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Abstract
Aberrant functioning of serine proteases in inflamma-
tory and carcinogenic processes within the gastrointes-
tinal tract (GIT) has prompted scientists to investigate 
the potential of serine protease inhibitors, both natural 
and synthetic, as modulators of their proteolytic activi-
ties. Protease inhibitors of the Bowman-Birk type, a 
major protease inhibitor family in legume seeds, which 
inhibit potently and specifically trypsin- and chymo-
trypsin-like proteases, are currently being investigated 
as colorectal chemopreventive agents. Physiologically 
relevant amounts of Bowman-Birk inhibitors (BBI) can 
reach the large intestine in active form due to their ex-
traordinary resistance to extreme conditions within the 
GIT. Studies in animal models have proven that dietary 
BBI from several legume sources, including soybean, 
pea, lentil and chickpea, can prevent or suppress car-
cinogenic and inflammatory processes within the GIT. 
Although the therapeutic targets and the action mecha-
nism of BBI have not yet been elucidated, the emerg-
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ing evidence suggests that BBI exert their preventive 
properties via  protease inhibition; in this sense, serine 
proteases should be considered as primary targets in 
early stages of carcinogenesis. The validation of candi-
date serine proteases as therapeutic targets together 
with the identification, within the wide array of natural 
BBI variants, of the most potent and specific protease 
inhibitors, are necessary to better understand the po-
tential of this protein family as colorectal chemopreven-
tive agents.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Bowman-Birk inhibitors (BBI) from legumes, 
such as soybean, pea, lentil and chickpea, are a class 
of naturally-occurring serine protease inhibitors with 
potential anti-inflammatory and chemopreventive prop-
erties within the gastrointestinal tract (GIT). BBI are 
extensively disulphide-linked within proteins and have 
been demonstrated to be structurally and functionally 
resistant to the challenges of the GIT in vivo . Recent 
data suggest that trypsin- and chymotrypsin-like prote-
ases involved in early stages of carcinogenesis should 
be primary targets in investigating the potential of 
BBI as colorectal chemopreventive agents; so far, the 
therapeutic targets as well as action mechanism of BBI 
remain unknown. 
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INTRODUCTION
Proteases are hydrolytic enzymes acting on peptide bonds, 
in a process termed proteolysis. The serine proteases con-
stitute one of  the largest families of  proteolytic enzymes 
and are well recognized for their pivotal roles in a wide 
range of  physiological processes as diverse as digestion, 
blood coagulation, fibrinolysis, immune responses, cell 
cycle progression and apoptosis. Their proteolytic activi-
ties are tightly controlled by an array of  regulatory mech-
anisms, such as gene expression, substrate recognition, 
activation of  inactive protease precursors (zymogens) by 
specific and limited proteolysis, localization of  both en-
zyme and substrate, cofactor binding, post-translational 
modifications and interaction with other proteins and/or 
protease inhibitors than can form tight complexes with 
target enzymes[1]. Aberrant functioning of  certain serine 
proteases underlies pathological disorders such as cancer, 
angiogenesis, rheumatoid arthritis, neurodegenerative 
and cardiovascular diseases[2-4]. Understanding the funda-
mental role played by serine proteases and their cognate 
inhibitors in pathological disorders offers challenging 
opportunities for preventive and/or therapeutic interven-
tion[5]. Naturally-occurring plant protease inhibitors are 
being investigated for their potential in the prevention 
and/or treatment of  a diverse set of  human pathologies, 
including cancer, neurodegenerative and cardiovascular 
diseases, muscle atrophy and inflammatory processes[6,7]. 
In this context, the United States Food and Drug Ad-
ministration (FDA) granted a protein extract of  soybean 
(Glycine max) enriched in Bowman-Birk inhibitors (BBI), 
namely Bowman-Birk inhibitor concentrate (BBIC), as 
investigational new drug. Up to six clinical trials has been 
accomplished in patients with benign prostatic hyperpla-
sia[8], oral leukoplakia[9-12] and ulcerative colitis (UC)[13]. 
The inherent ability of  BBI to inhibit serine proteases 
has been related to their potential health benefits; how-
ever, the mechanism/s of  action and the identity of  their 
therapeutic targets remain unknown[14]. Herein, we report 
recent evidences regarding the contribution of  BBI from 
legumes as colorectal chemopreventive agents.

