
Core tip: Non-alcoholic fatty liver disease (NAFLD) is 
one of the most prevalent liver disorders worldwide and 
has great risk potentials. While the mechanisms under 
NAFLD are still in the mist, farnesoid X receptor (FXR) 
provides a new aspect in this field. In addition to regu-
late bile acid metabolism, FXR can also be actively in-
volved in lipid (cholesterol, triglyceride, fatty acid) and 
glucose metabolism, furthermore, FXR participates in 
regulating inflammation and NAFLD progression. Sev-
eral FXR agonists are identified and both experimentally 
and clinically proved to be optimistic in preventing and 
treating NAFLD, indicating FXR quite a therapeutic tar-
get for NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is character-
ized by the presence of  lipid droplets in hepatocytes 
in the absence of  alcohol consumption. The spectrum 
of  NAFLD is from simple steatosis to non-alcoholic 
steatohepatitis (NASH) and eventually cirrhosis and 
hepatocellular carcinoma (HCC). NAFLD is affecting 
15%-40% of  the general population[1], and among them 
at least 10%-20% would develop to NASH[2], which is a 
potentially serious condition with poor prognosis. NASH 
is currently the most rapidly growing indication for liver 
transplantation (LT) in patients with HCC in the United 
States, and is predicted to become the leading indication 
for LT in the near future[3]. A recent large cohort study 
indicated that the prevalence of  colorectal malignant neo-
plasm is also closely associated with NAFLD[4]. 

Recent insights into farnesoid X receptor in non-alcoholic 
fatty liver disease

Jiao-Ya Xu, Zhong-Ping Li, Li Zhang, Guang Ji

Jiao-Ya Xu, Zhong-Ping Li, Li Zhang, Guang Ji, Institute of 
Digestive Diseases, Longhua Hospital, Shanghai University of 
Traditional Chinese Medicine, Shanghai 200032, China
Guang Ji, E-Institute of Shanghai Municipal Education Com-
mission, Shanghai University of Traditional Chinese Medicine, 
Shanghai 201203, China
Author contributions: Xu JY and Li ZP contributed equally to 
this work; Xu JY and Li ZP wrote the manuscript under the close 
supervision of Ji G; Zhang L revised the paper.  
Supported by National Nature Science Foundation of China, 
No. 81273727 and No. 81302927; and Innovation Program of 
Shanghai Municipal Education Commission, No.14YZ054
Correspondence to: Guang Ji, MD, PhD, Professor, Institute 
of Digestive Diseases, Longhua Hospital, Shanghai University 
of Traditional Chinese Medicine, No. 725 South Wanping Road, 
Shanghai 200032, China. jiliver@vip.sina.com
Telephone: +86-21-64286261  Fax: +86-21-64286261
Received: April 13, 2014          Revised: May 22, 2014
Accepted: June 25, 2014
Published online: October 7, 2014

Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic 
manifestation of metabolic syndrome and is one of the 
most prevalent liver disorders worldwide. NAFLD can 
gradually progress to liver inflammation, fibrosis, cir-
rhosis and even hepatocellular carcinoma. However, 
the pathogenesis of NAFLD is complex, and no efficient 
pharmaceutic treatments have yet been established for 
NAFLD. Accumulating data have shown that the farne-
soid X receptor (FXR) plays important roles not only in 
bile acid metabolism, but also in lipid and carbohydrate 
homeostasis, inflammatory responses, among others. 
In this review, we aim to highlight the role of FXR in 
the pathogenesis and treatment of NAFLD.
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Frequently, NAFLD clusters with metabolic abnor-
malities, including type 2 diabetes, obesity, hypertension, 
hyperlipidemia, etc. Growing evidence has suggested that 
NAFLD is associated not only with liver-related mortal-
ity and morbidity but also with an increased incidence of  
chronic kidney disease[5,6], cardiovascular disease[5,7] and 
aortic valve sclerosis[8]. NAFLD is thus becoming a ma-
jor health issue. To date, no optimal treatment has been 
found, underscoring the need for further efforts in elu-
cidating the pathogenesis of  NAFLD and distinguishing 
effective pharmacological therapies.

