
genes; and the identification of additional cancer risk 
modifiers that can be used to perform risk assessments 
for individual mutation carriers. We performed a com-
prehensive review of the genetically characterized and 
uncharacterized hereditary CRC syndromes and of low- 
and moderate-penetrance loci and variants identified 
through genome-wide association studies and candi-
date-gene approaches. Current challenges and future 
perspectives in the field of CRC predisposition are also 
discussed.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The risk of developing colorectal cancer (CRC) 
can have genetic influences, especially when there is a 
family history of the disease. Much of this genetic pre-
disposition to develop cancer is already known, includ-
ing high-penetrance genes, i.e. , those responsible for 
hereditary cases, and low-penetrance alleles, which are 
responsible for both sporadic and familial cases. How-
ever, despite recent developments in gene identification 
techniques, the genetic causes of many hereditary cas-
es remain unknown. This review details the hereditary 
CRC syndromes and their genetic causes, the roles of 
low- and moderate-risk genetic factors in familial cases 
and the state-of-the-art in the identification of new 
causal genes. 
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Abstract
The development of colorectal cancer (CRC) can be 
influenced by genetic factors in both familial cases and 
sporadic cases. Familial CRC has been associated with 
genetic changes in high-, moderate- and low-pene-
trance susceptibility genes. However, despite the avail-
ability of current gene-identification techniques, the ge-
netic causes of a considerable proportion of hereditary 
cases remain unknown. Genome-wide association stud-
ies of CRC have identified a number of common low-
penetrance alleles associated with a slightly increased 
or decreased risk of CRC. The accumulation of low-risk 
variants may partly explain the familial risk of CRC, and 
some of these variants may modify the risk of cancer 
in patients with mutations in high-penetrance genes. 
Understanding the predisposition to develop CRC will 
require investigators to address the following challeng-
es: the identification of genes that cause uncharacter-
ized hereditary cases of CRC such as familial CRC type 
X and serrated polyposis; the classification of variants 
of unknown significance in known CRC-predisposing 
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BACKGROUND
Colorectal cancer (CRC) is the third most common 
cancer, accounting for 10% of  all cancers and affecting 
approximately 1 million people worldwide every year[1]. 
Although most cases of  CRC are thought to be sporadic, 
crude estimates indicate that familial CRC, defined by the 
presence of  two or more first-degree relatives affected 
with CRC, accounts for more than 20% of  all cases[2-4]. 
All CRC syndromes caused by known high-penetrance 
CRC genes collectively account for 2%-6% of  all cases 
of  CRC. For decades, gene-identification strategies such 
as genome-wide linkage studies or studies involving high-
throughput sequence capture methods and next-genera-
tion sequencing technologies have sought to identify new 
high-penetrance genes that could explain the aggregation 
of  CRC in high-risk families. Despite this technological 
progress, the genetic etiology of  familial cancers such as 
familial colorectal cancer type X (fCRC-X) or serrated 
polyposis (SP) remains unknown.

For years, scientists have hypothesized that the heri-
table nature of  CRC might be associated with the co-
inheritance of  multiple low-risk variants[2,3] that may 
interact with environmental factors. This hypothesis was 
supported by the identification of  single-nucleotide poly-
morphisms (SNPs) localizing to different genomic re-
gions that influence the risk of  CRC[5]. The risk of  CRC 
associated with each of  the variants is individually low; 
however, the combined effect of  these variants could 
significantly contribute to disease burden, especially given 
the high prevalence of  these variants in the general popu-
lation. Moreover, the presence of  these or other SNPs 
might modify the risk of  cancer in families with muta-
tions in known predisposing genes such as those associ-
ated with lynch syndrome (LS)[6-8].

In this review, we present current knowledge on the 
genetics of  inherited CRC syndromes and of  moder-
ate- and low-risk variants of  CRC; we also describe the 
approaches currently being used to understand the ge-
netic causes of  uncharacterized hereditary cases of  CRC. 
Current challenges and future perspectives are discussed. 
Clinical issues such as surveillance, prophylactic and pre-
ventive measures, treatments and genetic counseling are 
not reviewed.

GENETICALLY CHARACTERIZED 
INHERITED COLORECTAL CANCER 
SYNDROMES 
A summary of  the main genes associated with hereditary 
cancer syndromes is provided in Table 1; information on 
the modes of  inheritance of  these syndromes, the types 
of  mutations identified in patients with these syndromes 
and the molecular features of  tumors are also presented.

LS
LS (MIM No. 120435) is an autosomal dominantly inher-
ited disorder caused by germline mutations or epimuta-

tions in a DNA mismatch repair (MMR) gene (MLH1, 
MSH2, MSH6 or PMS2).

Carriers of  a heterozygous mutation (or epimutation) 
in a MMR gene are at high risk of  developing CRC and at 
increased risk of  developing malignancies at extracolonic 
sites such as the endometrium, ovary, stomach, small 
bowel, hepatobiliary tract, urinary tract, brain and skin[9]. 
A detailed description of  the clinical and pathological 
features of  LS is provided in Table 2. Of  note, biallelic 
deleterious germline mutations in MMR genes lead to a 
constitutional mismatch repair-deficiency, a syndrome 
characterized by a broad spectrum of  early-onset malig-
nancies such as hematologic neoplasms and brain and 
LS-associated tumors and a phenotype that resembles the 
phenotype associated with neurofibromatosis type 1[10].

Mismatch repair genes behave like tumor suppressors; 
cancer arises when a second hit (mutation, deletion or 
CpG island methylation) somatically inactivates the wild-
type allele in a target cell (e.g., a cell of  the colonic epithe-
lium)[11-14]. The complete inactivation of  the correspond-
ing MMR gene in the tumor causes a marked reduction in 
MMR function, which results in microsatellite instability 
(MSI)[15,16].

The identification of  MMR gene mutation carriers 
is critical for improving cancer surveillance and the ef-
fectiveness of  preventive measures[17,18]. Before MMR 
genes and their causal role in hereditary CRC cancer 
were identified, the International Collaborative Group 
on hereditary non-polyposis colorectal cancer established 
the Amsterdam criteria in 1990. These criteria, the first 
clinical criteria used to define hereditary non-polyposis 
colorectal cancer, were used to identify families for re-
search studies[19] and subsequently modified (Amsterdam 
Ⅱ) to include extracolonic LS-related cancers[20]. How-
ever, the Amsterdam criteria failed to identify a large por-
tion of  MMR gene mutation carriers[21,22]. The Bethesda 
guidelines, which were less restrictive and had a sensitivity 
greater than 90% but a specificity of  only 25%, were later 
defined[23,24].

Tumor testing is used to enhance the predictive 
power of  clinical selection features and to identify the 
genes most likely to have a causative germline mutation. 
Standard tumor testing for LS involves the study of  MSI 
and/or immunohistochemistry to detect the protein 
products expressed by MMR genes. However, because 
10%-15% of  sporadic CRCs also exhibit MSI[21,25-28], the 
detection of  somatic MLH1 promoter methylation and 
somatic BRAF V600E mutations in patients with a MMR 
deficiency could help identify tumors that are more likely 
to be sporadic[29]. If  the results of  these tests suggest a di-
agnosis of  LS, then germline molecular genetic testing of  
MMR genes is performed. The National Comprehensive 
Cancer Network has established unified CRC screening 
strategy guidelines (http://www.nccn.org).