BOWMAN-BIRK FAMILY IN LEGUMES
Legumes seeds, compared to other vegetative organs and 
botanical families, are particularly rich in protease inhibi-
tors of  the Bowman-Birk family. BBI from legumes, 
such as soybean, pea (Pisum sativum), lentil (Lens culinaris), 
field bean (Vicia faba) or chickpea (Cicer arietinum), are 
canonical serine protease inhibitors of  molecular weight 
in the range 7-9 kDa and usually contain two protease 
inhibitory domains, located in the external loops of  the 
so-called “bow tie” motif, centred around residues 16 
and 43[15]; each inhibitory domain is located within a 
nonapeptide region joined via a disulphide bond between 
flanking cysteine residues[16]. The inhibitory domains of  
BBI are very exposed and easily accessible to proteolytic 
enzymes (Figure 1A). This structural arrangement allows 
the interaction of  BBI with two enzyme molecules, not 

necessarily identical, simultaneously and independently, 
without any significant conformational adjustment[17]; the 
resulting non-covalent complex renders the protease tar-
get inactive. Molecular recognition of  serine proteases is 
governed by the P1 residue[18]; this residue inserts into the 
S1 cavity of  the cognate enzyme upon protease-inhibitor 
formation[19]. In legume seeds, the target enzyme for the 
N-terminal inhibitory domain is trypsin with BBI hav-
ing a positively charged residue, either Arg or Lys, at the 
P1 position; the presence of  Ala determines inhibition 
for elastase, as reported in wild soybean (Glycine soja)[20] 
and grass pea (Lathyrus sativus)[21]. Greater variation exists 
at the P1 position for the C-terminal inhibitory domain, 
with Arg, Phe, Tyr or Leu at this position, with predic-
tions of  either trypsin or chymotrypsin inhibition. The 
high affinity of  chymotrypsin-like proteases for aromatic 
residues within substrates (Tyr or Phe at position P1) is 
well documented, as is reflected in their inhibitors, with 
Tyr showing the strongest binding[22,23]. A limited number 
of  amino acids located within the inhibitory domains 
of  BBI seem to be responsible for their primary func-
tional and biological properties. By using synthetic cyclic 
peptides mimicking the inhibitory domains of  BBI, the 
significance of  additional residues adjacent to the reac-
tive site peptide bond (P1-P1’) on potency and resistance 
to hydrolysis against specific target proteases has been 
revealed[24,25]. BBI from legumes exert extremely potent 
inhibitory activity against both trypsin and chymotrypsin 
enzymes, with Ki values within the nanomolar range re-
ported for different legume species, such as soybean[26], 
pea[27,28], lentil[29,30] and lupin (Lupinus albus) BBI[31].

Protease inhibitors of  the Bowman-Birk family show 
considerable variation between and within legume spe-
cies where seed and vegetative isoforms may be distin-
guished[32,33]. The expression of  distinct genes, together 
with the post-translational modifications of  primary gene 
products, which mainly occurs during seeds desiccation, 
is responsible for the wide array of  isoinhibitors reported 
for different legume species. As an example, protease 
inhibitors from winter pea seeds (cv. Frilene) comprise up 
to six isoforms (PSTI Ⅰ, Ⅱ, Ⅲ, Ⅳa, Ⅳb and Ⅴ) which 
all belong to the Bowman-Birk family[34]. An amino acid 
sequence alignment of  major BBI isoinhibitors from soy-
bean and those from other representative legume species 
shows that there is a high sequence homology among 
BBI isoforms (Table 1). For the N-terminal inhibi-
tory domain, there is a consensus amino acid sequence, 
P3-P6’: CTP1SXPPQC, where P1 is the position provid-
ing specificity for trypsin inhibition, and X (at P2’ posi-
tion) can be any amino acid but with predicted significant 
effect on inhibitory potency and hydrolysis rates. Within 
the C-terminal inhibitory domain, amino acid sequence 
variation profoundly affects inhibitory potency against 
trypsin- or chymotrypsin-like enzymes[33] (Table 1).

BBI from legume seeds contain high levels of  cysteine 
residues involved in a conserved network of  disulphide 
bridges (Figure 1B). Circular dichroism spectroscopy and 
fluorescence studies have revealed that the cysteine resi-
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dues, involved in seven intramolecular disulphide bridges, 
provide extreme stability to high temperatures and resis-
tance to proteolysis and help to maintain the structural 
and functional features of  the inhibitory domains[35,36]. 
Mutational studies of  the disulphide bonds in the N-ter-
minal inhibitory domain of  soybean BBI and the conse-
quences of  such mutations on inhibitory activity against 
serine proteases have been reported[37]. In particular, the 

mutations induced a dramatic effect on trypsin inhibi-
tion, with Ki values diminishing more than one order of  
magnitude in most of  the mutants, compared with native 
BBI. A significant contribution of  disulphide bonds in 
the anti-trypsin domain of  BBI from horsegram (Dolichos 
biflorus) to thermal stability and control of  the inhibitory 
activities, towards both trypsin and chymotrypsin, has 
been recently reported[38]. 
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Table 1  Amino acid sequence alignment of Bowman-Birk inhibitor-like proteins from several legumes species