Farnesoid X receptor (FXR) is a ligand-activated 
transcription factor belonging to the nuclear hormone re-
ceptor superfamily, it is abundantly expressed in the liver, 
intestine, kidney, and adrenal cortex, while low levels of  
FXR have been detected in a variety of  tissues includ-
ing the heart, lung, adipose tissue, etc[9,10]. It was initially 
thought to be the receptor of  intermediate metabolites, 
farnesol, from which the name “Farnesoid X receptor” 
was derived. In 1999, bile acids (BAs) were found as the 
natural ligands of  FXR, which has since been known as 
bile acid receptor[11]. As a transcription factor, it binds to 
DNA either as a monomer or as a heterodimer with a 
common partner-retinoid X receptor (RXR) to regulate 
the expression of  various genes involved in BA, lipid and 
glucose metabolism[12,13].

It has been observed that hepatic expression of  FXR 
is decreased in NAFLD patients, which is associated with 
hepatic triglyceride (TG) accumulation and hepatic ste-
atosis[14], FXR deficiency animal models display hepatic 
steatosis, hyperlipidaemia, hyperglycemia, BA overload, 
inflammation and fibrosis[15-18]. However, these can be 
improved by FXR activation[19,20], indicating FXR could 
be a key regulator of  metabolic homeostasis. Thus FXR 
appears to be a promising target for the treatment of  
NAFLD.

POTENTIAL PATHOGENESIS OF NAFLD
The pathogenesis and progression of  NAFLD are multi-
factorial and not quite so clear, while generally explained 
by the “two-hit” theory[21]. The “first hit” is hepatic fat 
accumulation owing to increased hepatic de novo lipogen-
esis (DNL) and fatty acid uptake, inhibition of  fatty acid 
β oxidation (FAO), impaired TG clearance and decreased 
very-low-density lipoprotein (VLDL) export[22]. Oxidative 
stress and subsequent inflammation are key factors of  the 
“second hit”, which ultimately cause further liver damage. 
Studies have shown that multiple parallel hits, including 
genetic differences, intestinal microbiota, adipose-derived 
cytokines and so on account for the progression of  
NAFLD[23].

Loss of  the body’s ability to retain excess lipids in 
“classical” adipose tissue stores can lead to the overdevel-
opment of  ectopic fat deposition, often creating severe 
perturbations of  both glucose and lipid homeostasis[24]. 
Excessive fat accumulation in the liver is recognized as 
a pathological state. Hepatic ectopic fat deposition, es-

pecially TG, cholesterol and fatty acid eventually lead to 
disordered hepatic lipid metabolism. 

TG derives from the esterification of  free fatty acid 
(FFA) that may come from dietary fats, adipose tissue 
and DNL, and can be used for energy through FAO in 
mitochondria. Hepatic TG lipolysis is mediated by lipases, 
which release FFA for oxidation. After synthesis, hepatic 
TG may be stored as lipid droplets or packaged with 
ApoB into VLDL and then secreted into circulation[25].

MECHANISMS OF FXR IN NAFLD
Although inappropriate lipid metabolism, insulin resis-
tance, and inflammation represent important risk factors 
for the development of  NAFLD, the precise mechanisms 
controlling disease pathogenesis remain largely unde-
fined. Recent studies on FXR have provided new oppor-
tunities to elucidate the pathogenesis of  NAFLD, and the 
beneficial role of  FXR on NAFLD is through multiple 
mechanisms.

FXR in regulating bile acid metabolism
BAs are the end products of  cholesterol catabolism, pro-
duced in the liver, then secreted into the bile canaliculi 
and subsequently stored in the gall bladder. After inges-
tion of  food, bile flows into the duodenum, where it con-
tributes to the absorption of  dietary lipid and fat-soluble 
vitamins. Most of  these BAs (95%) are then reabsorbed 
from the terminal ileum and transported back to the liver 
via the portal vein, which is known as enterohepatic cir-
culation. Only about 5% of  them escapes from reabsorp-
tion per cycle and expels from the body in the feces[9,10,26]. 
BA synthesis via two different pathways: the classical 
pathway and alternative pathway. Two primary BAs cholic 
acid (CA), chenodeoxycholic acid (CDCA) are the end 
products of  these two pathways. Secondary BAs deoxy-
cholic acid (DCA) and lithocholic acid (LCA) are derived 
from primary BAs in the intestine by bacterial enzymes.

