LT cirrhotic patients 
   are all treated for PEG-IFN a2a 
   or a2b plus RBV6

43 HCV non-LT cirrhotic patients 
and 17 LT HCV related-cirrhotic 

patients

69.8% and 47.1% achieve EVR and 41.9% 
and 29.4% achieve SVR (non-LT group 

and LT group, respectively)

None of the non-LT cirrhotic 
patients died; LT cirrhotic 

patients with survival rates of 
87% at 1 yr and of 76% at 3 and 

5 yr after the treatment

[97]

1Undetectable HCV RNA in serum after 24 wk of post-treatment follow-up; 2Once-weekly injections of 180 mcg of PegIFN-α2a plus RBV (1000 mg/d); 
3Thrice-weekly injections of 3 million units of PegIFN-α2b plus RBV (1000 mg/d); 4Once-weekly injections of 180 mcg of PegIFN-α2a plus daily placebo; 
5Treatment started with 1 mega unit three times weekly for three months then increased every three months to 3, 6, and 9 mega units; 6Peg-IFN-α2a or -α2b: 
at the dose of 180 mcg/wk or 1.5 mcg/kg per week respectively; and RBV 800-1200 mg, based on body weight. HBV: Hepatitis B virus; ETV: Entecavir; 
TBV: Telbivudine; LAM: Lamivudine; ETV: Entecavir; ADV: Adefovir; TDF: Tenofovir disoproxil fumarate; FTC: Emtricitabine; HCV: Hepatitis C virus; 
SVR: Sustained virological response; PegIFN: Peginterferon; RBV: Ribavirin; CHB: Chronic hepatitis B; IFN: Interferon; LT: Liver transplanted; EVR: Early 
virological response.
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treatment of  virus-related decompensated cirrhosis pa-
tients who fail to respond to antiviral treatments. Due 
to the lack of  donors, surgical complications, rejection 
reactions, and high cost for liver transplantation, other 
strategies have been considered for the treatment of  de-
compensated cirrhosis. Of  those, stem cell-based treat-
ments can be expected to be an alternative for patients 
with liver failure or decompensated cirrhosis because it 
may improve scarring and supplement hepatocytes[106,107]. 
Repopulation induced hepatic stem cells (iHepSCs) 
can become hepatocyte-like cells in the injured liver of  
fumarylacetoacetate hydrolase (Fah)-deficient mice[108]. 
Mesenchymal stem cells (MSCs) produce inhibitory cyto-
kines or induce the development of  regulatory T cells in 
the inflammatory and fibrotic processes, therefore they 
play an immunomodulatory role in this process although 
many details remain unknown[109]. Interestingly, MSC 
therapy seems to be effective in regulating the immune 
response in liver injury, transplantation, and autoimmu-
nity in both patients in clinical trials and animal models 
of  liver disease[110]. MSCs can directly suppress the acti-
vation of  the main cell source of  ECM, HSCs, via MSC-
derived IL-10 and TNF-α, and may also induce HSC 
apoptosis via the Fas/FasL pathway[111]. Therefore, MSCs 
are considered to work through multiple mechanisms 
to harmonize a dynamic, integrated response to liver in-
flammation and fibrosis, which prevents the progressive 
distortion of  hepatic architecture.

Another actual objective of  MSC treatment is to sub-
stitute impaired hepatocytes in patients with liver failure 
or decompensated cirrhosis with exogenous functional 
hepatocytes[106]. For this reason, induced pluripotent 
stem (iPS) cells and embryonic stem (ES) cells have been 
shown to be the most competent, producing large num-
bers of  functional hepatocyte-like cells (HLCs) in both 
animal models and humans. However, ethical issues and 
indeterminacy about their reaction in vivo in a proper 
homoeostatic manner have limited their clinical applica-
tions[112]. It is currently unknown whether MSC therapy 
could induce side effects such as hepatic artery dissec-
tion, fibrogenesis, and even tumorigenesis. The long-
term clinical significance and safety of  stem cell-based 
therapies should be confirmed in large-scale randomized 
controlled trials. Thus, the co-transplantation of  iPS/
ES-derived MSCs and HLCs may offer the potency for 
a series of  new therapeutic interventions for liver dis-
eases[106]. It will be highly important to tailor future stem 
cell therapies to specific patient types due to the mutable 
feature of  different stem cells (ES, iPS, and MSCs).

Regenerative therapies have the potential to provide 
minimally invasive procedures with few complications. 
The potential for stem cells in bone marrow (BM) to dif-
ferentiate into hepatocytes and intestinal cells was con-
firmed through detection of  Y chromosome-containing 
cells in samples from female recipients of  BM cells 
(BMCs) from male donors[113-115]. Recent studies showed 
that use of  whole bone marrow as a cell therapy in a 
rodent model with chronic liver disease led to the evolu-

tion of  hepatic fibrosis[116]. These studies suggest that 
BMCs are effective sources for regenerative liver therapy. 
A study group have found that targeting androgen re-
ceptor, which is a key factor in male sexual phenotype in 
bone marrow mesenchymal stem cells (BM-MSCs), can 
improve the therapeutic efficacy of  transplantation for 
liver fibrosis[117]. Autologous BMC infusion (ABMI) in 
patients with cirrhosis is one of  regenerative therapies. 
Serum albumin levels and Child-Pugh scores significantly 
improved after ABMI therapy, and the most important 
is lack of  adverse effects[118]. Thus, ABMI therapy should 
be developed as a hopeful option for the treatment of  
decompensated cirrhosis.

CONCLUSION
The process of  virus-inducted cirrhosis is a dynamic, 
multifaceted network. Inflammation provides a suitable 
microenvironment for the evolution of  viral mutation-
selection-adaptation, which in turn causes disease-specif-
ic viral mutation pattern. The repeated liver damage and 
tissue repair eventually progress to fibrosis and cirrhosis. 
In this process, both HSCs and macrophages are im-
portant for the fibrogenesis via excessive accumulation 
of  ECM, and macrophages also promote the formation 
of  fibrosis. Oral NAs can prevent viral replication ef-
ficiently in viral-related decompensated cirrhosis, cause 
the stabilization or improvement of  liver function, and 
improve survival. Antiviral treatment should be started 
as early as the diagnosis has been confirmed. Target-
ing key signaling pathway should be effective in halting 
the progression of  cirrhosis. Moreover, stem cell-based 
treatments could be an option for patients with liver fail-
ure or decompensated cirrhosis. Future studies should 
focus more on insight into the cross-link between the 
mechanisms and therapeutic options.
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