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Abstract
Epigenetic alterations have been identified as a major 
characteristic in human cancers. Advances in the field 
of epigenetics have contributed significantly in refin-
ing our knowledge of molecular mechanisms underly-
ing malignant transformation. DNA methylation and 
microRNA expression are epigenetic mechanisms that 
are widely altered in human cancers including hepa-
tocellular carcinoma (HCC), the third leading cause of 
cancer related mortality worldwide. Both DNA methyla-
tion and microRNA expression patterns are regulated 
in developmental stage specific-, cell type specific- and 
tissue-specific manner. The aberrations are inferred 
in the maintenance of cancer stem cells and in clonal 
cell evolution during carcinogenesis. The availability of 
genome-wide technologies for DNA methylation and 
microRNA profiling has revolutionized the field of epi-
genetics and led to the discovery of a number of epige-
netically silenced microRNAs in cancerous cells and pri-
mary tissues. Dysregulation of these microRNAs affects 
several key signalling pathways in hepatocarcinogenesis 
suggesting that modulation of DNA methylation and/or 

microRNA expression can serve as new therapeutic tar-
gets for HCC. Accumulative evidence shows that aber-
rant DNA methylation of certain microRNA genes is an 
event specifically found in HCC which correlates with 
unfavorable outcomes. Therefore, it can potentially 
serve as a biomarker for detection as well as for prog-
nosis, monitoring and predicting therapeutic responses 
in HCC.
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Core tip: A comprehensive review of the literature re-
vealed that epigenetic inactivation of microRNA genes 
is a frequent event in hepatocellular carcinoma (HCC). 
Hypermethylation of microRNA genes can discriminate 
HCC from benign liver tumors and correlates with poor 
prognosis, representing a promising new diagnostic and 
prognostic marker in HCC. Aberrant DNA methylation of 
microRNA genes affects several key signaling pathways 
important in hepatocarcinogenesis and for maintenance 
of cancer stem cell phenotype.
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INTRODUCTION
Human cancers develop through gradual accumulation 
and mutual interaction of  genetic and epigenetic altera-
tions[1]. Genetic alterations, both germline and somatic 
mutations, have been recognized as an important aspect 
in carcinogenesis[2]. Epigenetics, on the other hand, refers 
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to inherited modifications that influence gene expression 
and phenotype manifestation without any changes in 
the DNA sequence. Epigenetic mechanisms consist of  
several processes i.e., DNA methylation, histone modi-
fication, and expression of  non-coding RNA. Recent 
findings suggest that epigenetic alterations occur at much 
higher rates and more diverse in cancer cells compared 
to DNA mutations[3]. Among other epigenetic factors, 
aberrant DNA methylation is the longest known and best 
studied. DNA methylation cooperates with other epigen-
etic marks such as histone modifications and non-coding 
RNAs in the complex regulation of  gene expression[4]. 

MicroRNAs, a major class of  small non-coding 
RNAs, are well-conserved very small RNA molecules 
(20-22 nucleotides) that can negatively modulate gene 
expression post-transcriptionally. Accumulating evidence 
over the past decades highlights the importance of  mi-
croRNAs as key regulators of  many important physio-
logical processes such as cell proliferation, differentiation, 
apoptosis, and embryonic development[5]. Dysregulation 
of  microRNA expression has been inferred in numer-
ous diseases as well as in cancer. It has later been found 
that the expression of  certain microRNAs is regulated 
by DNA methylation. This points out that several layers 
of  epigenetic mechanisms are involved in the regulation 
of  gene expression[6,7]. Aberrations of  DNA methylation 
and microRNA expression have been inferred to play an 
important role in the initiation and progression of  hu-
man hepatocellular carcinoma (HCC)[8,9].

HCC is the most common type of  primary liver can-
cer that ranks as the fifth most frequent cancer and the 
third leading cause of  cancer mortality worldwide[10]. Epi-
demiological studies have revealed several key risk factors 
for the development of  HCC such as hepatitis B virus in-
fection, chronic hepatitis and cirrhosis, chronic alcoholic 
consumption, exposure of  dietary aflatoxin, and cigarette 
smoking[11]. HCC is frequently diagnosed at a late stage 
in individuals with severe liver dysfunction. Therefore, 
options for chemotherapeutic and adjuvant therapies 
are often limited. In addition, lack of  early detection 
markers and drug-resistance may contribute to the high 
mortality rate in HCC[12]. Although surgical resection and 
liver transplantation provide improvement of  the 5-year 
survival up to 65%, most HCC cases are diagnosed at an 
intermediate or advance stage when surgical procedure is 
not an option anymore[11,12]. The understanding of  cellu-
lar and molecular mechanisms leading to overt malignant 
liver tumors is very important in order to develop early 
detection markers as well as to improve clinical outcome 
and develop new therapeutic targets for patients with 
HCC. Over the last decade, the involvement of  DNA 
methylation and microRNAs in liver carcinogenesis 
has been shown in many studies. DNA methylation at 
certain genomic loci has been established as a potential 
marker for sub-classification, diagnosis, prognosis, and 
therapeutic targets in HCC (as previously reviewed[9,13,14]) 
and so does microRNA expression patterns (as reviewed 
in[8,15,16]). In this paper, we focus on the interplay between 

DNA methylation and microRNA dysregulation, the 
involved pathways during liver carcinogenesis, and their 
potential benefits for certain clinical applications in HCC. 

DNA METHYLATION IN LIVER 
CARCINOGENESIS
In the mammalian genome, covalent addition of  a methyl 
group to nucleotides takes place at cytosine located next 
to guanine (CpG dinucleotide)[17]. CpG dinucleotides are 
frequently enriched in certain genomic regions[18] that 
span the range of  0.5-5 kb known as “CpG islands”. 
Nearly 70% of  annotated gene promoters in the hu-
man genome are characterized by a high CpG content[19]. 
DNA methylation at CpG islands located upstream of  
gene promoter is associated with differential expression 
of  the gene. DNA methylation can mediate gene silenc-
ing through direct inhibition of  the binding of  methyla-
tion-dependent transcriptional activators or indirectly by 
altering the affinity of  proteins involved in the chromatin 
remodeling[4,20]. During embryogenesis, DNA methyla-
tion plays a role in the regulation of  expression of  some 
genes involved in the differentiation of  pluripotent 
cells[21]. However, recent evidence shows that non-CpG 
methylation is prevalently observed in embryonic stem 
cells and during neuronal development[22,23]

. Nearly 25% 
of  DNA methylation in embryonic stem cells is in non-
CpG nulceotides that disappears upon differentiation[22].

