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Abstract
Ulcerative colitis (UC) is characterized by repeated 
flare-ups of inflammation that can lead to oncogenic 
insults to the colonic epithelial. UC-associated carcino-
genesis presents a different sequence of tumorigenic 
events compared to those that contribute to the devel-
opment of sporadic colorectal cancer. In fact, in UC, the 
early events are represented by oxidative DNA damage 
and DNA methylation that can produce an inhibition 
of oncosuppressor genes, mutation of p53, aneu-
ploidy, and microsatellite instability. Hypermethylation 
of tumor suppressor and DNA mismatch repair gene 
promoter regions is an epigenetic mechanism of gene 
silencing that contribute to tumorigenesis and may 
represent the first step in inflammatory carcinogenesis. 
Moreover, p53  is frequently mutated in the early stages 
of UC-associated cancer. Aneuploidy is an independent 
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risk factor for forthcoming carcinogenesis in UC. Epi-
thelial cell-T-cell cross-talk mediated by CD80 is a key 
factor in controlling the progression from low to high 
grade dysplasia in UC-associated carcinogenesis.
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Core tip: The ulcerative colitis (UC)-associated carcino-
genesis presents a different sequence of tumorigenic 
events compared to those that contribute to the de-
velopment of sporadic colorectal cancer. In fact, in UC, 
early events are represented by oxidative DNA damage 
and DNA methylation that can produce inhibition of 
oncosuppressor genes, mutation of p53, aneuploidy, 
and microsatellite instability. Epithelial cell-T-cell cross-
talk mediated by CD80 is a key factor in controlling the 
progression from low to high grade dysplasia in UC-
associated carcinogenesis.
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INTRODUCTION
Ulcerative colitis (UC) is historically known as a risk fac-
tor for developing intestinal cancers via mechanisms that 
remain incompletely understood. In a recent meta-analy-



sis of  population-based cohorts, UC increases the risk of  
colorectal cancer (CRC) 2.4-fold. Male sex, UC diagnosis 
at young age, and extensive colitis also increase this risk[1]. 
In European collaborative studies, northern countries 
were observed to have more inflammatory bowel disease 
(IBD)-related intestinal cancers than southern ones[2]. 
The cumulative risk of  colon cancer is approximately 8% 
20 years after the initial UC diagnosis, rising to 18% at 30 
years[3,4]. Adenocarcinoma of  the colon develops from a 
dysplastic precursor lesion. In UC patients, pre-malignant 
histological changes are broadly referred to as dysplasia 
rather than adenoma, since the dysplasia is very often 
not polypoid[5]. Even though recent studies reported 
that at least 25% of  UC patients may be diagnosed with 
low grade dysplasia in a 10 year follow-up period, some 
studies, such as the one by Lim et al[6] and Lynch et al[7] 
in 1993, suggested that low grade dysplasia will develop 
in all UC patients if  they are followed for an adequate 
length of  time. Nevertheless, very recent epidemiologi-
cal data seems to make uncertain these classical pillars in 
IBD-associated cancer knowledge. In fact, very recent 
Dutch data pointed out that a high proportion of  IBD-
associated CRCs develop before the recommended start 
of  surveillance[8,9]. Moreover, an authoritative Danish 
study concluded that a diagnosis of  UC or CD no longer 
seems to increase patients’ risk of  CRC, although sub-
groups of  patients with UC remain at an increased risk[10]. 
The decreasing risk for CRC from 1979 to 2008 might 
result from the improved therapies for IBD patients that 
have developed over that time[10].

In recent years, a causal link between chronic in-
flammation and gastrointestinal tract carcinogenesis 
has gained increasingly strong support[11,12]. In a recent 
Finnish study, the degree of  inflammation and dura-
tion of  disease were observed to cumulatively increase 
the risk for dysplasia and CRC in IBD patients[13]. A 
chronic inflammatory condition exposes IBD patients to 
a number of  signals with potential tumorigenic effects. 
These signals include persistent activation of  the nuclear 
factor-kappa B (NF-κB) and cyclooxygenase-2 (COX2) 
pathways, release of  proinflammatory mediators such as 
tumor necrosis factor-alpha (TNFα) and interleukin-6 
(IL-6), and augmented levels of  reactive oxygen and ni-
trogen species. An inflammatory microenvironment can 
contribute to colonic tumorigenesis via 3 major processes: 
(1) increasing oxidative stress, which causes direct DNA 
damage that contributes to tumor initiation; (2) activat-
ing prosurvival and anti-apoptotic pathways in epithelial 
cells that contribute to tumor promotion; and (3) creating 
a microenvironment that promotes sustained growth, 
neoangiogenesis, migration, and invasion of  tumor cells, 
thus supporting tumor local progression and distant me-
tastasis[14]. Precancerous lesions and invasive carcinoma in 
UC differ from sporadic ones in terms of  a younger age 
at onset and flat mucosa within large fields of  genetic ab-
normalities, rather than as isolated and visible exophytic 
lesions[15-17]. However, many of  the genetic abnormalities 
observed in sporadic adenoma and carcinoma, including 