In recent years, the concept of  population-based 
universal screening for LS has gained strength among re-
searchers and clinicians. The identification of  individuals 
who are at increased risk of  hereditary cancer allows for 
the possibility of  specialized surveillance and early can-
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cer detection, potentially resulting in decreased disease-
specific mortality[30]. Because the prevalence of  LS in the 
population is relatively high (approximately 3% of  all 
diagnosed cases of  CRC) and because surveillance strate-
gies aimed at cancer prevention and early detection in LS 
patients have proven benefits[17], there is a clear rationale 
for exploring universal LS screening at the population 
level. Moreover, universal screening for LS is feasible, as 
LS tumors exhibit MMR deficiencies that can easily be 
identified with a simple PCR-based assay for MSI or by 
immunohistochemistry to identify the loss of  expression 
of  a MMR protein. Several studies have demonstrated 
the feasibility of  this approach from a research and a 
clinical perspective[31-34]. In fact, in 2009, the Evaluation 
of  Genomic Applications in Practice and Prevention rec-
ommended that all patients newly diagnosed with CRC 
be screened for LS through PCR-based MSI testing or 
immunohistochemistry[35]. However, at the population 
level, significant challenges and barriers to the successful 
implementation of  this screening process exist[36].

MLH1 and MSH2 germline mutations, MSH6 muta-
tions and PMS2 mutations account for approximately 
90%, 7%-10% and less than 5% of  mutations in families 
with LS, respectively[37-40]. Germline deletions in EPCAM 

that inactivate MSH2 (via the methylation of  CpG is-
lands) occur in approximately 1% of  LS cases[41,42]. Fi-
nally, the constitutional inactivation of  MLH1 by CpG 
island hypermethylation also causes Lynch syndrome; 
for this reason, MLH1 promoter methylation screening 
could be useful in individuals who have experienced a 
loss of  MLH1 expression in their tumors and who have 
a negative germline sequence screen[43-45]. Large deletions 
and genetic rearrangements account for 20%, 5%, 20%, 
7% and 100% of  mutations in MSH2, MLH1, PMS2, 
MSH6 and EPCAM, respectively[40,46-49].

In some populations, recurrent mutations (i.e., those 
occurring repeatedly de novo) or ancestral (founder) muta-
tions can change the aforementioned proportions; pre-
liminary screening for these mutations can facilitate the 
molecular diagnosis of  LS[50-54]. 

For years, researchers have sought to identify genetic 
modifiers that could affect the risk of  cancer in MMR 
gene mutation carriers to explain the high variability in 
individual cancer risk among carriers. Identifying these 
modifying factors can enable an efficient stratification of  
mutation carriers based on their predicted risk and there-
by offer a more appropriate clinical management strategy 
based on personalized surveillance programs. Initial at-
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Table 1  Hereditary colorectal cancer genes, major associated syndromes, modes of inheritance, types of mutations identified and 
specific molecular characteristics of associated tumors

Gene Syndrome Inheritance Mutations reported Tumor molecular features

MLH1 Lynch syndrome Autosomal dominant Point mutations1 MMR deficiency (MSI)
Large rearrangements

CpG island methylation
MSH2 Lynch syndrome Autosomal dominant Point mutations MMR deficiency (MSI)

Large rearrangements
CpG island methylation2

MSH6 Lynch syndrome Autosomal dominant Point mutations MMR deficiency (MSI)
Large rearrangements

PMS2 Lynch syndrome Autosomal dominant Point mutations MMR deficiency (MSI)
Large rearrangements

EPCAM Lynch syndrome Autosomal dominant Large rearrangements2 MMR deficiency (MSI)
APC (Attenuated) familial 

adenomatous polyposis
Autosomal dominant Point mutations -

De novo mutations Large rearrangements
Mosaicisms ASE 

(deep-intronic and promoter mutations)
MUTYH MUTYH-associated polyposis Recessive Point mutations Base excision repair deficiency: 

KRAS c.34G>TLarge rearrangements
POLE Polymerase proofreading-

associated polyposis
Autosomal dominant Point mutations 

(exonuclease domain)
Hypermutated: excess of G:

C>T:A transversions
POLD1 Polymerase proofreading-

associated polyposis
Autosomal dominant Point mutations 

(exonuclease domain)
Hypermutated: excess of G:

C>T:A transversions
GREM1 Hereditary mixed polyposis Autosomal dominant 40-kb upstream duplication3 -
SMAD4 Juvenile polyposis Autosomal dominant Point mutations -

Large rearrangements
BMPR1A Juvenile polyposis Autosomal dominant Point mutations -

Large rearrangements
STK11 Peutz-Jeghers Autosomal dominant Point mutations -

Large rearrangements
PTEN PTEN hamartoma tumor4 Autosomal dominant Point mutations -

Large rearrangements
Promoter

1Point mutations include missense, non-sense, frameshift and splice-site mutations and small intragenic deletions/insertions; 2MSH2 germline CpG island 
methylation occurs secondary to EPCAM deletions; 3Founder Ashkenazi mutation; 4PTEN hamartoma tumor syndrome includes Cowden, Bannayan-Riley-
Ruvalcaba, PTEN-related Proteus and Proteus-like syndromes. ASE: Allele-specific expression; MMR: DNA mismatch repair; MSI: Microsatellite instability.
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Most classic FAP cases arise as a consequence of  a 
germline heterozygous mutation in adenomatous polypo-
sis coli (APC), a gene located on chromosome 5q21. All 
individuals who carry a germline pathogenic mutation in 
the APC gene (the first hit according to Knudson’s two-
hit hypothesis) eventually develop FAP. As is the case 
for other tumor suppressor genes, tumor development 
requires the somatic inactivation of  the wild-type allele. 
Given that thousands of  adenomas can form within 
15-40 years, it is likely that only two hits are necessary for 
the initiation of  tumorigenesis; however, given that only 
one or a few of  these adenomas progress to cancer, it is 
likely that several additional mutations are needed[63,64].

In most cases of  FAP, the APC mutation is inherited 
in an autosomal dominant manner; however, in 15%-20% 
of  cases, the APC mutation appears to arise de novo (i.e., 
spontaneously). Patients with these types of  mutations 
therefore do not present with a family history of  the dis-
ease[65]. However, approximately 20% of  individuals with 
an apparent de novo APC mutation appear to have somatic 
mosaicism[66].