Species Entry name 
(accession number)

Amino acid sequence

Dolichos biflorus IBB_DOLBI 
(Q9S9E3)

EPSESSKPCCDQCTCTKSIPPQCRCTDVRLNSCHSACSSCVCTFSIPAQCVCVDMKDFCYAPCKSSHDD

Glycine max IBB1_SOYBN 
(P01055)

DDESSKPCCDQCACTKSNPPQCRCSDMRLNSCHSACKSCICALSYPAQCFCVDITDFCYEPCKPSEDDKEN

IBBD2_SOYBN 
(P1064)

DDEYSKPCCDLCMCTRSMPPQCSCEDIRLNSCHSDCKSCMCTRSQPGQCRCLDTNDFCYKPCKSRDD

IBBC2_SOYBN 
(P01063)

DDESSKPCCDLCMCTASMPPQCHCADIRLNSCHSACDRCACTRSMPGQCRCLDTTDFCYKPCKSSDEDDD

Lens culinaris IBB_LENCU 
(Q8W4Y8)

GDDVKSACCDTCLCTRSQPPTCRCVDVRESCHSACDKCVCAYSNPPQCQCYDTHKFCYKACHNSEIEE

Lupinus albus IBB1_LUPAL 
(P85172)

     SLASKPCCDSCLCTRSIPPQCRCTDIGETCHSACKSCICTRSFPPQCRCSDITHFCYKPCTSS

Phaseolus vulgaris IBB2_PHAVU 
(P01060)

  EPSESSEPCCDICVCTASIPPICQCTDVRLNSCHSACKSCMCTRSMPGKCRCLDTTDYCYKSCKSSGEDDD

IBB3_PHAVU 
(P81484)

  ASXSSKPCCBHCACTKSIPPQCRCSBLRLNSCHSECKGCICTFSIPAQCICTDTNNFCYEPCKSSHGPBBNN

Pisum sativum IBBA_PEA 
(Q41065)

GDDVKSACCDTCLCTKSNPPTCRCVDVRETCHSACDSCICAYSNPPKCQCFDTHKFCYKACHNSEVEEVIKN

IBB2_PEA 
(Q41066)

GDDVKSACCDTCLCTKSDPPTCRCVDVGETCHSACDSCICALSYPPQCQCFDTHKFCYKACHNSEVEE VIKN

IBBB_PEA 
(P56679)

GDDVKSACCDTCLCTKSNPPTCRCVDVGETCHSACLSCICAYSNPPKCQCFDTQKFCYKACHNSELEEVIKN

Vicia faba IBB_VICFA 
(P24661)

GDDVKSACCDTCLCTKSEPPTCRCVDVGERCHSACNSCVCRYSNPPKCQCFDTHKFCYKSCHN

Vigna unguiculata IBB_VIGUN 
(P17734)