Three enzymes play major regulatory roles in these 
two pathways. Cholesterol 7α-hydroxylase (CYP7A1) 
is the rate-limiting enzyme in the classical pathway, 
whereas sterol-27 hydroxylase (CYP27A1) is the first 
enzyme in the alternative pathway, followed by sterol 12 
α-hydroxylase (CYP8B1)[10,26]. Several members partici-
pate in bile acid transport and enterohepatic circulation. 
The bile salt export pump (BSEP) is mainly responsible 
for bile acid transport at the canalicular membrane. Na+-
dependent taurocholate transporter (NTCP) is respon-
sible for basolateral bile acid transport into the hepato-
cytes. BAs are reabsorbed mostly in the terminal ileum, 
and are mainly mediated by the apical sodium-dependent 
bile salt transporter (ASBT). Once absorbed into the en-
terocytes, BAs then bind the intestinal bile acid binding 
protein (I-BABP) and are transported to the basolateral 
membrane for secretion[27].

Although BAs have many physiological roles, ab-
normal high levels of  BAs would increase the risk of  
hepatotoxicity, because they can cause oxidative stress, 
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inflammation, necrosis, and eventually fibrosis and cir-
rhosis[28,29], which are key roles of  the pathogenesis of  
NAFLD. On the other hand, they also function as sig-
naling molecules and metabolic regulators that activate 
dedicated BA receptors such as FXR to protect against 
toxic accumulation of  BAs, and regulate hepatic lipid, 
glucose, and energy homeostasis and maintain metabolic 
homeostasis[10,30].

FXR plays a central role in bile acid homeostasis by 
regulating genes involved in bile acid synthesis, secretion 
and reabsorption. FXR inhibits de novo BA biosynthesis 
through up-regulation of  the small heterodimer partner 
(SHP), which interacts with and represses the transcrip-
tional activator, liver related homolog 1 (LRH-1) and 
hepatocyte nuclear factor-4α (HNF-4α), thus bind to the 
CYP7A1 gene promoter, and inhibiting CYP7A1 gene 
transcription[31,32]. Additionally, FXR can induce intestinal 
fibroblast growth factor 19 (FGF19) in humans, as well 
as FGF15, the mouse ortholog of  human FGF19, which 
then activate the cell-surface receptor, FGF receptor 4 
(FGFR4), to eventually inhibit CYP7A1 gene transcrip-
tion and bile acid synthesis intracellular via intracellular 
Jun N-terminal kinase (JNK) pathway[33-36]. FXR encom-
passes the regulation of  the enterohepatic circulation. 
Through up-regulation of  BSEP and multidrug resistance 
protein 2 (MRP2, human canalicular bilirubin conjugate 
export pump) and inhibition of  NTCP, FXR reduces he-
patocellular BA levels by stimulating bile acid secretion at 
the canalicular membrane and limit bile acid uptake from 
the portal circulation[37-39]. FXR is also able to induce al-
ternative basolateral BA transport through organic solute 
transporter α/β (OSTα/β), to efflux BAs to systemic 
circulation and, subsequently, are eliminated by renal ex-
cretion[38,40]. Given the above, FXR regulates the synthesis 
and export of  BAs, hence activation of  FXR can protect 
against the liver from toxic accumulation of  BAs.

FXR on cholesterol metabolism
In recent years, the role of  FXR in cholesterol metabo-
lism has been widely explored. Emerging experimental 
and clinical evidence has linked altered hepatic choles-
terol homeostasis and free cholesterol (FC) accumulation 
to the risk and severity of  NAFLD and the pathogenesis 
of  NASH[41]. It is considered that hepatic accumulation 
of  cholesterol rather than TG may play a critical role in 
the NAFLD progression[42]. 

In hepatocytes, cholesterol homeostasis pathways 
include cholesterol de novo synthesis, uptake in the form 
of  low density lipoprotein (LDL) and chylomicron rem-
nants, excretion into the blood in the form of  VLDL, 
excretion and uptake through bile, and synthesis of  BAs 
and their excretion[42]. Since FXR is a key regulator of  
bile acid metabolism, it is also critical in maintaining 
cholesterol homeostasis. FXR deficiency mice display in-
creased levels of  hepatic and serum cholesterol[43,44], and 
FXR negatively regulates cholesterol levels via various 
mechanisms.