A truncating germline APC mutation that constitu-
tively activates the Wnt pathway can be detected in ap-
proximately 80% of  classic FAP cases[67-69], whereas fewer 
than 30% of  individuals with attenuated phenotypes 
carry an identifiable APC mutation[70]. Approximately 
90% of  mutations are detected by sequence analysis (small 
intragenic deletions/insertions and missense, nonsense 

tempts to identify cancer risk modifiers in patients with 
LS were based on the study of  candidate genes; however, 
few of  these studies were validated in larger-sized popu-
lations[55]. With the arrival of  genome-wide association 
studies (GWAS), researchers hypothesized that the com-
mon variants associated with the risk of  CRC in the gen-
eral population could modify cancer risk in LS families. 
This hypothesis was verified in the case of  rs16892766 
(8q23.3) and rs3802842 (11q23.1) in MLH1 mutation 
carriers[6-8]. Similarly, we recently identified an associa-
tion between the presence of  a common variant in the 
telomerase gene (hTERT rs2075786) that causes shorter 
telomeres and an increased risk of  developing LS-related 
tumors at a young age (< 45 years) in two independent 
series of  patients with LS[56]. The identification of  ad-
ditional modifying factors will enable the estimation of  
individualized cancer risks that can be used to deliver tai-
lored clinical surveillance protocols to mutation carriers.

Familial adenomatous polyposis
Familial adenomatous polyposis (FAP; MIM No. 175000) 
is the second most common inherited CRC syndrome. In 
its classic form, FAP is an autosomal dominantly inherit-
ed disease characterized by the development of  hundreds 
to thousands of  colorectal adenomatous polyps after the 
first decade of  life. FAP is estimated to have a prevalence 
of  2-3 per 100000 individuals and to account for 0.2%-1% 
of  all CRCs[57-60]. If  left untreated, the classic form of  
FAP results in nearly complete penetrance of  CRC by the 
age of  50 years. FAP is usually classified into classic and 
attenuated FAP (AFAP) depending on the number of  
polyps detected. A summary of  the clinical characteristics 
of  FAP is shown in Table 3[61,62].

Table 2  Clinico-pathological characteristics of Lynch 
syndrome

Clinico-pathological characteristics

The onset of colorectal cancer (CRC) occurs at an early age 
(average 45 yr)
Predilection to develop proximal (right-sided) colon cancer
High risk of multiple primary colorectal tumors 
(synchronous or metachronous)
Specific pathological features of lynch syndrome-related colorectal tumors:
   Poorly differentiated
   Mucinous
   Signet-cell features
   Crohn’s-like lymphocytic reaction
   Excess of tumor-infiltrating lymphocytes
Increased survival (in patients with CRC)
Accelerated carcinogenesis
Increased risk of cancer at extracolonic sites:
   Endometrium
   Ovary
   Stomach
   Small bowel
   Hepatobiliary tract
   Pancreas
   Upper uroepithelial tract
   Brain (Turcot’s syndrome)
   Sebaceous adenomas, carcinomas and keratoacanthomas 
   (Muir-Torre syndrome)

Table 3  Clinical characteristics of familial adenomatous 
polyposis

Clinical characteristics

Hundreds to thousands of colonic adenomatous polyps (on average 
beginning at age 16 yr)1

Colorectal cancer (100% penetrance if not treated; average age 39 yr)1

Other gastrointestinal polyps and malignant lesions:
   Fundic gland polyps in the stomach
   Adenomatous polyps in the stomach and small bowel
   Periampullary carcinoma
   Duodenal cancer
Congenital hypertrophy of the retinal pigmented epithelium (CHRPE)
Other less common manifestations:
   Embryonal tumors (hepatoblastoma and medulloblastoma)
   Pancreatobiliary carcinoma
   Papillary thyroid carcinoma (especially cribriform-morular variant)
   Adrenal cortical tumors
Gardner syndrome subtype (specific characteristics):
   Colonic adenomatous polyposis
   Desmoid tumors
   Epithelial inclusion cysts
   Osteoid osteomas
   Supernumerary and/or impacted teeth
   CHRPE
Turcot syndrome subtype (specific characteristics):
   Colonic adenomatous polyposis
   Tumors of the central nervous system (medulloblastoma)

1AFAP: Patients have 10-100 colorectal adenomas. Polyps develop preferentially 
in the proximal colon, and the onset of colorectal cancer (CRC) occurs 
10-15 years later than in patients with classic familial adenomatous 
polyposis. The cumulative risk of CRC by age 80 years is estimated to be 
approximately 70%.
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or splice-site mutations); the remaining 8%-12% consist 
of  whole or partial gene deletions[67-69,71,72]. Moreover, in-
terstitial deletions of  chromosome 5q22 that also delete 
APC have been reported in individuals with the classic 
and attenuated forms of  FAP. These individuals often 
have dysmorphic features and mild-to-moderate cognitive 
impairments[73,74]. No germline epimutations (CpG island 
methylation) have been identified in the APC gene[75].

It is widely accepted that the methods used to iden-
tify mutations fail to detect certain mutations because 
of  factors such as polymorphisms in the sequences to 
which PCR primers bind that lead to allele dropout, or 
due to somatic mosaicism or because the mutations oc-
cur in regions not targeted by the currently used meth-
ods. Castellsagué et al[76] and Spier et al[77] reported the 
occurrence of  imbalanced allele-specific expression of  
APC in 8%-9% of  APC/MUTYH mutation-negative 
polyposis cases, indicating that the underlying mutations 
were not detected by standard mutation detection tech-
niques. Some of  these cases carried pathogenic deep in-
tronic variants predicted to activate cryptic splice sites[77], 
whereas others carried mutations in the promoter region 
of  APC[78].

If  no disease-causing APC mutation is found, mo-
lecular genetic testing of  MUTYH, POLE and POLD1 
(exons coding for the exonuclease domain) should be 
considered (more information on MUTYH- and poly-
merase proofreading-associated polyposes can be found 
in the corresponding sections of  this review).

In FAP, mutations in certain codons or regions are as-
sociated with specific phenotypic features. For example, 
profuse polyposis (which corresponds to an average of  
5000 polyps) has been reported to be associated with mu-
tations in codons 1250-1464[79]; AFAP is associated with 
mutations in the 5’ region of  the gene (codons 1-177), in 
exon 9 and in the 3’ region of  the gene[80-84]. AFAP has 
also been associated with interstitial deletions of  chro-
mosome 5q22 that also delete APC[73] and with somatic 
mosaicism for APC mutations that are generally associ-
ated with classic FAP[66,85,86]. APC mutations that cause 
Gardner’s syndrome typically occur in the region between 
codons 1403 and 1578. Additionally, certain genotypes 
have been found to be associated with extracolonic mani-
festations of  the disease[87].

MUTYH-associated polyposis
Bi-allelic (homozygous or compound heterozygous) mu-
tations in the MUTYH gene, which encodes a base exci-
sion repair protein, are responsible for certain cases of  
adenomatous polyposis. MUTYH-associated-polyposis 
(MAP; MIM No. 608456) represents the first known pol-
yposis syndrome with a recessive pattern of  inheritance; 
therefore, the disease is theoretically restricted to one 
generation.