ZASZSSKPCCRZCACTKSIPPZCRCSZVRLNSCHSACKSCACTFSIPAZCFCGBIBBFCYKPCKSSHSBBBBWN

The primary accession numbers below are reported in UniProtKB database. P1-P1’ are the reactive peptide bond sites, in bold text. Either K or R at P1 posi-
tion determines specificity for trypsin, whereas L, Y or F determines specificity against chymotrypsin; A determines specificity for elastase.  
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Figure 1  Bowman-Birk family in legumes. A: Homology model of TI1, a major pea Bowman-Birk inhibitor (BBI) isoinhibitor, showing the trypsin and chymotrypsin 
inhibitory domains[33]; B: Amino acid sequence deduced from the TI1 gene from the pea cultivar Birte. The sequence of both inhibitory domains are underlined and the 
positions of the seven disulphide bonds are indicated by connecting lines[39]. K and Y at position P1(*) determines specificity for trypsin and chymotrypsin, respectively.
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COLORECTAL CHEMOPREVENTIVE 
PROPERTIES OF BBI
Colorectal carcinogenesis is one of  the major causes 
of  cancer-related mortality worldwide in both men and 
women, with over 1.2 million new cases diagnosed glob-
ally[49]. In recent years, substantial evidence has pointed 
to the link between dietary patterns and lifestyle in pri-
mary prevention and control of  colorectal cancer (CRC). 
The anti-cancer effects of  legumes have been explored 
extensively; although the evidence is still limited, several 
studies have claimed that a high intake of  legumes may 
decrease risk of  CRC. In a case-control study, Aune et al[50] 
reported that the level of  legume intake necessary for be-
ing protective against different types of  cancer, including 
CRC, is easily achievable by populations by including two 
small portions or 100 g of  legumes per week. A meta-
analysis of  three cohort studies and eleven case control 
studies suggested an inverse association between legume 
intake levels and CRC risk[51]. It has been hypothesized 
that the direct contact of  potential cancer preventive con-
stituents of  legumes with organs of  the digestive system 
may be responsible of  such beneficial effects. In particu-
lar, several studies suggest that dietary BBI from different 
legumes sources are effective at preventing or suppressing 
radiation- and chemical carcinogen-induced transforma-
tion in vitro, as well as carcinogenic and associated inflam-
matory processes within the mammalian GIT[14,39] (Table 
2). The anti-carcinogenic properties of  soybean BBI 
has been extensively investigated, both in purified form 
and as a BBIC. Soybean BBI exerted a protective role in 
dimethylhydrazine (DMH)-treated rats when ingested at 
low concentrations (10 mg/100 g diet), decreasing the 
frequency and incidence rates of  colorectal tumours; no 
adverse effects on animal growth and organ/tissue mor-
phology were observed[52]. These results are consistent to 
those reported previously on the suppression of  colon 
carcinogenesis in DMH-treated mice when BBIC was 
administrated[53]. Autoclaved BBIC, in which the protease 
inhibitory activity was abolished, had no significant sup-
pressive effects on DMH-induced colon carcinogenesis in 
rats, suggesting that the inherent ability of  BBI to inhibit 
serine proteases is required for their reported chemopre-
ventive properties[52].

Immortalized human epithelial cell lines are well-
established models to investigate the action mechanism/s 
by which certain bioactive compounds might exert a 
chemoprotective effect in early stages of  colorectal car-
cinogenesis. Recent studies have demonstrated a signifi-
cant concentration- and time-dependent decrease in the 
proliferation of  colorectal human adenocarcinoma cells 
(HT29, Caco2, LoVo), following treatment with BBI 
variants from pea[54], lentil[30] and soybean[26]. The BBI 
concentration that reduced cell viability by 50% (IC50), 
as compared with untreated controls, ranged from 32 to 

SURVIVAL OF BBI TO GUT DIGESTION
In order to exert any physiological effect in large intes-
tine, physiologically relevant amounts of  dietary BBI 
must survive, after food processing and further pas-
sage through the GIT, in biologically active form(s)[39]. 
In vitro and in vivo studies have demonstrated that BBI 
are functionally and structurally resistant to the extreme 
conditions within the GIT. Under acidic conditions, BBI 
are highly resistant to severe heat treatment, retaining 
their ability to inhibit serine proteases[40]. In processed 
legumes or their derived products, a high percentage of  
the trypsin inhibitory activity is associated to heat-stable 
BBI. In addition, soybean BBI have demonstrated to be 
remarkably resistant to the action of  proteolytic enzymes 
under simulated gastric and intestinal digestion[41]. Soy-
bean BBI is active at low pH in the presence of  pepsin 
with no significant loss of  protease inhibitory activity[42]. 
The structural rigidity provided by the disulphide bridge 
network play an essential role in maintaining both correct 
folding and functional structure of  BBI[38,43,44]. Reduction 
of  disulphide bridges and subsequent alkylation of  the 
cysteinyl sulfhydryl groups abolishes almost completely 
both trypsin and chymotrypsin inhibitory activity of  
soybean BBI due to conformational changes and/or 
unfolding[26]; these structural changes increase the vulner-
ability of  BBIs to digestive proteases and decrease ther-
mal stability. The survival of  functional BBI in the small 
intestine of  animal models (rodent and pig) has been 
clearly demonstrated. Hajós et al[45] reported the presence 
of  immunological reactive forms (5% of  total ingested) 
of  soybean BBI in the small intestine of  rats; similar re-
sults were shown for cowpea (Vigna unguiculata) BBI in 
rat feeding trials[46]. Due to methodological difficulties, 
the protease inhibitory activities of  BBI were not evalu-
ated in these experiments. In pigs, generally held as a suit-
able model for human digestive physiology[47], it has been 
demonstrated that significant amounts of  ingested chick-
pea BBI (5%-8%) can survive the extreme conditions 
within the GIT; chromatographic, electrophoretic and 
enzymatic data obtained from ileal samples revealed that 
both trypsin and chymotrypsin inhibitory activities were 
associated to a protein core comprising the two binding 
loops. Although processing at both N- and C-terminal 
ends of  BBI during passage within the GIT was revealed, 
the network of  disulphide bridges seems to exert a pro-
tective effect, avoiding an extensive proteolysis. By using 
mixed faecal samples from pigs, fermentation assays for a 
period of  24 h demonstrated that soybean BBI remained 
active and their ability to inhibit trypsin and chymotryp-
sin were not significantly diminished by the enzymatic 
and/or metabolic activity of  faecal microbiota[48]. All of  
these results make protease inhibitors of  the Bowman-
Birk family attractive for further pharmacological and 
pre-clinical studies in order to assess their potential as 
colorectal chemopreventive agents.
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73 μmol/L. Neither protein affected the growth of  non-
malignant colonic fibroblastic CCD18-Co cells. By using 
reducing and alkylating agents, the inhibitory activity of  
soybean BBI against serine proteases was abolished; inac-
tive BBI was unable to inhibit cell proliferation of  HT29 
colon cancer cells suggesting that, in order to exert anti-
proliferative effect on colon cancer cells, BBI need to be 
in active form(s)[26]. Nevertheless, when severe disruptive 
treatments are used, the native conformation of  BBI is ir-
reversibly affected, alongside significant reduction in both 
trypsin and chymotrypsin inhibitory activities, making the 
relationship between protease inhibitory activities, protein 
structure and health beneficial effects unclear. To answer 
this crucial question, a comparative study with rTI1, a 
major BBI from pea seeds expressed heterologously in 
Pichia pastoris, and a related synthetic mutant derivative 
lacking trypsin and chymotrypsin inhibitory activity was 
carried out[55]. rTI1 inhibited both trypsin and chymotryp-
sin, with Ki values at nanomolar concentrations, whereas 
the mutant protein was inactive against both enzymes. 
The proliferation of  HT29 colon adenocarcinoma cells 
was significantly affected by rTI1 in a dose-dependent 
manner; in contrast, the inactive derivative did not show 
any suppressive effect on cell growth. Although the mo-
lecular mechanism(s) of  such anti-proliferative activity 
remains unknown, the reported data indicate that cellular 
serine proteases should be considered as BBI primary 
targets in early stages of  colorectal carcinogenesis. 