LDL receptor (LDLR), the scavenger receptor class 

B type I (SR-BI) and cluster differentiation protein-36 
(CD-36) are involved in hepatic cholesterol uptake. In-
creased LDLR and CD-36 expression, and decreased SR-
BI expression are detected in NAFLD, which correlates 
with the severity of  steatosis[45]. Activation of  FXR re-
presses the expression of  proprotein convertase subtili-
sin/kexin type 9 (PCSK9), an inhibitor of  LDLR, thus in-
creases LDLR activity, and potentiates the hypolipidemic 
effect of  statins[46]. SR-BI is critical for reverse cholesterol 
transport by transporting high-density lipoprotein (HDL) 
cholesterol into liver where a part of  the cholesterol is me-
tabolized to BAs[47,48]. FXR null mice exhibit reduced SR-
BI expression[44]. A recent study showed that FXR posi-
tively regulates SR-BI expression, and three binding sites 
in the first intron of  the SR-BI gene were identified[47]. 
Meanwhile, FXR induced reduction of  CD36 also effec-
tively prevents liver from steatosis[49]. In the liver, FXR en-
hances ATP-binding cassette G member 5 and member 8 
(ABCG5/G8) expression, a heterodimeric cholesterol ef-
flux transporter, which accounts for increased cholesterol 
excretion[50]. Collectively, FXR inhibits cholesterol uptake 
and synthesis and promotes cholesterol excretion, eventu-
ally improves cholesterol overload.

FXR in mediating fatty acid and triglyceride metabolism
Hepatic steatosis is the hallmark of  NAFLD due to an 
imbalance between TG synthesis and clearance. From a 
liver centric point of  view, this imbalance results from 
abnormalities in one or more of  the following four pro-
cesses: (1) hepatic uptake of  fatty acid, lipoprotein and 
glucose; (2) de novo TG synthesis; (3) TG degradation 
and FAO; and (4) lipoprotein secretion in the form of  
VLDL[51]. 

FXR has shown considerable impact on lipogenesis. 
Hepatic lipogenesis is mainly regulated by sterol regula-
tory element binding protein 1c (SREBP-1c), which is 
known as the master regulator of  lipid biosynthesis and 
regulates the expression of  several genes involved in lipo-
genesis[52]. FXR activation can inhibit the expression of  
SREBP-1c and its target enzymes, such as fatty acid syn-
thase (FAS), stearoyl-coenzyme A desaturase 1 (SCD-1) 
and acetyl-CoA carboxylase (ACC), and prevent excessive 
fatty acid synthesis and overproduction of  TG[19,53,54]. 
FXR null mice develop hepatic steatosis and hypertriglyc-
eridemia[55]. In NAFLD patients, decreased expression 
of  hepatic FXR also displays elevated TG synthesis, due 
to increased expression of  SREBP-1c[14]. FXR activation 
effectively prevents hepatic TG accumulation; the un-
derlying mechanisms may be due to FXR-mediated SHP 
activation, thus suppressing the expression of  SREBP-1c 
and its lipogenic target genes[18]. Other mechanisms inde-
pendent of  the FXR-SHP-SREBP-1c pathway may also 
contribute to FXR-mediated TG homeostasis[25].  

FXR also demonstrates an ability to enhance TG 
clearance. FXR is known to induce apolipoprotein C-II 
(Apo C-II) and apolipoprotein AIV (Apo AIV) and in-
hibit apolipoprotein C-III (Apo C-III) and angiopoietin-
like 3 expression, thus activating lipoprotein lipase (LPL)-
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has been explained via negatively mediating the nuclear 
factor kappa-B (NF-kB) pathway[64]. Additionally, in the 
intestine, FXR is required to improve biliary obstruction, 
inhibit bacterial overgrowth, mucosal injury and bacte-
rial translocation[65]. Another anti-inflammatory effect of  
FXR involves induction of  suppressor of  cytokine signal-
ing 3 (SOCS3) that inhibits signal transducer and activa-
tor of  transcription (STAT3) signaling[66]. Recently, Peng 
et al[67] identified RECK, a membrane-anchored inhibitor 
of  MMP-9, as a novel target gene of  FXR in mouse liver. 
Whether the FXR agonist attenuates hepatic inflamma-
tion and fibrosis in a mouse NASH model through the 
FXR-RECK-MMP-9 cascade still needs further investiga-
tion. On the other hand, cholesterol over-intake and BAs 
accumulation are correlated with the onset and severity in 
NASH, while the role of  FXR in the process need to be 
further clarified[68]. 