Because of  the variability in clinical features observed 
among mutation carriers, the diagnosis of  MAP based 
on clinical findings alone remains difficult. Two thirds 
of  MAP patients have CRC at the time of  diagnosis, 
and up to one third of  patients have CRC but no polyps. 
Most MAP patients have < 100 adenomas at diagnosis 
and a mean age of  45 years; these patients tend to de-
velop CRC at a mean age of  50 years[88-92]. Other features 
variably present in MAP include: duodenal polyps and 
cancer; gastric fundic gland polyps; gastric, ovarian, blad-
der, breast or endometrial tumors; benign and malignant 
tumors of  the skin and thyroid gland; dental abnormali-
ties (jaw-bone cysts); and CHPRE[93-97]. Because the phe-
notypes associated with MAP are highly variable, a wide 
spectrum of  clinical characteristics should be considered 
in patients with suspected MAP (Table 4)[98,99].

The MUTYH protein is a base excision repair gly-
cosylase involved in repairing one of  the most frequent 
and stable forms of  oxidative damage, namely the oxida-
tion of  a guanine leading to the formation of  8-oxo-7, 
8-dihydro-2’-deoxyguanosine (8-oxoG). When an oxoG:
A mismatch is present in the DNA-template, a G:C to T:
A transversion occurs in the subsequent round of  repli-
cation[100]. For this reason, G:C to T:A transversions fre-
quently occur in MUTYH-associated adenomas and tu-
mors. One such transversion in the KRAS gene (c.34G>T 
in codon 12) is frequently encountered (64%) in patients 
with MAP CRC. Therefore, the analysis of  somatic 
KRAS has been recommended as a pre-screening test to 
identify CRC patients eligible for MUTYH germline mo-
lecular genetic testing[98,101,102].

Colorectal tumors that develop in the context of  a 
MUTYH mutation have specific molecular and histologi-
cal features that differentiate these tumors from sporadic 
tumors and that overlap with features of  hereditary 
(LS) and sporadic MSI tumors. These features include a 
preferential proximal location, a mucinous component 
and the increased presence of  tumor infiltrating lym-
phocytes. However, only a minority (range: 0%-18%) of  
MUTYH-associated tumors exhibit MSI. All of  these 
features raise the suspicion of  a MAP etiology for the 
CRC, especially when the disease is diagnosed at a young 
age and when polyps and/or a recessive inheritance pat-
tern are detected[103].

Approximately 30% of  APC mutation-negative cases 
of  polyposis harbor bi-allelic mutations in the MUTYH 
gene. At least one of  two MUTYH missense mutations 
found in 1%-2% of  the general population [c.536A>G 
(p.Tyr179Cys) and c.1187G>A (p.Gly396Asp), annotated 

Table 4  Clinical characteristics of individuals with suspected 
MUYTH-associated polyposis

Clinical characteristics

One to ten colonic adenomas before 40 yr of age
Tens to hundreds of colonic adenomas and/or hyperplastic polyps
Colonic polyposis (i.e., > 100 colonic polyps) in the absence of a 
germline APC mutation
Colorectal cancer with the somatic KRAS mutation c.34G>T in codon 12
Family history of colon cancer (with or without polyps) consistent with 
autosomal recessive inheritance

The definitive diagnosis is confirmed by the presence of a biallelic MUTYH 
mutation. APC: Adenomatous polyposis coli.
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according to the longest (hypothetical) coding sequence 
NM 001128425.1] is present in approximately 90% of  
MAP patients in the western part of  the world; a biallelic 
status for one and/or the other variant was found in up 
to 70% of  Caucasian patients with MAP[98]. Additional 
common mutations that were most likely founder muta-
tions have been reported in different populations: the 
c.1147delC (p.Ala385Profs*23) mutation was reported 
in northern European MAP patients, the c.1214C>T 
(p.Pro405Leu) mutation was reported in Dutch MAP 
patients, the c.1437_1439del (p.Glu480del) mutation 
was reported in Italian MAP patients, the c.1438G>T 
(p.Glu480*) mutation was reported in British Indian MAP 
patients, the p.Tyr104* mutation was reported in Pakistani 
MAP patients, the c.1227_1228dup (p.Glu410Glyfs*43) 
mutation was reported in Spanish, Portuguese and Tu-
nisian MAP patients and the p.Ala359Val mutation was 
reported in Japanese and Korean MAP patients[90,104-111]. 
The presence of  recurrent mutations facilitates genetic 
testing for MUTYH, thus allowing for an initial screening 
of  the common mutations found in the corresponding 
population.

Polymerase proofreading-associated polyposis
DNA polymerase ε (POLE) and δ (POLD1) mutations 
have recently been identified in patients with familial 
CRC, many of  whom have multiple adenomas[112].

The two germline mutations POLE p.Leu424Val and 
POLD1 p.Ser478Asn were detected in individuals with 
multiple colorectal adenomas and CRC. An additional 
variant of  POLD1, p.Pro327Leu, the pathogenicity of  
which has not yet been determined, was also identified 
in a multiple adenoma patient[112]. The two pathogenic 
mutations are characterized by a dominant pattern of  
inheritance and associated with a high risk of  multiple 
colorectal adenomas, large adenomas, early-onset CRC 
and multiple CRCs. POLD1 mutations are also associated 
with an increased risk of  endometrial cancer in female 
carriers[112,113]. A recent study performed by our group 
identified a de novo POLE p.L424V mutation in patient 
with adenomatous polyposis and early onset CRC, and 
a novel pathogenic mutation in POLD1, p.L474P, in a 
non-polyposis Amsterdam Ⅱ family without MMR de-
fects[113]. Based on these findings, the term “polymerase 
proofreading-associated polyposis” may be misleading 
and should be carefully used, at least until more POLE/
POLD1 families are described and the full phenotypic 
spectrum of  this syndrome is defined.

All germline mutations identified thus far in POLE 
and POLD1 are located within the proofreading (exo-
nuclease) domain of  the respective polymerase, suggest-
ing a deficient ability to proofread and repair errors dur-
ing DNA replication[112,114-116]. Non-exonuclease domain 
POLE and POLD1 mutations do not appear to be asso-
ciated with familial CRC. Mutations in non-exonuclease 
domain regions have been identified in colorectal and en-
dometrial tumors that are mostly MSI-positive; however, 
these mutations appear to be passenger mutations[116].

Tumors that develop in patients with polymerase 
proofreading-associated polyposis and sporadic colorectal 
and endometrial tumors with POLE mutations (somatic 
POLD1 mutations are rare) are hypermutant and micro-
satellite-stable. These hypermutated tumors have approxi-
mately 5000 somatic base substitutions in their coding 
regions and an altered mutation spectrum characterized 
mostly by increased proportions of  G:C→T:A and A:T
→C:G transversions[116]. As is the case with microsatellite 
instability in LS, a feasible molecular approach for iden-
tifying hypermutated tumors in patients with polyposis 
should be developed to facilitate the selection of  cases 
suspected of  carrying germline polymerase proofreading 
mutations. 