alterations in adenomatous polyposis coli (APC), p53, 
bcl-2, and K-ras genes, microsatellite instability, and aneu-
ploidy, are also observed in UC-related neoplasms, albeit 
with a different frequency and timing in many cases[18-26]. 

This is a comprehensive overview of  the available lit-
erature on pathogenesis and immunosurveillance mecha-
nisms in inflammatory colonic carcinogenesis. A text 
word literature review was performed using PubMed and 
Medline databases. Although this was not a systematic 
review, the search terms used were as follows: colorectal 
AND cancer OR carcinoma AND UC OR IBD OR 
AND pathogenesis OR immune surveillance. The refer-
ence lists of  identified articles were searched for further 
relevant publications. Two researchers (Scarpa M and 
Pozza A) independently selected the studies, which were 
limited to clinical studies published between January 1980 
to July 2013 and in the English language. Unpublished 
data and data published in abstract form only were ex-
cluded, as these were unlikely to contain sufficient meth-
odological information to allow valid conclusions to be 
made. Whenever discordance regarding study inclusion 
existed, the two researchers negotiated an agreement.

HOW IT STARTS: DNA DAMAGE AND 
GENOMIC INSTABILITY
Definition
Genomic instability includes microsatellite instability 
(MSI) associated with mutant phenotypes and chromo-
some instability (CIN) characterized by gross chromo-
somal abnormalities[27]. Three fundamental intracellular 
mechanisms are involved in the repairing of  DNA 
damage: nucleotide excision repair (NER), base excision 
repair, and mismatch repair (MMR). Their alteration/in-
activation can lead to MSI. On the other hand, CIN is 
typically associated with the progressive accumulation of  
mutations in oncosuppressor genes and oncogenes[16]. 
Defects in DNA MMR genes and CIN pathways are re-
sponsible for a variety of  hereditary cancer predisposition 
syndromes, including hereditary non-polyposis colorec-
tal carcinoma, Bloom syndrome, ataxia-telangiectasia, 
and Fanconi anemia[27]. Furthermore, besides the many 
genetic contributors to CIN and MSI, there are also epi-
genetic factors that can be equally damaging to cell-cycle 
control. Hypermethylation of  oncosuppressor and DNA 
MMR gene promoter regions is an epigenetic mechanism 
of  gene silencing involved in colorectal carcinogenesis. 
Finally, telomere shortening has been demonstrated to 
increase genetic instability and tumor formation in mice 
models[27]. 

Role of genomic instability
In UC, colonocytes are subject to high levels of  genetic 
damage. In fact, chronic inflammation of  the colon can 
contribute to carcinogenesis by increasing oxidative stress 
which promotes DNA damage, thus contributing to tu-
mor initiation. Oxidative DNA damage is more evident 
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in patients with UC and dysplasia[28,29]. Furthermore, the 
severity of  colitis inflammation has been associated with 
high levels of  reactive oxygen species (ROS) and reduced 
defenses to oxidative stress. Both of  these mechanisms 
might contribute to oxidative DNA damage[25,30-36]. ROS 
induce genetic damage either as base alterations, “abasic” 
sites, or as strand breaks, and each of  these damage types 
could cause genomic instability. Therefore, an interest-
ing hypothesis is that in a subgroup of  UC patients who 
could be defined as “progressors”, the mucosal epithe-
lium is damaged by ROS, producing genomic instability 
and eventually carcinogenesis initiation and progression. 
This hypothesis is supported by the observation of  
chromosomal instability and MSI in the non-dysplastic 
mucosa of  UC patients with dysplasia and cancer[25,37,38]. 
Genomic instability occurs with the same frequency 
(10%) throughout the whole neoplastic progression in 
UC. Therefore, genomic instability does not accumulate 
as the neoplasia progresses, but rather occurs very early 
and persists at a steady level. The constant presence of  
instability may be linked to the maximal tolerated degree 
of  genetic damage and the dynamic rate of  cell turnover 
in the inflamed colon.