The scission of  soybean BBI with cyanogen bromide 
followed by pepsin treatment results in two active frag-
ments, one having trypsin inhibitory activity and the 
other having chymotrypsin inhibitory activity. In early 
studies, Yavelow et al[56] using these two active fragments 
concluded that the chymotrypsin inhibitory domain 
of  soybean BBI was responsible for suppression of  

radiation-induced transformation in vitro whereas the 
BBI fragment having only ability to inhibit trypsin-like 
proteases was ineffective. These observations led to the 
hypothesis that chymotrypsin-like proteases are potential 
therapeutic targets of  BBI in clinical research; however, 
the enzymatically modified soybean BBI may have been 
impaired in the inhibition of  several molecular targets 
compared with the native protein. Later on, it was dem-
onstrated that a major soybean BBI isoform, IBBD2, 
which inhibits trypsin-like proteases only, exerts anti-
proliferative effect against HT29 colon cancer cells in a 
dose-dependent manner[26] (Figure 2). These studies re-
vealed that both trypsin- and chymotrypsin-like proteases 
involved in the early stages of  carcinogenesis should be 
considered as potential targets of  BBI. No data regarding 
the effectiveness of  BBI variants having elastase inhibi-
tory activity[20,21] on colon cancer cell proliferation has 
been reported so far. 

A growing body of  evidence suggests that dietary 
BBI may exert anti-inflammatory properties within the 
GIT. Soybean BBI and BBIC appears to exert a potent 
suppressive effect on colon and anal gland inflammation 
of  carcinogen-treated rodents[57], or when assessed in 
the dextran sulfate sodium (DSS) model of  UC[58]. His-
tological studies and mortality rates show that the DSS 
treatment induced a severe inflammatory condition in 
mice that was reduced in extent and severity by soybean 
BBIC. These preclinical studies suggest that soybean BBI 
might exert beneficial effects in inflammatory processes. 
In order to evaluate safety and efficacy of  soybean BBI 
in patients with active UC, a randomized double-blind 
placebo-controlled trial was performed[13]. A daily dose 
of  800 chymotrypsin inhibitor units was administrated 
in patients receiving 12 wk of  therapy. The BBIC treat-
ment exerted a potential benefit over placebo in terms of  
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Table 2  Preclinical studies showing colorectal chemopreventive properties of Bowman-Birk inhibitor-like proteins from several 
legume species

Species 
(common name)

Model system (carcinogen) Effect and/or mechanisms of action Ref.