Although the phenotypes associated with POLE and 
POLD1 mutations vary among carriers, the evidence 
gathered so far supports the recommendation of  the 
sequencing of  the exonuclease domains of  POLE and 
POLD1 for genetic testing purposes.

Hereditary mixed polyposis syndrome
Hereditary mixed polyposis syndrome (HMPS; MIM No. 
601228) is an unusual disease characterized by the appar-
ent autosomal dominant inheritance of  multiple types of  
colorectal lesions (including Peutz-Jeghers polyps, juve-
nile polyps, serrated lesions, conventional adenomas and 
CRC) and a lack of  extracolonic manifestations[117].

Linkage studies conducted in large families identified 
CRAC1 on chromosome 15q13.3 as the candidate region 
that causes HMPS[118,119]. Moreover, families of  Ashke-
nazi descent with hereditary mixed polyposis syndrome 
shared a disease haplotype in the CRAC1 region[120]. The 
sequencing of  the shared region did not yield useful 
results; however, the study of  copy number alterations 
revealed the presence of  a heterozygous single-copy du-
plication of  a region approximately 40 kb in length that 
co-segregated with the disease. The duplication extended 
from intron 2 of  SCG5 to a site immediately upstream 
of  the GREM1 CpG island. The SCG5-GREM1 duplica-
tion increased the transcription of  GREM1, a gene that 
encodes the secreted BMP antagonist[121]. No non-Ash-
kenazi affected individuals with duplications in the region 
implicated in HMPS have yet been identified.

Hamartomatous polyposis syndromes
Juvenile polyposis: Juvenile polyposis syndrome (JPS; 
MIM No. 174900) is the most common hamartoma-
tous syndrome, with an estimated incidence of  one per 
100000[122].

The diagnosis of  JPS is made when any of  the fol-
lowing three criteria is met[123-125]: (1) the patient has 
multiple (3-10) juvenile polyps of  the colorectum; (2) a 
patient with a familial history of  JPS has any number of  
juvenile polyps; or (3) the patient has extracolonic (e.g., in 
the stomach or small intestine) juvenile polyps.

Juvenile polyps are hamartomas that have a normal 
epithelium with a dense stroma, an inflammatory in-
filtrate and a smooth surface with dilated, mucus-filled 
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cystic glands in the lamina propria. Most juvenile polyps 
are benign; however, malignant transformation can occur. 
Members of  families with JPS have an estimated life-
time risk of  developing gastrointestinal cancer of  9% to 
50%[126]. Most of  these cancers consist of  colon cancer; 
however, cancers of  the stomach, upper gastrointestinal 
tract and pancreas have also been reported[122].

Germline mutations in SMAD4 or in BMPR1A 
have been identified in approximately 40% of  JPS pa-
tients[127,128]. Both genes encode proteins involved in the 
TGF-beta signaling pathway, an important modulator of  
many cellular processes.

JPS patients with mutations in the SMAD4 gene are 
predisposed to developing massive gastric polyps and 
usually have a family history of  upper gastrointestinal 
polyposis[127,129]. A large proportion of  JPS patients with 
SMAD4 mutations have a juvenile polyposis/hereditary 
hemorrhagic telangiectasia overlap syndrome (MIM No. 
175050). Hereditary hemorrhagic telangiectasia is a domi-
nant disorder characterized by epistaxis, visceral arterio-
venous malformations and telangiectasias[130].

Sweet et al[131] found two rare germline variants of  
ENG, a gene associated with a predisposition to heredi-
tary hemorrhagic telangiectasia, in two JPS patients with 
no symptoms of  hemorrhagic telangiectasia. Subsequent 
studies in other JPS patients did not identify deleteri-
ous ENG mutations in genetically uncharacterized JPS 
patients[132-134]. PTEN mutations have been identified 
in JPS patients[134]; however, it has been suggested that 
these patients were clinically misclassified and most likely 
belonged to the PTEN hamartoma tumor group[135]. Mi-
crodeletions at 10q22-q23, a region that includes both 
PTEN and BMPR1A, have also been reported[136].

Peutz-Jeghers syndrome: Peutz-Jeghers syndrome (PJS; 
MIM No. 175200) is an autosomal-dominant condition 
caused by germline mutations in STK11 (formerly known 
as LKB1), which encodes a serine-threonine kinase. PJS is 
clinically characterized by the occurrence of  gastrointes-
tinal polyposis and mucocutaneous pigmentation and a 
predisposition to develop cancer.

The presence of  PJS-type hamartomatous intestinal 
polyps is required for a clinical diagnosis of  PJS, even 
though these patients also develop other types of  polyps, 
including colonic adenomatous polyps or gastric PJS 
polyps that resemble hyperplastic polyps. PJS-type pol-
yps have characteristic histological features, including a 
notable frond-like, elongated epithelial component, cystic 
gland dilatation extending into the submucosa or mus-
cularis propria and arborizing smooth muscle extending 
into the polyp fronds. These polyps are found through-
out the gastrointestinal tract but occur predominantly in 
the small intestine and colon[137].

Cutaneous lesions found in patients with PJS include 
small melanocytic macules on the labial mucosa, lips, pal-
ate and tongue, around the eyes and nostrils and in the 
perianal region. Hyperpigmented macules on the fingers 
are also common. Mucocutaneous pigmented lesions, 

which usually develop in childhood, are found in 95% of  
patients with PJS[138,139].

A clinical diagnosis can be made when any of  the fol-
lowing criteria are fulfilled[137]: (1) the patient has two or 
more histologically confirmed PJS-type hamartomatous 
polyps; (2) a patient with a family history of  PJS has any 
number of  PJS-type polyps; (3) a patient with a family 
history of  PJS has characteristic mucocutaneous pigmen-
tation; (4) a patient with characteristic mucocutaneous 
pigmentation has any number of  PJS-type polyps; and (5) 
the patient has a pathogenic mutation in STK11.

The risk of  gastrointestinal and extraintestinal ma-
lignancies, including duodenal, colon, breast, pancreas, 
stomach, small bowel, cervix, uterus, ovary, testes, and 
thyroid tumors, is significantly increased in patients with 
JPS[140-143]. Benign and malignant gonadal and gynecologic 
tumors, including ovarian sex cord tumors with annular 
tubules, mucinous tumors of  the ovaries and fallopian 
tubes and large-cell calcifying Sertoli cell tumors of  the 
testes, can also be observed in these patients[144].

The clinical manifestations of  JPS can vary; however, 
there are no reports of  STK11 mutation carriers lacking 
clinical manifestations of  the disease.

Aretz et al[145] reported that 100% of  individuals with 
familial PJS have detectable STK11 mutations, whereas 
91% of  simplex cases (i.e., a single occurrence in a family) 
who met the relevant diagnostic criteria had a detectable 
mutation. Clinical misdiagnoses of  PJS could account for 
the decreased rate of  detection of  mutations in simplex 
cases.