Genomic instability rate in the colonic mucosa with-
out dysplasia from patients with UC and dysplasia is 
significantly higher than that of  UC patients who are 
completely dysplasia/cancer-free. On the other hand, in 
normal mucosa from patients with sporadic colon can-
cers and adenomas, genomic instability is not observed[39]. 
On the contrary, in patients with widespread UC, ge-

nomic instability precedes neoplastic transformation, and 
may be related to the extension of  chronic inflammation. 
These observations suggest once again the peculiarity of  
the pathogenesis of  UC CRC, and can in part explain the 
difference from sporadic cancers: in fact, UC neoplasia 
is frequently multifocal, widespread, and may occur in 
flat mucosa. The differences in UC-related and sporadic 
colorectal carcinogenesis is shown in Figure 1.

On the other hand, non-progressor patients may be 
exposed to a lower oxidative stress in their colon than 
progressors, or may present a lower susceptibility for 
genomic instability after oxidative stress because of  bet-
ter protective mechanisms. For example, glutathione and 
glutathione S-transferase levels vary among UC patients 
and may influence ROS levels[40]. Nevertheless, a small 
amount of  heterogeneity was also observed in the non-
progressor group: 20% of  patients demonstrated in-
creased genomic instability in the colon without any trace 
of  dysplasia or cancer at the optimized combination of  
sensitivity and specificity. Curiously enough, the genomic 
instability rate approximates the percentage of  patients 
with no dysplasia or cancer that one might expect to 
develop a cancer in the following 20 to 30 years[41]. Nev-
ertheless, the question as to why some UC patients have 
a mutator phenotype, while others do not, still remains 
open[42]. 

Role of MSI
UC-related colonic carcinogenesis can also be associated 
with MSI. In fact, it was demonstrated that MSI can be 
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Figure 1  Timing of mutation occurrence in inflammatory and sporadic colorectal carcinogenesis. LOH: Loss of heterozygosis; MSI: Microsatellite instability; 
COX-2: Cyclooxygenase-2; APC: Antigen-presenting cell.
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DNA damage, and thus they can activate oncogenes 
and inactivate oncosuppressors[34,53]. Therefore, oxidative 
injury to mitochondria in a chronic inflammation situa-
tion may contribute to the early stages of  carcinogenesis. 
Human cancers are characterized by mutations of  mtD-
NA[54-56] and, curiously enough, accumulation of  mtDNA 
mutations in cancerous tissue seems to be related to the 
grading of  malignancy. An interesting hypothesis is that 
genetic instability in the process of  carcinogenesis results 
in the high rate of  mtDNA mutation in the colorectal 
mucosa of  individuals with UC, and the increased insta-
bility of  genes in mtDNA are consistent with the high 
incidence of  CRC in individuals with UC.

Recently, Nishikawa et al[54,57] observed that the num-
ber of  mtDNA mutations in the colonic mucosa in UC 
patients is significantly higher than that found in other 
types of  malignancies. Moreover, the rate and the tim-
ing of  genetic mutations underlying sporadic cancer 
(adenoma-carcinoma sequence) and UC-associated 
carcinogenesis seem to be different. Although the defi-
nite mechanism of  these differences is still unknown, 
increased oxidative stress in the UC colon[58,59] appears 
to be a major cause of  DNA damage[60]. Thus, the high 
mtDNA mutation rate in the colonic epithelial cells of  
UC patients is associated with mutation of  nuclear DNA 
in long-lasting inflammation. The observation that the 
great majority of  mtDNA mutations in UC patients were 
homoplasmic in nature suggests that these mutations had 
become dominant in their mucosa. Mitochondrial DNA 
with certain types of  mutations are characterized by the 
generation of  abnormal proteins and increased electron 
leakage from the electron transport chain, and therefore 
the amounts of  endogenously produced free radicals may 
be increased in these cells. Finally, in tissues with chronic 
inflammation, the resulting increase in oxidative stress 
acts to enhance the mutation of  either mtDNA or, prob-
ably, nuclear DNA, thereby promoting the early stage of  
tumorigenesis. Given its clonal nature and the large num-
ber of  mtDNA copies, mutation of  the mitochondrial 
genome in the colonic mucosa of  UC patients is sugges-
tive of  genomic instability that enhances carcinogenesis. 
The high incidence of  mtDNA mutation in the colonic 
mucosa of  subjects with UC indicates that the DNA 
mutation rate is enhanced in their epithelial cells by the 
oxidative stress produced by chronic inflammation and, 
hence, malignant transformation can occur more easily 
than in normal subjects[57]. 