Aberrant DNA methylation is frequently found in 
cancer cells in comparison to healthy cells[24]. Studies in 
primary tumor specimens showed that differential DNA 
methylation can be found in almost every type of  can-
cer[25]. Methylation changes are manifested as hypometh-
ylation and/or hypermethylation. Loss of  methylation 
primarily affects repetitive genomic elements and gene 
bodies while hypermethylation mostly occurs at the pro-
moters of  tumor suppressor genes. Both loss and gain of  
DNA methylation are often found concurrently in cancer 
and are likely to be driven by different mechanisms in-
volving chromatin reorganization and DNA replication 
timing[26].

Almost half  of  the human genome consists of  re-
petitive elements, in which long interspersed nucleotide 
element-1 (LINE-1) and ALU already contribute to 
nearly 17% and 11%, respectively[27]. CpG dinucleotides 
located within repetitive transposable elements are typi-
cally methylated in healthy tissues. DNA methylation at 
the repetitive sequence is a natural protective mechanism 
to suppress their activation. Global loss of  methylation 
contributes to the transformation from dysplastic to 
malignant nodules and is reported to be gradually altered 
during colorectal cancer progression[28,29]. Demethylation 
can cause reactivation of  transposable elements and 
insertion to a new location leading to genetic transloca-
tions[30], insertions, exon deletions, and chromosomal 
loss[31]. Alterations of  DNA repair pathways and error-
prone DNA replication have also been described as a 
result of  LINE-1 demethylation[32,33].
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In liver carcinogenesis, hypomethylation of  LINE-1, 
ALU, and SAT2 seems to play a significant role. Loss 
of  methylation at SAT2 precedes LINE-1 and ALU 
demethylation and occurs at an early stage of  HCC[34]. 
DNA methylation levels of  LINE-1 are lower in hepatitis 
virus and aflatoxin associated HCC[35,36]. Genome-wide 
loss of  methylation correlates with chromosomal insta-
bility and poorer prognosis in HCC[37]. In addition, hy-
pomethylation of  LINE-1 elements in circulating DNA 
of  HCC patients correlate with the advanced disease and 
worse survival[38]. A report involving 305 HCC cases and 
1254 healthy individuals revealed that hypomethylation 
of  SAT2 detected in white blood cells was associated 
with increased susceptibility for HCC[39]. Recently, Shukla 
et al[40] demonstrated that endogenous LINE-1 retrotrans-
posons can propagate oncogenic activation in HCC. L1 
insertion caused MCC (mutated in colon cancer) ablation 
leading to activation of  β-catening/Wnt signaling and 
interrupted inhibition of  oncogene ST18.

DNA methylation is mediated by a family of  DNA 
methyltransferase enzymes (DNMTs). Being widely 
expressed in various tissues, DNMT1 has an ability to 
induce both de novo and maintenance of  methylation. 
DNMT3A and DNMT3B are mainly involved in the de 
novo methyltransferase[41]. Mechanisms underlying estab-
lishment of  DNA methylation have been widely known. 
However, how methylation is removed from DNA re-
mains to be clarified. Multiple pathways including both 
active and passive mechanisms seem to be involved in 
DNA demethylation[42,43]. Improper functions of  DN-
MTs and other components of  the methylation machin-
ery can lead to aberrant DNA methylation. Compelling 
evidences have shown that dysregulation of  establish-
ment and removal of  DNA methylation is involved in 
hepatocarcinogenesis[34,44].

In contrast to hypomethylation, promoter hypermeth-
ylation is associated with inhibition of  gene expression. 
CpG islands located at the gene promoters are commonly 
unmethylated. Increased DNA methylation at the CpG 
island-associated gene promoters are common features 
in cancer cells[45]. Hypermethylation is related to tran-
scriptional inhibition and loss of  gene function. In HCC, 
hypermethylation mainly affects tumor suppressor genes, 
particularly those that are involved in cell proliferation, 
cell differentiation, DNA repair, cellular metabolism, 
cell adhesion and metastasis. Table 1 summarizes genes 
that are frequently hypermethylated in primary HCC 
specimens[46-109]. Although alterations in gene body DNA 
methylation have been overlooked in the past, it seems 
that it is not associated with gene repression. Gene body 
methylation is suggested as a mechanism for silencing re-
petitive DNA elements and regulating exon splicing[46]. 

Epigenetic aberrations have been inferred as key fac-
tors during a multi-step process of  HCC development. 
Hypermethylation of  APC, RASSF1A, and SOCS1 
genes has already been detected in chronic hepatitis and 
cirrhosis. Both level and the frequency of  methylation 
continuously increase in dysplastic liver nodules and 

HCC[9,64]. Also GSTP1, CDKN2A, COX2, HIC1, and 
RUNX3 are frequently methylated in dysplastic liver 
nodules[9,64,90,110]. Gain of  methylation at CDH1, CASP8, 
MINT, SFRP2, and TIMP3 genes is observed in early and 
late stage of  HCC[64,90]. These data support the notion 
that DNA methylation aberrations emerge at the early 
stage of  hepatocarcinogenesis and gradually increase in 
combination with accumulation of  genetic events such as 
P53 mutations and copy number alterations during pro-
gression to the advanced stage of  HCC. 

Concurrent hypermethylation at several genes in 
HCC also leads to the emerging concept of  CpG island 
methylator phenotype (“CIMP”). This concept was origi-
nally described in colorectal and gastric cancer illustrating 
cancer development through simultaneous inactivation of  
tumor suppressor and DNA repair genes by DNA meth-
ylation[111]. It was shown that CIMP can be used as an 
independent prognostic factor[111]. Although the concept 
is still under discussion in HCC given that gene panel for 
the classification and definition for the phenotype are not 
yet universally accepted, CIMP positive HCCs have been 
generally associated with poor clinical outcome[68,71,112,113]. 
Some reports have also indicated that DNA methyla-
tion profiles can be used for molecular sub-classification 
of  HCC to improve the prognosis and the prediction 
of  therapeutic outcomes. The future challenges for 
routine application in patient-based service will be not 
only the definition of  a consensus gene panel but also 
the standardization of  the methodology for methylation 
analysis. As shown in Table 1, there is high variation in 
the frequency of  gene hypermethylation reported among 
different cohorts because of  various techniques used for 
methylation analysis. In addition, many studies do not 
define “hypermethylation” or use dissimilar definition for 
hypermethylation.