PTEN hamartoma tumor syndrome: The PTEN ham-
artoma tumor syndrome (PHTS, MIM No. 601728) com-
prises Cowden syndrome, Bannayan-Riley-Ruvalcaba syn-
drome, PTEN-related Proteus syndrome and Proteus-like 
syndrome. A presumptive diagnosis of  PHTS is based on 
clinical signs; the definitive diagnosis of  PHTS is, by defi-
nition, made only when a PTEN mutation is identified. 
The clinical characteristics of  PHTS are shown in Table 
5[146]. The specific clinical features of  the four PHTS syn-
dromes were reviewed by Orloff  and Eng[147] and are not 
further described in this review.

The clinical phenotypes of  PTEN mutation carriers 
are highly variable and range from macrocephaly and 
developmental delays (reported in a two-year-old patient) 
to a history of  multiple primary neoplasias (reported in 
a 60-year-old patient)[146]. However, to date, no strong 
genotype-phenotype correlations have been reported[148]. 
Moreover, significant intra-familial phenotypic variability 
and overlapping mutation spectra have been observed[149].

The lifetime risks for a variety of  cancers are in-
creased in patients with PHTS; more specifically, these 
patients have an estimated lifetime risk of  breast, thyroid, 
endometrial, renal cell and colon tumors and melanoma 
of  85%, 35%, 28% 34%, 9% and 6%, respectively[150,151].

Germline PTEN mutations have been identified in 
patients with autism/ pervasive developmental disorder 
and macrocephaly and to a particularly significant extent 
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in patients with a personal or family history of  Cowden 
or Bannayan-Riley-Ruvalcaba syndromes[152-156].

To determine whether germline methylation is found 
in patients with Cowden syndrome and in patients with a 
Cowden-like syndrome who lack germline PTEN muta-
tions, Bennett et al[157] observed that germline methyla-
tion upstream of  PTEN occurred in 42% and 33% of  
mutation-negative patients with Cowden syndrome and 
Cowden-like syndromes, respectively. This hypermethyl-
ation did not silence PTEN. However, a newly character-
ized tumor suppressor gene, KILLIN, the promoter of  
which overlaps with the PTEN 5’UTR and the 5’ end of  
its coding region, was silenced by this hypermethylation. 
This finding must be validated in other groups of  pa-
tients before it can be used for diagnostic purposes.

Current challenges and future perspectives in 
genetically characterized inherited syndromes
One of  the most significant challenges for researchers, 
clinicians and genetic counselors in treating or investi-
gating hereditary CRC (and any other cancer syndrome) 
involves the assessment of  the pathogenicity of  variants 
of  unknown or uncertain significance (VUS). Enormous 
efforts are currently being undertaken to establish gene-
specific interpretation guidelines that can be made avail-
able to diagnostic laboratories, research laboratories, 
genetic counselors and clinicians worldwide. Some of  
these efforts have been conducted with the support and 
coordination of  international societies or consortiums; 
for example, the International Society for Gastrointes-

tinal Hereditary Tumors (InSiGHT), which is under the 
umbrella of  the Human Variome Project, has attempted 
to classify MMR VUS (http://www.insight-group.org/
variants/classifications/)[158].

When a pathogenic germline mutation is identified 
in a family, carriers of  the mutation can benefit from in-
creased surveillance and a more informed decision about 
preventive measures; at the same time, non-carriers do 
not have to undergo intensive (and, in the case of  CRC, 
invasive) surveillance. In the absence of  an identified 
pathogenic mutation, these individuals may decide to un-
dergo preventive surgery based on family history alone. 
The effects of  germline variants in many of  the main 
cancer-related genes on protein function are unknown 
(VUS); as a result, it is difficult to make any inferences on 
the risk of  cancer in patients with these variants. It has 
been estimated that up to 10% of  Caucasians undergo-
ing genetic testing have variants that are designated VUS, 
which leads to important issues in genetic counseling. 
Current attempts to classify these variants involve the use 
of  data from co-segregation studies, in silico functional 
predictions, personal and family cancer history, the co-
occurrence of  these variants and pathogenic mutations, 
the frequency of  these variants in the general population 
(controls), molecular characteristics of  the tumors, ef-
fects on RNA (splicing, allele-specific expression) and in 
vitro functional consequences, which, in the case of  MMR 
genes, include impairment of  MMR activity and the 
abnormal subcellular localization and abrogation of  the 
formation of  physiological dimers[158-164].

The coupling of  next-generation sequencing tech-
nologies with genomic sequence enrichment methods 
has made the sequencing of  comprehensive panels of  
cancer-predisposing genes technically feasible; conse-
quently, this approach has become cost-effective for diag-
nostic applications and can be used to overcome the issue 
of  syndrome-overlapping genes and gene-overlapping 
syndromes. However, the more frequent use of  this ap-
proach for genetic diagnostic purposes will result in an 
exponentially increased number of  identified VUS and a 
more urgent need to classify these VUS to their highest 
level.

Another challenge for the coming years involves the 
identification of  additional cancer risk modifiers, includ-
ing environmental and genetic factors. Identifying these 
factors for syndromes with incomplete cancer penetrance 
will facilitate an accurate individual risk assessment that 
will enable the application of  personalized surveillance 
protocols and preventive measures. For example, the 
importance of  individual risk assessments is supported 
by the extreme heterogeneity in CRC risk in carriers of  
MMR gene mutations. Dowty et al[165] studied 17500 fam-
ily members of  166 MLH1-mutated and 224 MSH2-
mutated families and showed that the cumulative risk of  
CRC by age 70 follows a U-shaped distribution. These 
authors also observed that 17% of  male MSH2 mutation 
carriers have estimated lifetime risks of  CRC of  0%-10% 
and that 18% of  these carriers have lifetime risks of  

Table 5  Clinical characteristics of the PTEN  hamartoma 
tumor syndrome

Clinical characteristics

Benign neoplasia
   Dermatologic
   Palmoplantar keratoses
   Trichilemmomas
   Lipomas
   Fibromas
   Freckling of the glans penis
   Vascular anomalies/hemangiomas
   Lhermitte-Duclos (dysplastic gangliocytoma of the cerebellum)
   Genitourinary tumors/malformations
   Colorectal polyposis
   Mucosal lesions
   Thyroid goiter/nodules
   Proliferative breast changes
Malignant neoplasia
   Breast cancer
   Non-medullary thyroid cancer
   Renal cancer
   Endometrial cancer
   Colorectal cancer
   Melanoma
Central nervous system
   Macrocephaly
   Autism/developmental delay
Dysmorphic characteristics
   Dolichocephaly
   Postaxial polydactyly
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90%-100%. If  carriers who are at low risk of  developing 
CRC can be distinguished from patients who will defi-
nitely develop a tumor, subsequent cancer surveillance 
strategies could be applied accordingly.