Role of epigenetic mutations
Finally, DNA hypermethylation may play a role in UC 
carcinogenesis. Altered genomic methylation is a well-
recognized characteristic of  tumor cells, and specific 
aberrant methylation events occur in the early steps of  
colorectal carcinogenesis, leading to profound modifica-
tions in gene expression[61]. In fact, the aberrant methyla-
tion of  H-cadherin (CDH13) beginning at an early stage 
of  colorectal tumorigenesis frequently silences the ex-
pression of  this tumor suppressor gene in colorectal ad-

caused by ROS[43]. Microsatellites are short repetitive se-
quences (1- to 5-nucleotide) of  DNA that are randomly 
distributed throughout the whole genome. The stabil-
ity of  these sequences is a good measure of  the general 
integrity of  the genome. MSI reflects a gain or loss of  
repeat units in a germline microsatellite allele, suggest-
ing the clonal expansion that is typical of  a cancer. A 
high rate of  MSI in severe long standing UC is probably 
related to the genomic instability produced by repeated 
inflammatory insults. Therefore, the influence of  inflam-
mation should be considered when estimating MSI in 
UC[44]. Indeed, although the great number of  molecular 
mechanisms involved in the increased risk of  CRC in 
UC is still unclear, it appears to be related to MSI[25,45]. 
The prevailing hypothesis is that overproduction of  free 
radicals saturates the ability of  the cell to repair oxidative 
DNA damage prior to replication[25,46]. Another hypoth-
esis is that prolonged and repeated oxidative insults di-
rectly inactivate DNA MMR genes[47]. One study reported 
half  of  UC mucosal samples with high MSI as having 
MLH1 hypermethylation[48]. However, differently from 
what is observed in hereditary non-polyposis colon can-
cer, other studies found little evidence for MMR defects 
as a cause of  MSI in UC[49,50]. These data suggest the pos-
sibility that mechanisms other than MMR defects exist. 
Recently, adaptive increased activity of  3-methyladenine 
DNA glycosylase (AAG) and apurinic endonuclease 
(APE1) in areas of  UC colon undergoing active inflam-
mation was observed[51]. Interestingly, this imbalanced in-
crease appeared to be associated with the MSI observed 
in UC. These data were consistent with a possible novel 
mechanism by which patients with chronic colonic in-
flammation acquire MSI. UC patients were demonstrated 
to have increased AAG and APE1 enzyme activity in 
epithelial areas of  their colon with active inflammation, 
and those with MSI have the largest increase and imbal-
ance in the levels of  AAG and APE1 in inflamed areas 
of  their colons. These observations showed that the 
adaptive imbalanced increase of  these enzymes may have 
DNA-damaging effects and contribute to carcinogenesis 
in chronic colonic inflammation[51]. 

Role of mitochondrial DNA damage
In inflammatory conditions, ROS induce DNA dam-
age[31], and since mitochondrial DNA (mtDNA) lacks 
histones and related protective systems, mutations accu-
mulate there more than in nuclear DNA[52]. The human 
mitochondrial genome includes a 16.5-kb circular double-
stranded DNA molecule encoding 13 polypeptides of  
the respiratory chain, 22 transfer RNAs, and 2 ribosomal 
RNAs necessary for protein synthesis. Since the correct 
expression of  the complete mitochondrial genome is 
necessary for the maintenance of  mitochondrial func-
tions, including electron transport, even small changes in 
the mtDNA sequence can cause profound functional im-
pairment that enhances generation of  free radicals, which 
in turn increase the extent of  DNA mutation. Free radi-
cals can act as initiators and/or promoters that can cause 
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enomas and cancers[62]. Moreover, besides germ-line mu-
tations associated with hereditary familial adenomatous 
polyposis and somatic mutations in sporadic colorectal 
tumors, hypermethylation provides an important mecha-
nism for impairing APC function[63]. Furthermore, hyper-
methylation of  the CpG island in the cellular DNA-re-
pair protein O-6-methylguanine-DNA-methyltransferase 
(MGMT) gene[64] and in the MLH1 gene is associated 
with the reduced gene expression observed in the major-
ity of  sporadic primary CRCs with MSI[65]. Finally, in gas-
trointestinal cancer RUNX3 hypermethylation decreases 
transforming growth factor-β (TGF-β)/BMP signaling[66]. 
In our series, the methylation of  these genes occurred in 
more than half  of  the patients (data not yet published). 
Garrity-Park et al[67] evaluated the methylation status of  10 
genes [p16, p14, runt-related transcript factor-3 (RUNX3), 
COX-2, E-cadherin, methylated-in-tumor-1 (MINT1), 
MINT31, HPP1, estrogen receptor, and SLC5A8] in mu-
cosal samples from UC-CRC tumors and non-neoplastic 
colonic tissue from both UC-CRC cases and UC controls. 
Methylated promoters of  RUNX3, MINT1, and COX-2 
resulted in potential biomarkers of  the presence of  CRC 
in patients with UC, and so these genes might also be 
used as biomarkers for colorectal dysplasia.