Glycine max (soy) Rodent colon carcinogenesis 
(DMH)

Soybean BBI is effective at concentrations as low as 10 mg/100 g diet in reducing the 
incidence and frequency of colorectal tumors. Its ability to inhibit serine proteases is required 

for their chemopreventive properties. No adverse effects are observed in treated animals

[52,53]

Mouse colorectal 
carcinogenesis (DMH)

Soybean BBI, when simultaneously treated with DMH, prevent the development of 
neoplastic lesions and protect against the onset of severe inflammatory processes

[79]

Mouse colon inflammation 
(DSS)

A soybean Bomwan-Birk inhibitor concentrate reduces colon inflammation in mice with 
induced ulcerative colitis. Lower mortality rates and delayed onset of mortality are observed

[58]

Colon cancer cell 
proliferation

The antiproliferative properties of BBI isoinhibitors, IBB1 and IBBD2, reveal that both 
trypsin- and chymotrypsin–like proteases involved in carcinogenesis should be considered 

as potential targets
[26]

Lens culinaris (lentil) Colon cancer cell 
proliferation

Lentil BBI is able to inhibit the growth of HT29 colon cancer cells at concentrations as low as 
19 μmol/L, in a concentration-dependent manner; by contrast, colonic fibroblast CCD-18Co 

cells are unaffected

[30]

Pisum sativum (pea) Colon cancer cell 
proliferation

TI1B, a major pea protease inhibitor, affect in a dose-dependent manner the growth of HT29 
colon cancer cells whereas an inactive mutant did not show any significant effect

[55]

Vicia faba (field bean) Mouse stomach 
carcinogenesis 
(benzopyrene)

BBI proves to be biologically active, under acidic conditions, in suppressing benzopyrene-
induced forestomach carcinogenesis in mice following oral treatment; the oncopreventive 

properties are related to its protease inhibitory activity

[93]

DMH: Dimethylhydrazine; DSS: Dextran sulphate sodium; BBI: Bowman-Birk inhibitor.
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clinical response and induction of  remission in patients 
with active UC, as assessed by the Sutherland Disease 
Activity Index (an index that consist of  four major cri-
teria as follows: stool frequency, rectal bleeding, mucosal 
appearance, and physician rating of  disease activity)[59]. 
After BBIC treatment, no adverse side-effects or appar-
ent toxicity in UC patients were observed. Approximately 
50% of  patients responded clinically and 36% showed 
remission of  disease; in contrast, only 29% and 7.1% on 
the placebo group achieved a partial response or remis-
sion, respectively. 

Although not fully understood, several mechanisms 
of  action have been proposed to explain the anti-inflam-
matory properties of  BBI within the GIT. Soybean BBI 
or BBIC has been shown to decrease the production and 
release of  superoxide anion radicals and hydrogen per-
oxide, mediators of  acute and chronic inflammation, in 
purified human polymorphonuclear leukocytes[60] and in 
differentiated HL60 cells[61]. The decrease in superoxide 
radical levels might reduce levels of  oxidative damage 
to DNA, lipid peroxidation of  cellular membranes and 
incidence of  malignant transformation. Although BBI 
do not function as free radical-scavenging agents, they 
prevent the release of  oxygen free radicals from cells, 
which would be expected to contribute to their reported 
anti-inflammatory properties[62]. Serine proteases are key 
components of  the inflammatory response, as they can 
trigger hypersensitivity and may cause severe proteolytic 
damage to the extracellular matrix[63,64]. Dysregulation of  
the epithelial barrier function play a central role in either 
the etiology or the pathology of  intestinal inflammation. 
Currently, there is a strong interest in identifying candi-
date serine proteases involved in pathogenesis and in de-
signing selective protease inhibitors to regulate their pro-
teolytic activities[39]. In this sense, the use of  anti-tryptase 
therapy on human inflammatory bowel disease and ex-
perimental colitis has been demonstrated[65]. In intestinal 
lesions and faecal samples from UC patients, a significant 

increase of  serine protease activity when compared to 
healthy controls was observed[66,67]; these proteolytic ac-
tivities can be completely abolished by soybean BBI[68].