Some microRNAs have been found to be target genes 
of  FXR, and regulate the process of  liver fibrogenesis. 
FXR-mediated miR-29a up-regulation in hepatic stellate 
cells (HSCs) leads to decreased amounts of  extracel-
lular matrix, and thus protects against liver fibrosis[69]. 
In another study, liver tissues from patients with severe 
fibrosis are found to have lower levels of  FXR and liver 
kinase B1 (LKB1) with up-regulated miR-199a-3p. FXR 
is further confirmed to protect hepatocytes from injury 
by repressing miR-199a-3p and thereby increasing levels 
of  LKB1[70]. Taken together, the anti-inflammatory ac-
tions of  FXR are obtained from intra-hepatic and extra-
hepatic mechanisms, more experiments are needed to 
elucidate the molecular mechanisms under the actions.

Other possible mechanisms
Type 2 diabetes is an established risk factor for devel-
opment of  hepatic steatosis and NAFLD. Indeed, the 
prevalence of  NAFLD is higher in patients with type 2 
diabetes[71]. Several animal studies have shown that FXR 
activation can improve insulin sensitivity and down-
regulate phosphoenoylpyruvate kinase (PEPCK) and 
glucose-6-phosphatase (G-6-Pase), two key enzymes in 
gluconeogenesis[17,49]. Activation of  FXR is also reported 
to induce the phosphorylation of  glycogen synthase ki-
nase 3β (GSK3β) to enhance glycogen storage in db/db 
mice[72]. FXR also has a novel role in promoting liver 
regeneration/repair after liver damage, including physical 
resection or toxic injury[73]. Apart from this, research has 
addressed the role of  FXR on oxidative stress. FXR-null 
mice generated enhanced oxidative stress, which may be 
attributable to a continuously high level of  hepatic BAs. 
On the other hand, FXR activation appeared to repress 
CYP2E1 expression and attenuate oxidative stress, thus 
ameliorating liver injury in a murine model of  alcoholic 
liver disease (ALD)[74,75]. FXR is proved to have anti-ath-
erosclerotic effects as well[76]. Recently, down-regulation 
of  hepatic FXR expression by endoplasmic reticulum 
(ER) stress has been proposed to be in close association 
with aging-induced fatty liver in mice, mainly through 
inhibition of  hepatocyte nuclear factor 1 alpha (HNF1α) 

mediated lipolysis of  TG rich lipoproteins[56]. Peroxisome 
proliferator-activated receptor alpha (PPARα) is a key 
regulator of  FAO and activation of  FXR induces the 
expression of  PPARα and its target gene, carnitine pal-
mitoyltransferase 1 (CPT1), the rate-limiting enzyme in 
FAO[57]. Furthermore, FXR activation by natural and 
synthetic BAs increases the expression and secretion of  
fibroblast growth factor 21 (FGF21), which has been 
reported to profoundly reduce hepatic TG levels via inhi-
bition of  SREBP-1c[58,59]. Furthermore, FGF21 induces 
gluconeogenesis, FAO, and ketogenesis in the liver[60].

In addition, FXR-induced hepatic expression of  
aldo-keto reductase B7 (Akr1b7) has revealed a strik-
ing effect on ameliorating hepatic lipid accumulation in 
db/db mice[61]. A recent study showed that hepatic carbo-
xylesterase 1 (CES1) plays a key role in regulating both 
normal and FXR-controlled lipid homeostasis. Over-
expression of  hepatic CES1 lowered hepatic TG, while 
knockdown of  hepatic CES1 increased hepatic TG and 
plasma cholesterol levels. These effects likely resulted 
from the TG hydrolase activity of  CES1. Activation of  
FXR induced hepatic CES1, and reduced the levels of  
hepatic and plasma TG as well as plasma cholesterol in 
a CES1-dependent manner[62]. Lu et al[63] have identified 
YY1 as a novel transcription factor involved in hepatic 
TG metabolism in obesity. YY1 expression is markedly 
up-regulated in HFD-induced obese mice and NAFLD 
patients. YY1 suppresses FXR expression via interaction 
with the YY1 binding site at the first intron of  the FXR 
gene. Liver-specific ablation of  YY1 ameliorates liver TG 
accumulation in obese mice. 