MICRORNAS IN LIVER CARCINOGENESIS
The past decade has witnessed the important discovery 
of  small non-coding single strand RNAs known as mi-
croRNAs that have revolutionized our view of  regulatory 
networks within eukaryotic cells[114]. MicroRNAs nega-
tively modulate gene expression through binding to target 
messenger RNAs, typically in the 3’ untranslated region. 
Partial complementary binding of  a mature microRNA 
affects the stability of  the target mRNA leading to tran-
scriptional inhibition. In contrast, complete complemen-
tary binding can lead to direct endonucleolytic mRNA 
cleavage. Currently, around 1600 human microRNAs 
are identified and registered in miRBase (www.mirbase.
org) and are predicted to target almost 30% of  the total 
human genes[115]. MicroRNAs regulate important physi-
ological processes such as embryonic development, cell 
cycle checkpoint, cell proliferation, migration, differentia-
tion, and apoptosis[116,117]. Dysregulation of  microRNA 
expression is involved in a number of  diseases including 
developmental disorders, neurological diseases, cardiovas-
cular disorders, as well as cancer. 
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Gene Cellular function Freq Ref.

14-3-3 ε Cell cycle, mitogenic signaling 89% [47]
APC Cell proliferation, migration, apoptosis 44%-71% [48-52]
ARHI Cell proliferation and invasion 47% [53]
ASS Cell cycle and cell invasion - [54]
BASP1 Apoptosis 50% [55]
BLU Apoptosis 81% [56]
CADM1 Cell adhesion and cell differentiation 41% [57]
CASP8 Apoptosis 34% [58]
CAV1 Cell cycle and proliferation 56% [59]
CCND2 Cell cycle 24%-68% [48,50]
CDH1 Cell adhesion and metastasis 34% [52]
CDKN2A Cell cycle 30%-70% [49,50,60,61]
CFTR Intercellular transport 77%-98% [50,62]
CHFR Cell cycle, protein degradation 35% [63]
COX-2 Immune response, cell migration 35% [64]
CSRP1 Cell proliferation and differentiation 56% [59]
DKK1 Cell proliferation 36% [52]
DKK3 Cell differentiation, embryonic development - [65]
DLC-1 Cell proliferation 24%-35% [52,66]
DLEC1 Cell proliferation 71% [67]
E2F1 Cell proliferation, migration, and differentiation 71% [68]
FAM43B Cell proliferation 60% [69]
FBLN1 Cell adhesion and migration 50% [70]
FHIT Cell proliferation and apoptosis 65% [56]
GSTP1 Cell metabolism and detoxification 70%-76% [50,60,61,71]
HAI-2/PB Cell proliferation and invasion 80% [72]
HDPR1 Cell proliferation, differentiation, cellular signaling 51% [73]
HINT1 Apoptosis 55% [74]
IGFBP-3 Cell proliferation and growth 33% [75]
KL Cell proliferation and growth 81% [76]
KLK10 Cell proliferation,  survival, and cellular signaling 55% [77]
LIFR Signal transduction 48% [78]
MAGE-A1 Cell differentiation, embryonic development 53% [79]
MAGE-A3 Cell differentiation, embryonic development 74% [79]
MAT1A Cell metabolism 85% [80]
MT1G Cell proliferation and apoptosis 60% [81]
MTM1 Cell differentiation 100% [82]
MTSS1 Cell migration and metastasis 80% [83]
MUC2 Immune system 62% [84]
NORE1B Cell proliferation and growth 62% [85]
NQO1 Cell metabolism 50% [86]
OXGR1 Cell growth and metabolism 78% [77]
p14ARF Cell proliferation and apoptosis 40%-42% [68,71]
p15INK4B Cell cycle 22%-61% [71,87]
P16 Cell cycle 37%-83% [48,71,87]
P21 Cell cycle 63% [68]
P27 Cell cycle 48% [68]
P300 Cell proliferation and differentiation 68% [68]
P53 Cell proliferation, apoptosis, and DNA repair 14% [68]
P73 DNA repair and apoptosis 35% [71]
PCDH10 Cell adhesion and migration 76% [88]
PER3 DNA repair 60% [89]
PRDM2 Cell metabolism - [90]
PTEN Cell proliferation and migration 16%-22% [87,91]
RASSF1A Cell proliferation, migration, and apoptosis 64%-88% [48,51]
RB Cell cycle, apoptosis 24%-32% [68,87]
RECK Cell invasion and metastasis 55% [92]
RELN Cell adhesion 37% [93]
RIZ1 Cell proliferation and apoptosis 29%-67% [48,94,95]
RUNX-3 Apoptosis 38%-48% [50-52]
SFRP1 Cell proliferation and differentiation 37%-45% [51,52,96]
SFRP2 Cell proliferation and differentiation 48%-54% [97]
SFRP5 Cell proliferation and differentiation 39% [96]
SLIT2 Cell migration 83% [98]
SOCS1 Cell growth and survival 39%-72% [9,48,90,99]
SOX1 Cell proliferation 57% [100]
SOX17 Cell differentiation and embryonic development 82% [101]

Table 1  List of genes commonly silenced by DNA hypermethylation in primary hepatocellular carcinoma tumor samples
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The contribution of  microRNAs in the process of  
malignant transformation has been well characterized. 
They act as oncogenes or tumor suppressors depending 
on the target genes and their cellular functions. In HCC, 
a substantial number of  reports have shown frequent 
and extensive dysregulation of  microRNA expression in 
different stages of  liver cancer progression[118]. With the 
availability of  tools for genome-wide expression analysis 
such as microarray and deep sequencing, profiling of  
microRNA expression has also revealed some unique 
signatures that are clinically valuable for diagnosis, prog-
nosis, staging, and prediction of  therapeutic responses in 
the majority of  human cancers including HCC[16,119]. In 
addition, aberrant microRNA expression has also been 
associated with proliferative and self-renewal potential in 
liver cancer stem cells[120-122].

Differentially microRNA expression in primary 
HCC specimens has been comprehensively reported 
and reviewed[16,123,124]. Upregulation of  miR-17-92 clus-
ter, miR-21, miR-221, miR-222, and miR-224 is consis-
tently reported in HCC by many studies[16,125,126]. Mean-
while, let-7 family, miR-29, miR-122, miR-124, miR-
199a/b, miR-200 family are frequently downregulated 
in HCC[16,123]. Some important molecular networks such 
as Wnt/β-catenin, Ras, transforming growth factor-β 
(TGF-β), and JAK/STAT signaling pathways are being 
activated due to the changes of  microRNA expression 
in HCC[16,127]. Recent studies using massive parallel se-
quencing in HCC cell lines[128] and primary specimens[129] 
showed basal microRNA expression in hepatocytes and 
healthy liver as well as the deregulation in chronic hepati-
tis and HCC samples. MiR-122 was most abundantly ex-
pressed in liver (approximately 50% of  total microRNAs) 
and frequently down-regulated in HCC[128,129]. MiR-199a/
b was down-regulated in all HCC patients under study (n 
= 40) and significantly correlated with shorter survival[129]. 