Furthermore, in UC-associated carcinogenesis, hyper-
methylation of  the promoter of  Death-Associated Pro-
tein Kinase (DAPK) was observed in long-standing UC 
patients[68]. DAPK is a pro-apoptotic protein implied in 
various apoptotic cascades. Kuester et al[68] observed that 
DAPK is overexpressed in inflamed colonic epithelium, 
suggesting a protective role of  this molecule. Therefore, 
its inactivation mediated by promoter hypermethylation 
might be critical for the accumulation of  epithelial cells 
with genomic damage in inflamed epithelium of  UC, and 
might contribute to the initiation of  the neoplastic pro-
cess and development of  UC-associated carcinoma. In-
creased expression of  DNA methyltransferase (DNMT)-1 
in non-neoplastic mucosa may either precede or be a 
relatively early event in UC-related carcinogenesis, and 
may be useful to predict the risk of  colorectal neoplasia 
in UC[69]. In fact, in our series of  UC patients DNMT1, 
DNMT3a, and DNMT3b, mRNA expression resulted 
in being significantly higher than in patients without an 
inflammatory condition (data not yet published).

Role of aneuploidy
Aneuploidy is an independent risk factor for tumorigene-
sis in UC. A less favorable prognosis in patients with UC-
related CRC compared with those with sporadic CRC has 
been reported. UC-related neoplasms presented a signifi-
cantly higher rate of  aneuploidy than sporadic CRC. UC-
related CRC and aneuploid sporadic CRC have a similarly 
lower than that of  diploid sporadic CRC. Aneuploidy 
resulted in being the strongest independent prognostic 
marker for R0-resected CRC patients[70].

HOW IT GROWS: ONCOGENE 
INVOLVEMENT IN INFLAMMATORY 
COLONIC CARCINOGENESIS
UC-associated cancer vs sporadic cancer 
Preneoplastic lesions and invasive cancers associated with 
UC usually develop as multiple and superficially extended 
lesions called DALMs (dysplasia-associated lesion or 
mass)[71-74]. DALMs are frequent in the most inflamed 
colonic areas. Thus, a chronic inflammation - dysplasia - 
carcinoma sequence has been suggested[75]. Comparisons 
of  the molecular alteration profiles between sporadic 
and UC-associated CRCs have shown clear differences. 
The timing and frequency of  the gene alterations in UC-
related cancers appear to be unique. Mutations of  APC 
and of  K-ras genes are less frequent[76,77] in UC-related 
cancer than sporadic ones. LOH at the APC loci in UC 
was noted in dysplasia with associated carcinoma, but 
LOH of  APC was not present either in cases of  non-
dysplastic epithelium or in high grade dysplasia alone. 
Conversely, LOH of  APC is present in 20% of  colonic 
adenomas[78,79]. In contrast, p53 is frequently mutated at 
the early stages of  UC-related carcinogenesis; 33%-67% 
in dysplasia and 83%-95% in UC-related cancer[20,80]. 
Moreover, loss of  heterozygosity (LOH) of  the p53 gene 
and src activation occur in UC non-dysplastic epithelium, 
UC-associated dysplasia, and in UC-associated carcinoma, 
whereas there is an absence of  LOH of  p53 in regions 
with negative, indefinite, or low grade dysplastic histol-
ogy[81]. Mutations in the ras proto-oncogene are present 
in 40%-60% of  sporadic colon cancers and are prob-
ably an early event; in contrast, these mutations are less 
frequently seen in UC-related cancer, and are probably a 
late event[22,82,83]. Finally, network analysis discovered that 
Sp1 and c-myc proteins may play roles in UC in the early 
and late stages of  carcinogenesis, respectively. Two over-
expressed proteins in the non-dysplastic tissue of  UC 
progressors, CPS1 and S100P, were further confirmed by 
IHC analysis[84]. Finally, telomerase and ILK activation 
occurs during the later stages of  carcinoma progression, 
whereas upregulation of  survivin, c-MYB, and Tcf-4 is 
a feature of  the early stage development of  neoplasia, 
and thus they might serve as early indicators for UC-
associated colorectal carcinogenesis[85]. These distinctive 
molecular patterns seem to result from different aetio-
logical factors and microenvironments that characterize 
the adenoma-carcinoma sequence or UC-associated car-
cinogenesis[75].