The existence of  genetic anticipation in cancer syn-
dromes and the mechanisms that might explain this 
phenomenon have been studied and discussed for years. 
In LS, despite the numerous reports and clinical observa-
tions identifying anticipation in the age of  cancer onset 
in successive generations, it is still unclear whether true 
genetic anticipation contributes to the early diagnosis of  
LS. More recently, methods that correct for random ef-
fects, that isolate the confounding effect of  changes in 
secular trends, screening and medical practices and that 
adjust for changes in age-specific incidence across birth 
cohorts, appear to confirm the presence of  this phenom-
enon in families with LS[166-168]. However, the molecular 
mechanism underlying this phenomenon has not yet 
been identified. Telomere shortening, the accumulation 
of  mismatch repair slippage events in subsequent genera-
tions and environmental factors have been suggested as 
causative mechanisms of  anticipation[169,170]. Our group 
recently ruled out telomere length attrition as the cause 
of  anticipation in patients with LS[171]. Anticipation has 
also been observed in patients with hereditary non-pol-
yposis CRC without MMR deficiency[172].

LOW-PENETRANCE LOCI IDENTIFIED BY 
GWAS IN HEREDITARY CRC 
GWAS conducted since 2007 using samples from the 
general population and common genetic markers (SNPs) 
have successfully identified low-penetrance loci associ-
ated with CRC. To date, at least 21 independent loci have 
been conclusively associated with the risk of  CRC in 
Caucasians (P < 5.0 × 10-8, and these associations were 
confirmed in independent case-control series) (source: 
http://www.genome.gov/gwastudies). These loci in-
clude 1q25 (LAMC1)[173], 1q41 (DUSP10)[174], 2q32.3 
(NABP1)[173], 3q26.2(MYNN)[174], 5q21[175], 6p21.2 (CD-
KN1A)[176], 8q23.3 (EIF3H)[177], 8q24.21 (c-MYC)[173,177-181], 

10p14[177], 11q13.4 (POLD3)[176], 11q23.1[180], 12p13.3 
(CCND2)[173], 12q13.13 (DIP2B, ATF1)[174], 14q22.2 
(BMP4)[182], 15q13.3[181], 16q22.1 (CDH1)[182], 18q21.1 
(SMAD7)[173,183], 19q13.11 (RHPN2)[182], 20p12.3[182], 
20q13.33 (LAMA5)[174] and Xp22.2 (SHROOM2)[176].

There is almost no evidence of  interactive effects 
among these loci. However, the distribution of  alleles as-
sociated with a risk of  CRC follows a normal distribution 
in both cases and controls, with a shift towards higher 
numbers of  these alleles in cases, which is consistent with 
a polygenic model of  disease predisposition. It has been 
estimated that individuals carrying a large number of  
these alleles have an approximately threefold higher risk 
of  developing CRC than those with a median number of  
these alleles[184]. Data suggest that only a small proportion 
(at most 10%) of  the heritability associated with CRC can 
be explained by the identified loci[174,182,184-188].

OTHER RISK VARIANTS
In addition to the low-risk variants identified by GWAS, 
numerous genetic variants (> 3500 variants in > 1300 
genes) that are associated with a low-moderate risk of  
CRC have been identified through candidate-gene ap-
proaches. The results from these candidate-gene associa-
tion studies are usually inconsistent and difficult to inter-
pret. In an effort to comprehensively evaluate candidate-
gene association studies for CRC, Ma et al[189] recently 
performed meta-analyses for variants included in at least 
three independent datasets (267 variants in 150 genes) 
and used Venice criteria and false-positive report prob-
ability tests to assess the evidence for true associations. 
A total of  67 variants in 50 genes were found to be sig-
nificantly associated with a risk of  CRC. The cumulative 
epidemiological evidence for a risk of  CRC was strong, 
moderate and weak in eight, two and 52 of  the variants, 
respectively. Table 6 shows the 10 variants with strong 
and moderate evidence of  association and their estimated 
risks. The authors of  this study suggested that these vari-
ants may explain approximately 5% of  the familial cancer 
risk in Caucasians.

Table 6  Genetic variants identified using candidate-gene association studies

Gene Variant Frequency in controls OR (95%CI) Cumulative evidence of 
association

Ethnicity

MUTYH Biallelic mutation   0.01% 10.19 (5.0-22.0) Strong Caucasian
MUTYH G382D (rs36053993)   0.00%   6.49 (2.6-10.4) Strong Caucasian
MUTYH Y165C (rs34612342)   0.01% 3.32 (1.1-9.8) Strong Caucasian
APC I1307K (rs1801155)   6.80% 1.96 (1.4-2.8) Strong Ashkenazi
CHEK2 1100delC   0.71% 1.88 (1.3-2.7) Strong Caucasian
CHEK2 I157T (rs17879961)   3.91% 1.56 (1.3-1.8) Strong Caucasian
MLH1 rs1800734 (promoter) 21.11% 1.51 (1.3-1.7) Strong Caucasian
DNMT3B rs1569686 (promoter) 16.99% 0.57 (0.5-0.7) Strong All
GSTM1 Present/null 50.64% 1.10 (1.0-1.2) Moderate All
TERT rs2736100 (intron 2) 49.34% 1.07 (1.0-1.1) Moderate Caucasian

Genetic variants identified using candidate-gene association studies, significantly associated with a risk of colorectal cancer in meta-analyses and showing 
strong and moderate cumulative evidence of association according to Venice criteria and false-positive report probability tests[189].
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HEREDITARY CRC OF UNKNOWN 
ETIOLOGY
Despite recent developments in genotyping and sequenc-
ing technologies, the genetic etiology of  several familial 
CRCs, including serrated polyposis (formerly known as 
“hyperplastic polyposis”) and hereditary non-polyposis 
CRC without a MMR defect (also known as familial CRC 
type X) remains unknown.

Serrated polyposis
SP is a rare condition characterized by multiple and/or 
large serrated colonic polyps and an increased risk of  
CRC. The diagnosis of  serrated polyposis is made based 
on established clinical criteria[190] (Table 7). Patients with 
SP most likely consist of  a heterogeneous group of  pa-
tients with a variety of  SP phenotypes that are most likely 
caused by different genetic alterations[191]. At least three 
different subgroups have been described: (1) a right-sided 
phenotype with large sessile serrated adenomas associ-
ated with early-onset CRC characterized by the presence 
of  a BRAF mutation; (2) a left-sided phenotype with 
large amounts of  small polyps characterized by the pres-
ence of  a KRAS mutation; and (3) a mixed phenotype 
with features of  phenotypes 1 and 2[191,192]. Conventional 
colonic adenomas have been identified in up to 80% of  
individuals with SP and are more frequently present in 
CRC-affected individuals with SP[193,194].

Reported case series indicate that 25%-70% of  SP pa-
tients had CRC at the time of  diagnosis or during follow-
up. Additionally, 10%-50% of  SP patients had a family 
history of  CRC[191,195-199]. In fact, studies have reported 
a fivefold increase in the risk of  CRC and a 3.5-fold in-
crease in the risk of  pancreatic cancer in first-degree rela-
tives of  individuals with SP[194,199,200].