In addition, expression patterns of  3-6 microRNAs 
have been suggested to be able to discriminate HCC 
from the adjacent liver tissue, chronic cirrhosis, and 
benign liver lesions[126,130]. Furthermore, the expression 
profile of  20 microRNAs can be used as a metastatic pre-
dictor and correlates with survival as well as relapse rates 
in HCC[131]. Recent reports showed that different panels 
of  microRNAs were differentially regulated in metastatic 
HCCs[118,132]. Accumulating evidence also shows that dif-

ferential microRNA expression is of  great use for pre-
dicting disease survival and recurrence in HCC[133-135]. Pat-
terns of  microRNA expression have also been suggested 
to have clinical value to predict therapeutic response to 
interferon[133,136,137], doxorubicin[138,139], adriamycin and 
vincristine[140], 5-fluorouracil[136,141], and sorafenib[142-144]. In 
addition, association between microRNA expression and 
multidrug resistance in HCC has also been reported[16,145].

CROSS-TALK OF DNA METHYLATION 
AND MICRORNA EXPRESSION IN HCC
Differential expression of  microRNAs in cancer cells 
can be caused by several mechanisms including genetic 
instability (amplification, deletion, or translocation). Ap-
proximately 50%-70% of  microRNA genes are located at 
fragile genomic sites that are frequently affected by copy 
number alterations[146,147]. Dysregulation of  microRNA 
expression driven by some oncogenes such as c-Myc is 
also evident[148,149]. Myc overexpression modulates the ex-
pression of  let-7a, miR-100, miR-371, and miR-373 and 
the expression patterns of  these four microRNAs can 
identify a subclass of  HCC with aggressive metastatic be-
havior[150]. In addition, a number of  transcription factors 
regulate microRNA transcription and their dysregulation 
in cancer cells affect in turn the expression of  microR-
NA. P53, for example, has been demonstrated to mediate 
repression of  miR-125a/b[151] and upregulation of  miR-
519d, miR‑200 and miR-192 family members[152,153].

Mature microRNAs are biologically synthesized 
through multi-step processes consisting of  transcription, 
excision, and nuclear transport as already extensively 
reviewed elsewhere[154,155]. Alterations of  microRNA bio-
genesis can contribute to carcinogenesis[156,157]. Disrup-
tion of  Dicer1 in a conditional knock-out mouse model 
revealed the critical roles of  Dicer1 and microRNAs for 
hepatocyte survival, metabolism, and tumor suppression. 
Loss of  Dicer1 in addition to other oncogenic stimuli can 
induce hepatocarcinogenesis[158]. Expression analysis of  
genes involved in microRNA biogenesis in primary HCC 
specimens has demonstrated a significant decrease in 
DCGR8, p68, p72, DICER1, AGO3, AGO4, and PIWIL4 
expression compared to the adjacent liver tissues. Down-
regulation of  those genes correlated significantly with 
etiological factors and shorter HCC survival[159].

SPARC Cell growth and invasion 75% [102]
SPINT2 Cell proliferation and growth 60% [50]
SRD5A2 Cell proliferation and androgenic physiology 50% [55]
Survivin Apoptosis and cell proliferation 33% [58]
TFPI2 Matrix remodelling 47% [103]
TIP30 Apoptosis and metastasis 47% [104]
UCHL1 Cell metabolism and protein degradation 44% [105]
UNC5C Cell migration 26% [106]
Vimentin Cell migration and signaling 56% [107]
WIF-1 Cell proliferation 49%-61% [52,65,108]
WT1 Cell proliferation and survival 54% [68]
ZHX2 Cell proliferation, differentiation, and development 47% [109]

Freq:  Frequency of hypermethylation.
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Aberrant microRNA expression in cancer has also 
been associated with epigenetic regulation such as DNA 
methylation and histone modifications. Since the first 
report about aberrant DNA methylation in a microRNA 
locus[6], several epigenetically silenced microRNAs have 
been reported across different type of  cancers (reviewed 
in[160,161]). It is estimated that transcription of  10% of  all 
microRNA species is controlled by DNA methylation[162]. 
However, a greater proportion of  microRNAs silenced 
by DNA methylation has been suggested since 14.3% 
(218/1523) are located within 500 bp downstream of  a 
CpG island[163]. Approaches frequently used for identifi-
cation of  epigenetically deregulated microRNAs in HCC 
cells are the treatment of  HCC cell lines by epigenetic 
drugs such as de-methylating agents (5-aza-cytidine and 
5-aza-deoxy-cytidine) and HDAC inhibitors (such as 
Trichostatin) as well as knockdown of  DNMT family 
members followed by expression profiling. MicroRNAs 
repressed by DNA methylation in primary HCC speci-
mens are summarized at Table 2. Among those, miR-9 
and miR-124 seem to be commonly hypermethylated not 
only in HCC but also in other tumors[7,161]. 

Hsa-mir-1-1 is the first microRNA gene reported to 
be targeted by aberrant DNA methylation in primary 
HCC specimens[164]. Hypermethylation of  hsa-mir-1-1 
leads to overexpression of  its target genes, FOXP1 and 
MET[164]. Transcriptional regulator FOXP1 protein plays 
a dual role as tumor promoting or suppressing protein 
depending on the tissue type[173]. FOXP1 is commonly 
upregulated in leukemia but donwregulated in kidney 
and colon cancer. A contribution to carcinogenesis is 
suggested by fusion with ABL1 and PAX5 in B‑ALL 
and ETV1 in prostate cancer (reviewed in[174]). Elevated 
FOXP1 expression in HCC correlates with aggressive 
malignant phenotypes and poor survival[175]. In addition, 
miR-1 also targets MET, a tyrosine kinase that interacts 
with hepatocyte growth factor (HGF) upon external 
stimuli to subsequently activate Ras-mitogen-activated 
protein kinase (MAPK) and phosphatidylinositol 3-kinase 

(PI3K)-AKT signaling pathways. The canonical c-MET/
HGF pathway is an important player in many physiologi-
cal functions including cell proliferation, growth, migra-
tion and angiogenesis and has been conveyed in liver 
development and regeneration as well as in hepatocarcin-
genesis[176]. Overexpression of  c-MET that is observed in 
almost 80% of  HCCs correlates significantly with worse 
clinical outcome[177,178]. Accumulating evidence shows 
the efficacy of  c-MET inhibitors as alternative targeted 
therapy in HCC in which the clinical trials are still ongo-
ing (reviewed in[178]). 

Hypermethylation of  hsa-mir-10a in HCC has also 
been recently reported. It is accompanied miR-10a 
downregulation and elevated expression of  its host gene, 
HOXB4[167]. HOXB4 is widely represented in leukemo-
genesis acting as a transcription factor that promotes 
stem cell renewal[179] and in cervical cancer as a marker 
for non-differentiated cells[180]. However, overexpression 
of  miR-10a was also reported in dysplastic nodules and 
HCC samples[181]. A recent study shows an interesting 
result since upregulation of  miR-10a can promote cell 
migration and invasion in vitro but inhibit hepatocellular 
carcinoma metastasis in vivo[182]. It is suggested that in vivo, 
miR-10a can restrain cell-matrix adhesion directing its 
ability to further suppress cell invasion and metastasis[182].