SERINE PROTEASES AS POTENTIAL 
TARGETS OF BBI IN COLORECTAL 
CHEMOPREVENTION
The homeostatic control between proteolytic enzymes 
and their cognate inhibitors plays a fundamental role in 
a number of  physiological as well as pathological pro-
cesses, where their activities become dysregulated. Serine 
proteases are involved in crucial biological functions 
associated to tumor development, such as cell growth 
(dys)regulation, cell invasion, angiogenesis and inflam-
matory processes. Some of  these serine proteases have 
been proposed as candidate cancer biomarkers[69-71] (Table 
3). An understanding of  the role played by certain serine 
proteases in pathological processes may suggest modes 
of  therapeutic intervention[1,72]. In eukaryotes, the ubiqui-
tin-proteasome pathway regulates many fundamental cel-
lular processes such as protein quality control, cell cycle, 
signal transduction and DNA repair[73]. The 20/26S pro-
teasome complex is the most downstream element of  the 
ubiquitin-proteasome pathway. Inhibition of  proteasome 
activity leads to accumulation of  poly-ubiquitinylated and 
misfolded proteins, endoplastic reticulum stress, reduc-
tion in cell proliferation rates and induction of  apoptosis 
through multiple mechanisms[74,75]. The proteasome com-
plex is currently considered an important intracellular 
target for the treatment of  cancer; proteasome inhibi-
tion results in cellular homeostasis disruption and in the 
induction of  apoptosis. Until now, only a few studies 
have demonstrated the use of  BBIs as potential inhibi-
tors of  proteasomal activities. BBI from soybean inhibits 
the chymotrypsin-like proteasomal activity of  MCF7 
breast cancer cells in vitro and in vivo[76]. The proteasomal 
inhibition results in the accumulation of  ubiquitinated 
proteins and proteasome substrates, p21Cip1/WAFF1 and 
p27Kip1, and the consequent down-regulation of  cyclin 
D1 and cyclin E that modulate the G1/S phase progres-
sion, suggesting that BBI might induce cell-cycle arrest. 
Soybean BBI decrease proteasomal function and results 
in up-regulation of  MAP kinase phosphatase-1 (MKP-1), 
which in turn suppresses phosphorylation coupled to 
extracellular signal-related kinase activity in MCF7 treated 
cells. The inhibition of  proteasomal chymotrypsin-like 
activity in vivo reveals that MCF7 cellular membranes are 
very permeable to soybean BBI facilitating the inhibi-
tion of  intracellular target proteases. Soybean BBI has 
been demonstrated to be taken up by intestinal epithelia 
cells in a time-dependent manner, being the bulk of  the 
internalised protease inhibitor present in the cytosol in 
active form[77]. It has been also reported that soybean 
BBI is internalised into NIH/3T3 mouse embryo fi-
broblastic cells and is localized in the nucleus[41]. More 
recently, confocal microscopy studies have demonstrated 
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that black-eyed pea BBI crosses the membrane of  breast 
MCF7 cancer cells, likely via endocytosis, and co-localizes 
with the proteasome in cytoplasm and mainly in nucleus, 
inhibiting the chymotrypsin-, trypsin- and caspase-like 
activities of  the 20S proteasome[78]. Further studies to 
determine the correct localization of  BBI in colon cancer 
cells will be relevant in order to identify serine proteases 
as potential therapeutic targets. Either soybean or peren-
nial horsegram BBIs, when administrated at a dose of  
30 mg/kg during 12 wk, exerted a protective role in the 
development of  pre-neoplastic lesions induced by intra-
peritoneal injections of  DMH in mice; such effect seems 
to be associated to the inhibition of  both the lysosomal 
and proteasome-dependent proteolytic pathways[79]. Al-
though soybean BBI has been demonstrated to inhibit 
the proteosomal activity of  MCF7 breast cancer cells[76] 
and U2OS osteosarcoma cells[80], the proteosomal inhi-
bition in colon cancer cells need to be unambiguously 
demonstrated. Another potential therapeutic target of  
BBI is matriptase (also known as MT-SP1 or epithin), an 
epithelial-specific member of  the type Ⅱ transmembrane 

serine protease family, which is a key activator of  multiple 
signaling pathways associated with cell proliferation and 
modification of  the extracellular matrix. Matriptase is rec-
ognized as a cancer-associated trypsin-like protease, being 
over-expressed in malignant prostate, ovarian, uterine 
and colon tumors[81,82]. This serine protease contributes to 
the epithelial integrity and upstream activation of  cellular 
regulatory proteins, including urokinase-plasminogen 
activator, hepatocyte-growth factor/scatter factor and 
protease-activated receptor, being also involved in can-
cer invasion and metastasis[83,84]. Although the ability of  
naturally-occurring protease inhibitors, including soybean 
BBI, lima bean trypsin inhibitor and sunflower trypsin 
inhibitor (SFTI-1), to inhibit a secreted form of  recom-
binant MT-SP1 has been demonstrated[85,86], the clinical 
relevance of  such inhibition has not been yet elucidated.