FXR and inflammation
Inflammation and fibrosis are main pathological manifes-
tations of  NASH. Recently, it has become clear that FXR 
can down-regulate genes involved in inflammation. FXR 
deficiency is considered as a significant risk factor in the 
development of  NASH. LDLR-/-/FXR-/- mice fed a high-
fat diet (HFD) display higher levels of  pro-inflammatory 
and pro-fibrogenic cytokines, such as tumor necrosis 
factor α (TNFα), intercellular adhesion molecule-1 
(ICAM-1), α-smooth muscle actin (α-SMA), tissue in-
hibitor of  metalloproteinase (TIMP)-1, transforming 
growth factor (TGFβ), procollagen 1α1 and type 1 col-
lagen compared to LDLR-/-/FXR+/+ mice[16]. These stud-
ies indicated that activation of  FXR may be a therapeutic 
target in curing NASH.

Indeed, FXR activation appears to protect mice 
against methionine and choline-deficient (MCD) diet-
induced NASH. The reduction in inflammatory cell infil-
tration and hepatic fibrosis correlated with decreased lev-
els of  hepatic inflammation markers such as keratinocyte 
derived chemokine (mKC), MCP-1, VCAM-1, etc, and 
fibrosis markers such as TIMP-1, α1(I) collagen, α-SMA, 
TGF-β1, matrix metalloproteinase 2 (MMP-2) and α2(I) 
collagen[20]. Furthermore, the observation that FXR null 
mice are more susceptible to LPS-induced liver injury, 
indicating a direct anti-inflammatory role of  FXR, which 
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transcriptional activity[53]. In general, these findings sug-
gest extra mechanisms of  FXR in treating NAFLD. 

FXR AGONISTS IN TREATING NAFLD
Up to date, no efficient treatments are available for man-
agement of  NAFLD. As FXR plays critical roles in medi-
ating metabolic homeostasis and inhibiting inflammatory 
response, it is emerging as an ideal target for treatment of  
NAFLD. Numerous natural, semisynthetic, and synthetic 
FXR agonists have shown protective role in animal mod-
els and patients with NAFLD.

GW4064 is a non-steroidal synthetic FXR agonist. 
Activation of  FXR by GW4064 suppressed weight gain 
and attenuated hepatic inflammation in C57BL/6 mice 
fed with either HFD or high-fat and high-cholesterol 
diet. GW4064 treatment also repressed diet-induced he-
patic steatosis as evidenced by lower TG and FFA level 
in the liver, possibly due to markedly reduced lipid trans-
porter CD36 expression. In this model, GW4064 im-
proved hyperinsulinemia and hyperglycemia via decreas-
ing PEPCK and G6pase[49]. Adiponectin and its receptors 
are two important factors in treatment of  NAFLD. A 
recent study showed that treatment of  GW4064 can up-
regulate the expression of  PPARγ2, adiponectin, adipo-
nectin receptor 2 (adipoR2) in 3T3-L1 preadipocytes and 
adipoR2 in HepG2 cells, indicating that FXR agonist has 
a therapeutic potential in NAFLD[77]. GW4064 strongly 
induced FGF19 and inhibit CYP7A1, in which the he-
patic FGF19/FGFR4/Erk1/2 pathway played a key role, 
which is independent of  SHP. In addition to inducing 
FGF19 in the intestine, BAs in hepatocytes may activate 
the liver FGF19/FGFR4 signaling pathway to inhibit BA 
synthesis and prevent accumulation of  toxic bile acid in 
human livers[35]. 