The three genetic loci in the human genome that 
encode identical mature miR-124 (Hsa-mir-124-1, Hsa-
mir-124-2, and Hsa-mir-124-3) are surrounded by CpG 
islands and are frequently targeted by DNA hyper-
methylation in HCC. CDK6 and E2F6 are confirmed 
as miR-124 gene targets[168]. Furthermore, an important 
component of  mammalian target of  rapamycin (mTOR) 
signaling pathway, PIK3CA, has also been reported as 
a novel target of  miR-124 in HCC. Downregulation 
of  miR-124 leads to over-activation of  PI3K/Akt and 
mTOR signaling resulting in increased cell proliferation, 
survival, and metastasis[183]. MiR-124 is involved in feed-
back loop mechanism of  liver inflammation mediated by 
hepatic nuclear factor-α and introduction of  miR‑124 

Table 2  MicroRNA genes targeted by DNA hypermethylation in hepatocellular carcinoma

MicroRNA Validated gene targets in HCC Biological functions Ref.

miR-1 FoxP1, MET, HDAC4 Regulates cell growth, replication and clonogenic survival [164-166]
miR-10a HOXB3, HOXA3, HOXA1, HOXD10, USF2, HOXD4 Regulates embryonic development and cell differentiation [167]
miR-124 CDK6, VIM, SMYD3, E2F6, IQGAP1 Regulates cell cycle progression (G1-S checkpoint), apoptosis, and 

metastasis
[166,168]

miR-1247 ADAM15, CIT, MMP24 Regulates cell proliferation and migration [166]
miR-125b PIGF, MMP2, MMP9, SIRT7, LIN28B Regulates cell proliferation, anchorage-independent growth, cell 

migration, invasion, and angiogenesis
[169]

miR-129-2 SOX4, VCP, IκBα Regulates apoptosis [166,170]
miR-132 AKT1, CTNNB1, CCND1 Regulates cell proliferation [171]
miR-203 ABCE1, CDK6 Regulates cell growth and cell cycle progression [168]
miR-320 NRP1, CTNNB1 Regulates cell migration, proliferation, and metasatasis [167]
miR-335 ROCK1, MAPK1, LRG1, MYCN Regulates migration and cell proliferation [172]
miR-596 LGALS3BP, FOXP1, IGF2BP2 Regulates cell growth and induces apoptosis [166]
miR-663 JUNB, JUND, Regulates cell proliferation [165]
miR-9 MTHFD2, HOXD1, MMP14 Regulates cell proliferation, invasion, metastasis, and angiogenesis [166]

HCC: Hepatocellular carcinoma.
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systemically can inhibit liver carcinogenesis without sig-
nificant side effects[184]. MiR 124 also regulates epithelial-
mesenchymal transition (EMT) by directly targeting 
ROCK2 and EZH2 genes. Therefore, low expression of  
miR-124 in HCC correlates significantly with more ag-
gressive behavior and shorter survival[185].

Hsa-miR-1247 is located at one of  the largest microR-
NA clusters within the imprinted DLK1-MEG3 locus. 
However, apart from the other microRNAs located in that 
cluster, miR‑1247 is the only one that is transcribed from 
3’ to 5’ therefore it might not be affected by the imprint 
regulation. Aberrant methylation was first described in 
colorectal cancer[186]. In liver tumor, hypermethylation was 
reported in 37% of  total HCC cases[166]. ADAM15, CIT, 
and MMP24 are putative miR-1247 target genes indicating 
miR-1247’s role in cellular migration and metastasis[186]. 

Downregulation of  miR-125b in HCC through DNA 
methylation has been recently described[151,169]. MiR-
125b regulates cell proliferation, anchorage-independent 
growth, cell migration, metastasis, and angiogenesis by 
targeting placenta growth factor, matrix metalloprotein-
ase (MMP)2, and MMP9. Sirtuin7 (SIRT7) that functions 
as inhibitor of  p21WAF1/Cip1 is also negatively regulated 
by miR-125b in HCC[151]. Tumor suppressive roles of  
miR-125b during liver carcinogenesis are also mediated 
through inhibition of  LIN28B[187] and SUV39H1[188]. 
Downregulation of  miR-125b is observed in around 70% 
of  HCC primary samples and inversely correlated with 
expression of  Ki-67, a cell proliferation index[187,188]. 

Hypermethylation at the upstream CpG island of  
hsa-mir-129-2 is reported in 60%-90% of  primary HCC 
samples[166,170]. MiR-129 exerts tumor suppressive effects 
in HCC by inhibiting vaccinia virus complement control 
protein that forms a complex with p97 for stabilization 
of  IκBα. Reduced miR-129 expression in HCC cells can 
inhibit apoptosis and stimulate cell migration[189]. In ad-
dition, DNA methylation at hsa-mir-129-2 is detected in 
plasma samples from 85% of  stage I HCC patients ren-
dering its potential for alternative surrogate marker for 
early diagnosis. In comparison, alpha-fetoprotein (AFP) 
that is widely used as a marker in liver cancer can be de-
tected only in 10% of  stage I HCC[170].

Repression of  miR-132 expression by DNA methyla-
tion has also been reported in HCC. The hypermethyl-
ation appears to be mediated by interaction with hepatitis 
B virus x protein[171]. Meta-analysis of  38 microRNA 
profiling studies revealed widespread downregulation of  
miR-132 in various human cancers[190]. MiR-132 functions 
as an inhibitor of  Akt-signaling pathway. As a result, inac-
tivation of  miR-132 caused induction of  cell proliferation 
as well as colony formation in HCC cells[171]. Silencing of  
miR-132 by DNA methylation has also been documented 
in prostate[191] and pancreatic cancer[192]. Epigenetic silenc-
ing of  miR-203 in HCC was reported by Furuta et al[168] 
CDK6 and ABCE1 were shown as direct target genes of  
miR-203 supporting the role of  miR-203 as tumor sup-
pressor. Hypermethylation was also reported in hemato-
logical malignancies[193] but not in esophageal squamous 

cell carcinoma[194]. However, a recent report showed no 
differential methylation between HCC tumors and the 
adjacent liver tissues[166]. Differences in methodology and 
the exact location of  the CpG sites under study might 
explain the discrepancies.