Serrated polyps are the precursors of  CRC tumors 
developed through the serrated neoplasia pathway, which 
is characterized by BRAF mutations and the CpG island 
methylator phenotype with or without MSI depending on 
whether MLH1 is methylated. Several subtypes of  serrat-
ed polyps have been defined: hyperplastic polyps, sessile 
serrated adenomas and traditional serrated adenomas[201]. 
However, the majority of  CRC tumors arising in patients 
with serrated polyps exhibit a diverse range of  molecular 
profiles and generally do not harbor molecular hallmarks 

of  tumors developed via the serrated pathway[202].
Although the genetic basis of  SP is unknown, both 

recessive and dominant transmission patterns have been 
proposed[197,203,204]. Because serrated polyps were reported 
in individuals with biallelic mutations in PTEN, BM-
PR1A, SMAD4 and MUTYH or with a duplication in the 
GREM1 gene[205-208], Clendenning et al[209] hypothesized 
that these genes might be altered in individuals with SP 
and might account for some of  the cases with this condi-
tion. However, no deleterious germline mutations were 
identified in a case series of  65 patients with SP.

It has been suggested that lifestyle factors such as 
smoking, obesity and diet, which have been associated 
with the presence of  serrated polyps[210-212], could be re-
sponsible for SP or for the modification of  the risk of  
disease in the presence of  predisposing genetic mutations 
or risk variants.

If  the cause of  SP is genetic, current sequencing and 
genotyping technologies or methods that identify copy 
number alterations, structural variants or epigenetic mod-
ifications can be used to understand the etiology of  this 
disease in the near future.

Familial CRC type X
Approximately 40% of  the families meeting the Amster-
dam criteria for a diagnosis of  hereditary non-polyposis 
CRC lack evidence of  heritable defects in the MMR sys-
tem; more specifically, these patients have no germline 
mutations in the MMR genes, no tumor microsatellite 
instability and no loss of  immunohistochemical staining 
of  the MMR proteins. Because the genetic etiology of  
this disease is unknown, these families are said to have 
fCRC-X. As has been the case for other familial cancer 
syndromes, the identification of  the genes associated 
with fCRC-X will facilitate the molecular diagnosis of  the 
disease and the development of  appropriate surveillance 
guidelines and clinical management protocols for these 
patients.

Familial CRC-X is clearly clinically different from 
Lynch syndrome; in particular, patients with familial 
CRC-X have a lower incidence of  CRC and a lower risk 
of  extracolonic tumors and tend to develop cancer at a 
later age[213-217]. Familial CRC-X tumors are characterized 
by the presence of  microsatellite stability and chromo-
somal instability and the absence of  high CpG methylator 
phenotypes; these characteristics overlap with some of  
the characteristics of  sporadic MMR-proficient tumors. 
However, some molecular features specific to familial 
CRC-X tumors have been reported[218-221].

Significant but mostly unsuccessful efforts have been 
made to understand the genetic cause(s) of  fCRC-X. 
Several dominant predisposition loci that have been 
mapped to different chromosomal regions such as 
3q13.31-q27.1, 3q22, 4q21.1, 5q14-q22, 7q31, 8q13.2, 
9q22.2-31.2, 10p15.3-p15.1, 12q24.32 and 13q22.1-
13q31.3 have been identified using genome-wide linkage 
studies in families with CRC; however, no causal genes 
have yet been identified[222-230].

Table 7  Clinical criteria established for the identification of 
serrated polyposis

Clinical criteria

At least five serrated polyps proximal to the sigmoid colon, two of 
which are larger than 10 mm in diameter
Any number of serrated polyps occurring proximally to the sigmoid 
colon in an individual who has a first-degree relative with serrated 
polyposis
More than 20 serrated polyps of any size distributed throughout the 
colon

Diagnosis is made when one of the criteria is fulfilled.
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Despite the ability of  whole-exome and whole-
genome sequencing to uncover numerous new causal 
mutations and genes in Mendelian disorders, few such 
genes and mutations have been identified in hereditary 
cancer syndromes[112,231,232] and none have been identified 
in fCRC-X.

Current evidence indicates that families with fCRC-X 
constitute a very heterogeneous group. Because the Am-
sterdam criteria indicate that this disease is characterized 
by strong familial aggregation, it is likely that certain 
cases of  fCRC-X are caused by high-penetrance muta-
tions (i.e., that have a monogenic component). If  this is 
the case, reports on new hereditary CRC genes identified 
by whole-exome or whole-genome strategies will likely be 
published in the near future. However, because no such 
genes have yet been identified, it is likely that any genes 
identified in the future would explain only a small num-
ber of  fCRC-X cases.

In contrast, candidate-gene approaches have identi-
fied several high-penetrance genes that might be involved 
in the etiology of  uncharacterized familial CRC[233-237].

It is likely that most of  the familial aggregation ob-
served in fCRC-X is associated with non-genetic factors. 
Lifestyle and environmental factors could interact with 
multiple genetic risk factors to increase the risk of  CRC 
in these families. This scenario is consistent with a multi-
factorial disease model associated with polygenic diseases 
and supported by the less aggressive clinical character-
istics of  fCRC-X (e.g., the late onset of  the disease, the 
lower risk of  CRC and the almost complete absence of  
multiple primary tumors). 

Because some families appear to fit the monogenic 
model and others the polygenic model, finding the opti-
mal approach for exploring the genetic basis of  fCRC-X 
remains challenging[238]. The selection criteria used to 
identify patients with fCRC-X will need to include the 
Amsterdam criteria, a very early onset of  cancer and se-
vere clinical manifestations; these criteria and insightful 
data analyses will play a key role in determining the abil-
ity of  exome sequencing to identify rare and deleterious 
mutations within gene-coding regions. Furthermore, it is 
possible that other mechanisms of  gene silencing such as 
germline epigenetic or copy number alterations or the de-
regulation of  tumor suppressor genes via regulatory non-
coding RNAs such as microRNAs could be associated 
with the hereditary forms of  the disease.

Elucidating the polygenic component of  the disease 
will also remain challenging. GWAS of  patients with 
fCRC-X would be very useful; however, collecting an 
adequate number of  samples (thousands of  samples) is 
almost impossible given the rarity of  fCRC-X, even if  
samples were to be collected worldwide. A closely related 
approach based on the hypothesis that variants associated 
with the risk of  CRC in the general population are also 
associated with the risk of  CRC in fCRC-X involves ge-
notyping the population-based GWAS CRC risk variants 
in a large fCRC-X cohort. GWAS have already provided 
evidence suggesting that low-penetrance alleles may ex-

plain the risk of  cancer in familial cases[187,188,239]. Sequenc-
ing the loci identified by GWAS to identify common and 
rare variants in patients with fCRC-X therefore represents 
an alternative approach. This approach has been success-
fully used in other diseases such as hypertriglyceridemia, 
diabetes and inflammatory bowel disease[240-243]. 

In summary, the genetic basis of  fCRC-X will become 
clearer when all of  the approaches mentioned above are 
applied in practice. However, alternative mechanisms 
involving gene-gene and gene-environment interactions, 
epigenetic and structural alterations and other non-classic 
gene silencing mechanisms might explain fCRC-X cases 
that are not detected by current risk variant or mutation-
identification techniques. 
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