Role of apoptosis related genes 
Recently, van der Woude et al[86] observed that Bcl-xl was 
not expressed in chronic UC, but was clearly present in 
UC-related cancer tumor cells. Furthermore, they found 
interesting differences in the expression of  Fas and Bcl-xl 
between UC-related cancer and sporadic carcinoma. Fas 
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expression was strong in most UC-related dysplasia and 
tumor cells, whereas it was weak in sporadic carcinoma 
tumor cells. Moreover, Bcl-xl expression was important 
in chronic UC tumor cells, but was only weak in sporadic 
colon cancer cells[86]. However, the different expression 
patterns of  proapoptotic and anti-apoptotic proteins did 
not result in actual differences in apoptosis[85]. Activated 
caspase 3 staining, used as a marker of  apoptosis, was 
weakly represented in both chronic UC-associated colon 
cancer and sporadic colon cancer, and may be the result 
of  the decreased apoptosis rate in the presence of  in-
creased cell proliferation[86].

The inflammation process leads to the activation of  
the transcription factor NF-κB, which stimulates the 
expression of  many genes promoting cell survival, in-
cluding anti-apoptotic genes[12,85,87]. NF-κB regulation of  
inducible nitric oxide synthase (iNOS) and COX-2 in the 
gastritis-metaplasia-gastric cancer sequence and in the 
metaplasia-dysplasia-adenocarcinoma sequence in Bar-
rett’s esophagus have been extensively assessed[88]. Nitric 
oxide, produced by iNOS, was demonstrated to inhibit 
apoptosis by downregulating caspase activity[89]. In a pa-
per by Watson et al[90], increased expression of  iNOS in 
UC-associated dysplasia was described, whereas iNOS 
expression was absent in UC-associated carcinoma. 

COX-2 is an inducible cyclooxygenase whose produc-
tion is stimulated by IL-1, TNF, and many other inflam-
matory mediators[90,91]. COX-2 was demonstrated to play 
a role in the reparative process after mucosal injury in 
the gastrointestinal tract[90,91]. Multiple studies reported 
COX-2 overexpression (either protein or mRNA levels) 
in colonic adenomas and carcinomas, suggesting that 
this enzyme is definitely involved in sporadic colorectal 
carcinogenesis[92-94]. In a study by Agoff  et al[26], COX-2 
expression was examined at protein and mRNA levels 
on several mucosal samples in total colectomy specimens 
from UC patients who had developed dysplasia or carci-
noma, which they showed that COX-2 overexpression in 

UC-related neoplasms occurs at the early stages, begin-
ning in mucosa that is only diploid and still negative for 
dysplasia, and in mucosa that is not yet inflamed. More-
over, they showed that COX-2 protein overexpression 
detected by immunohistochemistry in mucosal samples 
occurs early on in UC-related neoplastic progression.

Two potential mechanisms may be involved in the re-
lationship between COX-2 overexpression and neoplastic 
progression in UC: one related to malondialdehyde levels, 
and one related to the up-regulation of  bcl-2[84]. The first 
hypothesis suggests that increased COX-2 activity, in part 
related to the normal physiological response to injury 
and inflammation, may induce DNA damage through in-
creased production of  malondialdehyde, a mutagenic by-
product of  COX-mediated prostaglandin synthesis and 
lipid peroxidation[40,95]. This malondialdehyde production 
would be in addition to that produced by the constitutive 
activity of  COX-1, which is thought to be important in 
sporadic colorectal neoplasia[90]. In support of  this hy-
pothesis, elevated levels of  malondialdehyde have been 
observed both in sporadic colon cancer and in IBD[96-99]. 
After tumor initiation, COX-2 may promote its progres-
sion by increasing expression of  bcl-2[100,101]. In fact, 
bcl-2 mediates the resistance to apoptosis, and bcl-2 up-
regulation was also observed in UC-associated neoplasia. 
Moreover, overexpression of  bcl-2 is reversible by both 
nonspecific COX inhibitors[101] and by highly selective 
COX-2 inhibitors[102]. Genes involved in UC-related carci-
nogenesis are shown in Table 1.