Significant increased DNA methylation at hsa-miR-320 
gene has also been reported in HCC tumors[167]. Expres-
sion of  miR-320 is modulated upon HCV infection lead-
ing to alterations of  cellular structures and malignant 
transformation[195]. Downregulation of  miR-320 was 
reported in intrahepatic cholangiocarcinoma and contrib-
uted to neoplastic transformation by targeting the onco-
genes MCL1 and BCL2[196]. Reduced miR-320 expression 
was linked with shortened recurrence free survival in 
colorectal cancer[197]. Loss of  miR-320 functions in stro-
mal fibroblasts was shown to cause oncogenic secretome 
release and reprogramming of  the microenvironment in 
favor of  tumor growth[198]. Furthermore, frequent down-
regulation of  miR-320 in prostate cancer was associated 
with activation of  Wnt/β-catenin pathway and stem-cell 
like properties[199]. 

Located at the intron of  MEST gene, miR-335 is 
downregulated in 78% of  HCC tumors by aberrant 
DNA hypermethylation[172]. Loss of  miR-335 function is 
accompanied by dysregulation of  the host gene MEST. 
Lower miR-335 expression correlates significantly with 
distant HCC metastasis[172]. Tumor suppressive effects 
of  miR-335 were also demonstrated in breast cancer 
by targeting the BRCA1 pathway and downregulation 
was observed in distant metastasic cases[200,201]. Frequent 
downregulation was also found in prostate cancer and re-
introduction of  miR-335 in cell lines repressed cell prolif-
eration, invasion, and migration[202]. 

Aberrant methylation of  the hsa-mir-596 gene in 
HCC was identified by our group[165,166]. The tumor sup-
pressing effects of  miR-596 is mediated in cancer cells 
through negative regulation of  LGALS3BP, FOXP1 
and IGF2BP2 genes. MiR-596 is located at the short arm 
of  chromosome 8 that is often affected by focal break 
points in cancer. A large deletion involving miR-596 was 
found in urothelial carcinomas[203]. Hypermethylation of  
miR-596 promoter was also found in oral cell squamous 
carcinoma lines and primary tissues. Ectopic expression 
of  miR-596 caused apoptosis and reduced cell growth[204]. 

MiR-663 is also frequently targeted by DNA hyper-
methylation in HCC[165]. Proto-oncogenes JUNB and 
JUND are putative target genes of  miR-663. The func-
tions of  miR-663 as an effective suppressor of  tumor 
growth was shown in gastric cancer cell lines by Pan et al[205] 
Transient re-expression of  miR-663 altered DNA content, 
induced cellular morphology changes and proliferative 
blockage[205]. However, functional analysis of  miR-663 
downregulation in HCC remains to be elucidated. 

Mature miR-9 is encoded from 3 independent genom-
ic loci in the human genome, i.e., hsa-mir-9-1, hsa-mir-9-2, 
and hsa-mir-9-3. Simultaneous hypermethylation was 
frequently found in different cancers including primary 
HCC[165,166]. However, how miR-9 contributes to carci-
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nogenesis remains controversial. Upregulation of  miR-9 
induced by c-Myc was shown to prime breast cancer cells 
for epithelial-mesenchymal transition by directly inhibit-
ing E‑cadherin[206]. MiR-9 overexpression in HCC cells 
(SK-Hep-1) led to induction of  cell migration through 
E-cadherin suppression[207]. Differential expression of  
miR-9 was reported in distant metastatic breast can-
cer[208]. On the other hand, Selcuklu et al[209] reported that 
miR-9 was repressed in primary breast cancer specimens 
and ectopic miR-9 expression in MCF-7 cells induced 
anti-proliferative and pro-apoptotic effects. In addition, 
hypermethylation of  miR-9 promoters is observed as a 
potential diagnostic or prognostic parameter in head and 
neck cancer[210], lung cancer[211], bladder cancer[212], gastric 
cancer[213] and colorectal cancer[214]. Our group showed 
aberrant miR-9 methylation in HCC using quantitative 
methylation analysis[165] and demonstrated their correla-
tion with clinical outcomes[166]. Figure 1 summarizes 
gene targets and key pathways affected by aberrant DNA 
methylation of  microRNA genes in HCC.

GENOME-WIDE STUDIES OF DNA 
METHYLATION IN HUMAN HCC
The development of  new technologies for DNA meth-

ylation analysis have greatly contributed to the advance 
of  epigenomic studies in liver cancer especially with 
the recent application of  more comprehensive, high-
resolution genome-wide methods. We identified 10 stud-
ies implementing genome-wide methylation analysis in 
primary HCC specimens: a study used methylated CpG 
island amplification coupled with CpG island microar-
ray (MCAM, n = 17)[215], two studies used MeDIP (n = 
6[216,217], n = 11[217]), 6 studies employed Illumina’s In-
finium Human Methylation27 (n = 23[218], n = 66[219], n = 
13[220], n = 13[221], n = 63[89], and n = 62[222]), and two stud-
ies utilized Illumina’s Infinium HumanMethylation450 (n 
= 27[61] and n = 66[223]). Among these studies, however, 
only Shen et al[167] specifically addressed aberrant DNA 
methylation of  microRNA genes. The 27k Bead array 
from Illumina contains 254 assays covering 110 intra-
genic microRNAs located within 64 host genes. Using a 
panel of  microRNA gene methylation assays in the 27k 
array, HCC tumors can be differentiated from the cor-
responding adjacent liver tissues. More than 20% of  the 
254 CpG sites showed significant differential methylation 
affecting 27 genes. The newly released Illumina 450k has 
a greater coverage with almost 99% of  RefSeq genes and 
96% of  CpG islands are included. Using this platform, 
Song et al[61] found 10775 CpG sites located within or ad-
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Platelet-derived growth factor; HGF: Hepatocyte growth factor; mTOR: Mammalian target of rapamycin; VEGF: Vascular endothelial growth factor; MMP: Matrix metal-
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jacent to gene promoters were differentially methylated 
in HCC tumors. Of  these CpG sites 493 are associated 
with microRNA genes. Using the same array platform, 
Shen et al[223] reported 28017 CpG sites (5.8%) to be hy-
permethylated in HCC tumors. These data indicate that 
many more microRNA genes are likely to be targeted by 
DNA hypermethylation in HCC and need to be further 
studied. 