Serine proteases are extensively involved in immuno-
logical responses and pro-inflammatory actions; there-
fore, there is a growing interest towards determining 
the therapeutic potential of  serine protease inhibitors in 
treatment of  inflammatory diseases by modifying vari-
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Table 3  Serine proteases as potential therapeutic targets of Bowman-Birk inhibitor-like proteins in pathological processes

Serine 
protease

Function Pathological 
processes

Evidence of interaction with BBI-like proteins

Proteasome Control of the turn-over of regulatory 
proteins involved in critical cellular 

processes including cell cycle progression, 
cell development and differentiation, 
apoptosis, angiogenesis and signaling 

pathways

Cancer, 
inflammatory 

processes,  
autoimmune 

diseases and aging

Soybean BBI specifically and potently inhibits the proteasomal 
chymotrypsin-like activity in vitro and in vivo in MCF7 cancer breast 

cells[76]

Mice treated simultaneously with BBI and DMH show a significant 
decrease in the chymotrypsin- and trypsin-like proteasomal activity in 

comparison with those treated with DMH only[79]

Soybean BBI suppress proteasomal chymotrypsin-like activity in U2OS 
human osteosarcoma cells in vitro[80]

Matriptase Differentiation and function of epithelial 
tissues

Activator of critical 
molecules associated 
with tumor invasion 

and metastasis

SFTI-1, a cyclic peptide from sunflower having similar features to the 
trypsin inhibitory binding domain of BBI, is a very potent inhibitor (Ki: 

0.92 nmol/L)[85]

BBI from soybean and lima bean have been reported to inhibit 
matriptase activity in vitro[86]

Chymase Key mediator in inflammatory cell signaling 
pathways

Inflammatory 
processes, allergic 

reactions and 
pulmonary fibrosis

Soybean BBI strongly inhibits chymase from rat mast cells 
(Ki: 13.2 nmol/L)[94]

Soybean BBI is a highly effective inhibitor of human mast cell 
chymase, being not effective against human tryptase[88]

Cathepsin G Degradation of extracellular matrix 
components, regulates inflammatory 

response and promotes apoptosis

Inflammatory 
processes, cancer 

and aging

Soybean BBI inhibits strongly cathepsin G (Ki: 1.2 nmol/L)[86]

Duodenase Morphogenesis and tissue repair; 
inflammatory and mitogenic role; 

participation in activation cascade of 
digestive proteases

Inflammatory 
processes

Duodenase interacts specifically with the chymotrypsin inhibitory 
domain of soybean BBI (Ki: 4 nmol/L)[87]

Elastase Degradation of extracellular matrix 
components

Pulmonary 
emphysema, cystic 
fibrosis, infections, 
inflammation and 

atherosclerosis

Soybean BBI inhibits hydrolysis of extracellular matrix components by 
leukocyte enzymes[95]

Soybean BBI inhibit human leukocyte elastase (Ki: 2.3 nmol/L)[96]

BBI: Bowman-Birk inhibitor; DMH: Dimethylhydrazine; Ki: Constant of inhibition; SFTI-1: Sunflower trypsin inhibitor.

Clemente A et al . Bowman-Birk inhibitors in colorectal chemoprevention



ous inflammatory pathways[4]. The inhibition of  serine 
proteases involved in inflammatory processes, such 
as cathepsin G[87,88], elastase and mast cell chymase[89] 
by soybean BBI has been reported (Table 3). Secreted 
chymases promote inflammation[90], matrix destruction, 
tissue remodelling as well as the regulation of  collage-
nase[91] and interleukin 1β (IL-1β)[92]. Nevertheless, a 
clinical correlation between the inhibition of  these serine 
proteases and the anti-inflammatory properties associ-
ated with soybean BBI and homologous proteins is still 
far of  being elucidated. 

CONCLUSION
In vitro and in vivo studies have demonstrated that soy-
bean BBI and homologous proteins can exert a protec-
tive and/or suppressive effect on cancer development 
and inflammatory processes within the GIT; so far, the 
therapeutic targets and the action mechanism of  BBI 
as colorectal chemopreventive agents remain unknown. 
Recent investigations suggest that cellular serine prote-
ases should be considered as potential targets of  BBI in 
further investigations of  their chemopreventive proper-
ties. The validation of  serine proteases as clinical targets 
together with the identification and elucidation of  the 
molecular basis for variation in the biological activity of  
natural BBI variants and/or design of  selective potent 
inhibitors against their putative protease targets will 
contribute to the assessment of  BBI as colorectal che-
mopreventive agents for preventive and/or therapeutic 
medicine[39].
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