Obeticholic acid (OCA or INT-747, 6α-ethyl-
chenodeoxycholic acid) is a semisynthetic derivative of  
the primary human bile acid chenodeoxycholic acid, and 
the natural agonist of  FXR. Administration of  OCA re-
versed hepatic steatosis and insulin resistance in Zucker 
(fa/fa) obese rats, protecting against body weight gain and 
fat deposition in liver and muscle, due to FXR-induced 
lipogenesis and gluconeogenesis decrease[19]. OCA can 
inhibit NF-κB-mediated hepatic inflammation, however, 
the anti-inflammatory effect of  OCA are not liver-specif-
ic, OCA treatment can also reduce intestinal inflamma-
tion and permeability in experimental models of  colitis[78]. 
Also, in primary rat HSCs, 6E-CDCA reduced thrombin-
induced up-regulation of  α1 (I) collagen, α-SMA and 
TIMP-1/2 mRNA expression and protected against 
fibrosis[79]. In a phase 2 clinical trial in patients with type 
2 diabetes mellitus and NAFLD (ClinicalTrials.gov, No. 
NCT00501592), administration of  25 or 50 mg OCA 
for 6 wk was well tolerated. OCA was found to increase 
insulin sensitivity and significantly decrease levels of  
γ-glutamyltransferase and alanine aminotransferase (ALT). 
Markers of  liver inflammation and fibrosis were also de-
creased in these patients[80]. 

WAY-362450, a synthetic potent FXR agonist, could 
attenuate hepatic inflammation and fibrosis in MCD diet 
induced NASH mice[20]. WAY-362450 treatment was also 
found to attenuate oxidative stress in a murine model of  
ALD[75]. Furthermore, treatment of  obese db/db mice 
with INT-767, a dual FXR/TGR5 (a G-protein-coupled 
bile acid receptor) agonist, significantly improved the 
histologic features of  NASH, resulted from recruit-
ment of  anti-inflammatory Ly6Clow monocytes to the 
liver, directly down-regulated the expression of  Ly6C on 
bone-marrow derived monocytes and decreased produc-
tion of  pro-inflammatory cytokines by macrophages. In 
addition, INT-767 increased interleukin (IL)-10 produc-
tion and enhanced hepatic expression of  genes associ-
ated with alternatively activated macrophages. The data 
suggested INT-767 as a potential treatment target of  
NAFLD due to coordinating the immune phenotype 
of  monocytes and macrophages[81]. In another study, 
INT-767 treatment markedly decreased cholesterol and 
TG levels in diabetic mice[82].

CONCLUSION
The data presented suggest that FXR plays crucial roles 
in mediating multiple target genes associated with bile 
acid, lipid and glucose metabolism and has beneficial ef-
fects on inflammation response, thus can partly interpret 
the pathogenesis of  NAFLD. Accumulative data prove 
that targeting FXR may be beneficial in the preven-
tion and treatment of  NAFLD. However, some reports 
showed opposite results. For instance, the role of  FXR 
in regulating HDL metabolism is still under debate, and 
need to be further evaluated. Some studies demonstrated 
different results, as FXR-/- mice had increased plasma 
HDL-cholesterol[44], and blockage of  FXR activity also 
displayed reduced serum LDL levels and increased HDL 
levels[83], while activation of  FXR by GW4064 sup-
pressed apolipoprotein A-I transcription and reduced 
serum HDL levels[84]. On the other hand, FXR deficiency 
was shown to protect from excessive body weight gain 
in both genetic (ob/ob) and diet-induced obesity murine 
models and improve hyperglycemia and impaired glucose 
tolerance[85]. The same result also emerged in aging FXR 
deficient mice, and the reduced body weight gain is most 
likely explained by the increased energy expenditure[15]. 
In line with this, another study showed that activation of  
FXR with GW4064 was not useful for long term man-
agement of  the metabolic syndrome, as it reduced the BA 
pool size and subsequently decreased energy expenditure, 
translating as weight gain and insulin resistance[86]. 

In summary, research on FXR has provided new op-
portunities to elucidate the pathogenesis of  NAFLD and 
to develop effective treatment. Although activation of  
FXR by specific agonists could be an attractive pharma-
cological strategy for managing NAFLD, attention needs 
to be paid to several undesirable contradictory results, 
which remain to be elucidated. Since most evidence 
comes from preclinical studies, more clinical evidence is 
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urgently needed to establish treatments of  FXR agonists 
for NAFLD.
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