MICRORNA AND DNA METHYLATION IN 
LIVER CANCER STEM CELLS
In addition to the traditional view that cancer emerges 
through accumulation of  genetic changes in a clonal 
population, another theory postulates a hierarchical or-
ganization of  tumor cells. The latter suggests that cancer 
develops from cells with particular capabilities to self-
renew, produce differentiated progeny, and initiate new 
focal tumors. These cells are known as cancer stem 
cells[224]. However, rather than representing independent 
mechanisms, the two models are believed to be comple-
mentary and substantially contribute to the inter- and in-
tra-tumoral heterogeneity. The features of  stemness and 
pluripotency are ultimately formed by unique epigenetic 
signatures[225,226]. Hepatic cancer stem cells can be distin-
guished from well differentiated tumor cells through their 
functional properties and specific surface markers such 
as CD133, CG90, EpCAM, and ALDH. Expression of  
CD133 is regulated by DNA methylation through modu-
lation of  TGFβ/Smad pathway[227]. Side population cells 
that represent cancer stem cells in HCC display differen-
tial gene expression[228] and unique DNA methylation pat-
terns[229] that regulate pathways involved in pluripotentcy 
and self-renewal such as WNT/β-catenin, Hedgehog, 
MYC, TGFβ/Smad, Notch, MET, and BMI1[229]. 

The involvement of  microRNAs in the regulation of  
cancer stem cells during hepatocarcinogenesis has also 
been suggested. MiR-181 is upregulated in EpCAM+ he-
patic cancer stem cells through Wnt/β-catenin transcrip-
tional regulation[230]. Differentiation-promoting genes, 
CDX2 and GATA6, are revealed as miR-181 gene tar-
gets. Cairo et al[150] reported MYC-dependent microRNAs 
that featured cell renewal and stemness in HCC. Other 
microRNAs, miR-216a/217 were shown to increase 
stem-like properties by targeting PTEN and SMAD7. 
Consistently, miR-216a/217 upregulation in HCC tissues 
correlated with EMT phenotypes, early recurrence, and 
shorter disease-free survival[144]. In addition, overexpres-
sion of  microRNA clusters at the DLK1-DIO3 imprinted 
locus correlated with HCC stem cell markers, high AFP 
levels, and poor survival in HCC patients[120]. Since im-
printing is regulated by DNA methylation, the cross-talk 
between DNA methylation and microRNAs during can-
cer stem cell de-differentiation in HCC may also be pres-
ent. Some epigenetically-silenced microRNAs also target 
transcription factors and signaling pathways that are in-
volved in cell-renewal and stemness phenotypes[164,168,199].

ENRICHED BIOLOGICAL PATHWAYS OF 
ABERRANTLY METHYLATED MICRORNA 
GENES IN HCC
MicroRNA target genes from the experimentally vali-
dated targets (TarBase or miRTarBase) and predicted 
algorithms (DIANA, miRDB, and TargetScan) of  all 
epigenetically silenced microRNAs in HCC were used 
for enrichment biological pathway analysis using Kyoto 
Encyclopedia of  Genes and Genomes and Panther. 
Metabolic, PIK3-Akt, MAPK, Wnt, inflammation, angio-
genesis, epidermal growth factor receptor, Cadherin, and 
TGFβ are the most frequent pathways targeted by these 
microRNAs (Table 3 lists pathways and molecular func-
tions regulated by methylation-silenced microRNA gene 
targets). Several biological functions such as metabolic, 
immune system, cell adhesion, cell communication, and 
developmental processes as well as molecular and cel-
lular functions including protein binding, transcriptional 
regulator, catalytic and receptor activity are greatly en-
riched suggesting the importance of  these epigenetically 
silenced microRNAs in the development of  cancer. 

DIAGNOSTIC, PROGNOSTIC, AND 
CLINICAL RELEVANCE OF DNA 
METHYLATION AT MICRORNA GENES IN 
HCC
Hepatic neoplasm consists of  a range of  benign and 
malignant tumors that differ in histopathology, etiol-
ogy, disease progression, and clinical behavior. Aberrant 
DNA methylation that occurs during tumor initiation 
and development is relatively stable in tissues as well 
as serum/plasma. Additionally, dysregulation of  DNA 
methylation and microRNA expression that are involved 
in the regulation of  cell differentiation and developmen-
tal cell lineage is associated with poorly differentiated 
cancer and worse outcomes. Therefore, aberrant DNA 
methylation at microRNA genes is potentially a useful 
parameter for diagnosis as well as classification of  hu-
man cancers including HCC. Single locus hypermethyl-
ation of  miR-129-2 has been shown as a highly specific 
marker for distinguishing HCC from chronic hepatitis 
and healthy liver tissues[170].

Our recent study showed that DNA methylation at 
microRNA genes was a specific event detectable only 
in malignant liver cells and tissue samples but not in 
adjacent liver tissue, benign liver tumors, healthy liver 
cells, or in hepatocyte lines. These results indicated that 
methylation of  microRNA genes might represent a new 
biomarker for specific detection of  malignant liver tu-
mors. In addition, concordant DNA methylation at cer-
tain microRNA loci correlated with poor HCC survival 
rendering its potential to be used as prognostic marker 
in HCC[166]. Differential methylation at these loci appears 
not to be a random event but highly organized during 
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Table 3  Pathways and molecular functions regulated by methylation-silenced microRNA gene targets

No. Panther Genes Gene Contrib

GO molecular function1

   1 Binding (GO:0005488) 2799 40.60% 33.80%
   2 Catalytic activity (GO:0003824) 2126 30.80% 25.70%
   3 Transcription regulator activity (GO:0030528)   920 13.30% 11.10%
   4 Receptor activity (GO:0004872)   696 10.10%   8.40%
   5 Structural molecule activity (GO:0005198)   558   8.10%   6.70%
   6 Enzyme regulator activity (GO:0030234)   494   7.20%   6.00%
   7 Transporter activity (GO:0005215)   418   6.10%   5.00%
   8 Ion channel activity (GO:0005216)   152   2.20%   1.80%
   9 Translation regulator activity (GO:0045182)     57   0.80%   0.70%
   10 Motor activity (GO:0003774)     53   0.80%   0.60%
GO Biological process2

   1 Metabolic process (GO:0008152) 3277 47.50% 20.80%
   2 Cellular process (GO:0009987) 2564 37.20% 16.30%
   3 Cell communication (GO:0007154) 1793 26.00% 11.40%
   4 Developmental process (GO:0032502) 1315 19.10%   8.40%
   5 Transport (GO:0006810) 1190 17.30%   7.60%
   6 Immune system process (GO:0002376)   956 13.90%   6.10%
   7 System process (GO:0003008)   927 13.40%   5.90%
   8 Cell cycle (GO:0007049)   797 11.60%   5.10%
   9 Cellular component organization (GO:0016043)   630   9.10%   4.00%
   10 Response to stimulus (GO:0050896)   613   8.90%   3.90%
GO cellular component3

   1 Intracellular (GO:0005622)   486   7.10% 50.40%
   2 Extracellular region (GO:0005576)   233   3.40% 24.10%
   3 Plasma membrane (GO:0005886)     86   1.20%   8.90%
   4 Ribonucleoprotein complex (GO:0030529)     84   1.20%   8.70%
   5 Protein complex (GO:0043234)     76   1.10%   7.90%
GO protein class4