Role of inflammatory cytokines 
The importance of  IL6/p-STAT3 in patients with 
inflammation-induced CRC has recently been demon-
strated[103]. In fact, IL-6 is a critical tumor promoter dur-
ing early CAC tumorigenesis. In addition to enhancing 
proliferation of  tumor-initiating cells, IL-6 produced by 
lamina propria myeloid cells protects normal and prema-
lignant intestinal epithelial cells from apoptosis. By bind-
ing to its gp130-associated receptor, IL-6 activates three 
separate signaling pathways, namely Shp2-Ras-ERK, 
JAK1/2-Stat3, and PI3K-Akt-mTOR[104] and, according 
to their results, Grivennikov concluded that among these, 
Stat3 is a critical IL-6 effector in colitis-associated cancer 
induction[103]. In fact, Stat3 has the capacity to mediate 
IL-6- and IL-11-dependent IEC survival and to promote 
proliferation through G1 and G2/M cell-cycle progres-
sion as the common tumor cell-autonomous mechanism 
that bridges chronic inflammation to tumor promo-
tion[105]. Moreover, IL-6 signaling also seems to affect tu-
mor growth during later stages of  CAC[106]. IL-6 signaling 
during that stage increases TNF-α production, and its 
interference with TNF-α signaling inhibits tumor growth 
and reduces IL-6 production. Such cross-regulation was 
also observed in the case of  IL1 and IL-6; IL-1 can in-
duce IL-6 production in colon cancer cell lines[107]. The 
role for suppressor cytokines is more controversial. In 
fact, TGF-β signaling in colonic myeloid cells is signifi-
cantly involved in the development of  colitis-associated 
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Table 1  Altered genes in ulcerative colitis-associated 
carcinogenesis

Gene Function Ref.

Mutation/overexpression
   Apc Wnt signaling pathway inhibition 23,80,81,88,89
   Bcl-xl Apoptosis suppression 90
   Ptgs2 Inflammation promotion and 

apoptosis inhibition
26

   iNos Apoptosis inhibition through NO 
production

90

   Kras Cell survival promotion and 
apoptosis suppression

22,80,81,84-86

   Tp53 Cell-cycle regulation 20,82,83,87
   Tnfrsf6 Apoptosis promotion 90
   Smad3 Wnt signaling pathway component 121
Aberrant methylation
   p16 Cell-cycle regulation 71
   Mlh1 DNA mismatch repair 69
   Runx3 Transcription factor 71
   Dapk Induction of cell death 72
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cancer[108]. In fact, Suppressor of  Cytokine Signaling 3 
(SOCS3) seems to be involved in UC pathogenesis, and 
its absence seems critical for CRC progression[109]. Onco-
genic Smad3 signaling, altered by chronic inflammatory 
conditions and eventual somatic mutations, promotes 
UC-associated neoplastic progression through the up-
regulation of  growth-related proteins[110]. 

HOW WE DEFEND OURSELVES: IMMUNE 
SURVEILLANCE IN INFLAMMATORY 
COLONIC CARCINOGENESIS
The inconsistencies between the high frequency of  
colonic dysplasia and the much lower incidence of  in-
vasive cancer suggests the presence of  mechanisms of  
surveillance that may prevent malignant progression 
of  neoplasms in the colon in most cases. Observations 
that proctocolectomy specimens with preoperative UC 
and dysplasia showed cancer or dysplasia only in 64% 
cases[111] and, that 64% of  UC patients with low grade 
dysplasia (LGD) had indefinite or no dysplasia after 4-year 
follow-up[16], suggest the presence of  an efficient immune 
surveillance mechanism based on T-lymphocytes activa-
tion, ensuring the elimination of  developing tumor cells.