   1 Nucleic acid binding (PC00171) 1144 16.60% 12.60%
   2 Transcription factor (PC00218)   920 13.30% 10.20%
   3 Hydrolase (PC00121)   691 10.00%   7.60%
   4 Receptor (PC00197)   690 10.00%   7.60%
   5 Transferase (PC00220)   662   9.60%   7.30%
   6 Enzyme modulator (PC00095)   634   9.20%   7.00%
   7 Signaling molecule (PC00207)   481   7.00%   5.30%
   8 Transporter (PC00227)   457   6.60%   5.00%
   9 Cytoskeletal protein (PC00085)   402   5.80%   4.40%
   10 Kinase (PC00137)   316   4.60%   3.50%
Pathway5

   1 Gonadotropin releasing hormone receptor pathway (P06664)   159   2.30%   4.80%
   2 Wnt signaling pathway (P00057)   156   2.30%   4.70%
   3 Inflammation mediated by chemokine and cytokine signaling 

pathway (P00031)
  134   1.90%   4.00%

   4 Integrin signalling pathway (P00034)   116   1.70%   3.50%
   5 Angiogenesis (P00005)     98   1.40%   3.00%
   6 EGF receptor signaling pathway (P00018)     84   1.20%   2.50%
   7 Cadherin signaling pathway (P00012)     80   1.20%   2.40%
   8 Huntington disease (P00029)     77   1.10%   2.30%
   9 TGF-beta signaling pathway (P00052)     73   1.10%   2.20%
   10 PDGF signaling pathway (P00047)     74   1.10%   2.20%
KEGG
hsa01100 metabolic pathways (434)
hsa05200 pathways in cancer (189) 
hsa04151 PI3K-Akt signaling pathway (162) 
hsa04010 MAPK signaling pathway (137) 
hsa05205 proteoglycans in cancer (134) 
hsa05166 HTLV-I infection (123) 
hsa04510 Focal adhesion (116) 
hsa04810 regulation of actin cytoskeleton (115) 
hsa05202 transcriptional misregulation in cancer (100) 
hsa04144 endocytosis (100)

1Total genes n = 6893, total function hits n = 8282; 2Total genes n = 6893, total process hits n = 15740; 3Total genes n = 6893, total component hits n = 965; 
4Total genes n = 6893, total protein classess n = 9050; 5Total genes n = 6893, total pathway hits n = 3313. Contrib: Contribution; PI3K: Phosphatidylinositol-
3-kinase; MAPK: Mitogen-activated protein kinase; HTLV: Human T-lymphotropic virus 1; EGF: Epidermal growth factor; PDGF: Platelet-derived growth 
factor; TGF-β: Transforming growth factor beta.
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initiation and progression of  HCC. In addition, several 
microRNAs affected by DNA methylation in HCC are 
suggested to modulate therapeutic responses upon con-
ventional chemotherapy and or treatment with sorafenib. 
However, using a panel of  DNA methylation aberrations 
in microRNA genes as a new marker for CIMP in HCC 
is a great challenge for future research. To evaluate this, 
quantitative DNA methylation analysis using diverse sam-
ples of  liver diseases including adenoma, chronic hepa-
titis, cirrhosis, early and late stage of  HCC in a setting 
of  retrospective and prospective studies involving multi-
center collaboration are needed. Genome-wide DNA 
methylation analysis will provide extensive information 
not only for microRNA loci but also other regions po-
tentially important as a marker for CIMP. Correlating 
methylation status with clinocopathologic and molecular 
profiles from large HCC cohort will also strengthen the 
use of  CIMP as a new classifier for HCC samples. 

The involvement of  aberrant DNA methylation at 
microRNA genes in the pathogenesis and progression 
of  HCC also provide new insight into the molecular 
mechanisms of  the disease and emerge as a candidate 
for novel alternative adjuvant therapy in HCC. This 
is of  special importance since many clinical trials for 
molecular targeted therapies in HCC are not yet suc-
cessful[231]. Systemic administration of  microRNAs that 
are frequently silenced by DNA methylation such as 
miR-124 can inhibit the HCC progression in animal 
models. Moreover, a therapy using microRNA mimics is 
relatively effective and safe without any observed side ef-
fect[184]. In addition, miR-1274 that is commonly targeted 
by DNA hypermethylation in HCC has been demon-
strated as an important regulator in response to therapy 
with sorafenib[232]. 

Demethylating agents such as 5-azacytidine and 5-aza-
2’-deoxycytidine can induce re-expression of  microRNA 
genes silenced by methylation. So far, these demethylat-
ing agents have been approved as adjuvant therapy in 
myelodysplastic syndrome[233]. Therapeutic effects of  
demethylating drugs for HCC have been established in 
vitro[234,235]. 5‑azacytidine exerts anti-tumor effects not 
only by reversing epigenetic aberrations but also by re-
sensitizing cells to apoptotic inducing therapy such as 
TRAIL[236]. However, both drugs are integrated into the 
replicating DNA and bind to DNMT enzymes irrevers-
ibly leading to unspecific biological side effects. A second 
generation demethylating agent, Zebularine, provides 
reversible binding and exhibit less toxicity. Late stage 
HCC patients usually with high degree of  methylation 
levels are predicted to benefit from zebularine therapy[218]. 
However, most of  demethylating agents cause some ad-
verse events including liver dysfunction[237] that need to 
be carefully addressed especially in HCC patients. Adjust-
ment in dose and administration schedule is therefore 
required for these agents to provide optimal results in 
cancer therapy[238]. Another epigenetic drug, belinostat, is 
a potent HDAC inhibit that has already been in phase Ⅰ
/Ⅱ clinical trial for treatment of  inoperable HCCs[239]. 

CONCLUSION 

The discovery of  aberrant DNA methylation at microR-
NA genes during liver carcinogenesis has contributed sig-
nificantly not only to an understanding of  the molecular 
pathogenesis of  the disease but also provided potential 
new markers for diagnosis, prognosis, and prediction 
in HCC. Diverse major pathways such as Wnt, mTOR, 
MAPK, and nuclear factor kappa B signaling seem to be 
affected simultaneously by hypermethylation of  those 
tumor suppressive microRNAs. Therefore, manipulating 
DNA methylation at those microRNA genes and/or their 
expression may provide a promising strategy for alterna-
tive adjuvant therapy in HCC. In addition, DNA meth-
ylation is relatively stable in tumor tissues and body fluids 
under many conditions suggesting it as a new promising 
biomarker for diagnosis and prognosis in HCC. However, 
confirmation with large multicenter HCC cohorts and 
using robust techniques for DNA methylation analysis of  
microRNA genes are warranted before the application in 
clinical practice.
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