Tumor cell escape from immunosurveillance enables 
unrestrained neoplastic cell growth and metastatic dif-
fusion. The immune escape is thought to be facilitated 
both by active defense of  tumor cells and by defects in 
function of  the immune system[112,113]. Both CD4 and 
CD8 T lymphocytes are responsible for anti-tumor im-
munity[114,115]. The effective activation of  naive T lympho-
cytes implies the engagement of  the T cell receptor (TCR) 
with the major histocompatibility complex (MHC)-
antigen-complex in the presence of  co-stimulation mol-
ecules that promote an effective interaction of  APC and 
T cells[116-118]. The presentation of  MHC-antigen-complex 
without co-stimulatory signals leads to T-cell energy[119]. 
These co-stimulatory signals are provided by the interac-
tion of  CD80 or CD86 on APC surface, with their re-
ceptors expressed by T-cells[120,121]. CD80 or CD86 bind-
ing to CD28 induces tyrosine phosphorylation of  several 
substrates and enhances T cell activation promoted by 
the MHC-TCR interaction[122]. An increase in CD4/CD8 
ratio was observed in sentinel lymph nodes draining 
dysplastic epithelium compared to normal mucosa. The 
increase in CD4(+) T cells in relation to CD8(+) T cells 
correlated with the degree of  dysplasia reflected by a sig-
nificant increase in the ratio against low-grade dysplasia 
compared to indefinite dysplastic lesions. The T-cell re-
sponse was specific to antigens from dysplastic epithelial 
lining, as seen in proliferation assays. This observation 
suggests an important surveillance role for the immune 
system against premalignant intestinal lesions in patients 
with long-standing UC[123]. The products of  oncogenes 
or oncosuppressor mutated proteins can act as potential-
ly immunogenic proteins, and are expressed by CRC cells 
without any rejection by the immune system. Moreover, 

antigen presenting cells infiltrating colorectal carcinoma 
express MHC molecules, but do not express CD80 or 
CD86[124]. In vitro, the observation of  CD80 and CD86 
expression by human carcinoma cells lines up well with 
the regulation by IFN that was attributed to the early 
stage of  carcinogenesis when they were selected[125]. In 
fact, the role of  co-stimulatory molecules in the immune 
response to tumor initiation and progression has already 
been suggested by Antonia et al[126], who showed in 1995 
that surface CD80 expression can be induced by an on-
cogenic insult, and its downregulation at a later stage in 
the carcinogenesis process may lead to their escape from 
immunosurveillance mechanisms. In previous work by 
our group, we showed that there is significant and specif-
ic CD80 overexpression in the colon mucosa of  patients 
with UC and dysplasia that is downregulated at later stag-
es in carcinogenesis. On the other hand, in the non-in-
flammatory carcinogenesis pathway, CD80 is significantly 
less expressed[127,128]. Our more recent data show that the 
proportion of  epithelial cells acting as antigen present-
ing cells peaks in the dysplastic colonic mucosa of  UC 
patients, and that the activation of  CD8+ T cells can be 
mediated by epithelial cells through a CD80-dependent 
mechanism. Moreover, in a murine model of  inflamma-
tory colonic carcinogenesis, we demonstrated that CD80 
inhibition significantly increased the high grade dysplasia 
rate and extension, whereas enhancing CD80 signaling 
with anti-CTLA4 antibody significantly decreased these 
lesions (data not yet published). These data suggest that, 
in UC-associated carcinogenesis, the progression from 
dysplasia to invasive cancer is controlled not by a mere 
immunoediting process, such as that observed in spo-
radic invasive cancer by Galon et al[129], but a truly effec-
tive immunosurveillance mechanism mediated by CD80 
expression on epithelial cells (data not yet published). 
Immune surveillance mechanisms in UC-related carcino-
genesis are shown in Figure 2.

CONCLUSION
Patients with UC undergo repeated episodes of  colonic 
inflammation that are associated with various tumori-
genic events, and the sequence of  these events is differ-
ent from that which contributes to the development of  
sporadic CRC. In fact, in UC, early events are represented 
by DNA methylation that produces inhibition of  onco-
suppressor genes, mutation of  p53, aneuploidy, and MSI. 
Hypermethylation of  tumor suppressor and DNA MMR 
gene promoter regions is an epigenetic mechanism of  
gene silencing that can be involved in tumorigenesis and 
may also represent the first step in inflammatory carcino-
genesis. Moreover, p53 is frequently mutated in the early 
stages of  UC-associated carcinogenesis. Aneuploidy is an 
independent risk factor for forthcoming carcinogenesis 
in UC. Epithelial cell-T-cell cross-talk mediated by CD80 
is a key factor in controlling the progression from LGD 
to HGD in UC-associated carcinogenesis.
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