
PI3K signaling pathway, and in particular of the class 
IB PI3Kγ isoform, has a significant role in those events 
which are necessary for the initiation of acute pancre-
atic injury, namely calcium signaling alteration, tryp-
sinogen activation, and nuclear factor-κB transcription. 
Moreover, PI3Kγ is instrumental in modulating acinar 
cell apoptosis, and regulating local neutrophil infiltra-
tion and systemic inflammatory responses during the 
course of experimental acute pancreatitis. The availabil-
ity of PI3K inhibitors selective for specific isoforms may 
provide new valuable therapeutic strategies to improve 
the clinical course of this disease. This article presents 
a brief summary of PI3K structure and function, and 
highlights recent advances that implicate PI3Ks in the 
pathogenesis of acute pancreatitis.
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Core tip: Phosphoinositide 3-kinases (PI3Ks) are a fam-
ily of lipid and protein kinases implicated in intracellular 
signal transduction and regulation of inflammation. Re-
cent data suggest their involvement also in the patho-
genesis of acute pancreatitis. PI3Ks, and in particular 
the PI3Kγ isoform, have a significant role in those 
events which are necessary for the initiation of acute 
pancreatic injury, namely calcium signaling alteration, 
trypsinogen activation, and nuclear factor-κB transcrip-
tion. Moreover, PI3Kγ modulates acinar cell apoptosis, 
and regulates local and systemic inflammatory respons-
es during experimental acute pancreatitis. Specific PI3K 
inhibitors may therefore provide new therapies to im-
prove the clinical course of this disease.
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Abstract
A large body of experimental and clinical data supports 
the notion that inflammation in acute pancreatitis has 
a crucial role in the pathogenesis of local and systemic 
damage and is a major determinant of clinical severity. 
Thus, research has recently focused on molecules that 
can regulate the inflammatory processes, such as phos-
phoinositide 3-kinases (PI3Ks), a family of lipid and 
protein kinases involved in intracellular signal transduc-
tion. Studies using genetic ablation or pharmacologic 
inhibitors of different PI3K isoforms, in particular the 
class I PI3Kδ and PI3Kγ, have contributed to a greater 
understanding of the roles of these kinases in the 
modulation of inflammatory and immune responses. 
Recent data suggest that PI3Ks are also involved in the 
pathogenesis of acute pancreatitis. Activation of the 
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INTRODUCTION
The process of  pathologic autodigestion, triggered by 
prematurely activated digestive enzymes produced by 
acinar cells, has long been indicated as the key event 
for the initiation of  acute pancreatic injury[1,2]. Recent 
research efforts have begun to clarify the biochemical 
mechanisms inducing intracellular zymogen activation[3-7], 
which include pathologic calcium signaling, alterations of  
intracellular trafficking that lead to the colocalization of  
lysosomal and zymogen-containing vacuoles, early acti-
vation of  the nuclear factor-kappa B (NF-κB) pathway, 
autophagy, and oxidative stress[1-3]. Intracellular zymogen 
activation results in acinar cell necrosis and local inflam-
matory responses[8], which progressively resolve in most 
patients[9]. However, sustained inflammation may lead 
to the development of  local and systemic complications 
and/or organ dysfunctions, which occur in about 20% 
of  all cases of  acute pancreatitis and account for the high 
mortality (10%-30%) of  patients affected by severe acute 
pancreatitis[9-14]. 

A large body of  experimental and clinical data sup-
ports the notion that inflammation in acute pancreati-
tis has a crucial role in the pathogenesis of  local and 
systemic damage and represents a major determinant 
of  clinical severity[9,15,16]. Increased levels of  circulating 
inflammatory cytokines, chemokines and other humoral 
mediators have been reported in patients with acute 
pancreatitis[17,18], as well as in experimental in vivo and ex 
vivo (hyperstimulated acinar cells) models of  the disease 
condition[3,6,14,19-22]. The molecular process underlying this 
event involves activation of  specific transcription factors 
in the pancreatic tissue, including NF-κB, which is the 
most studied and best characterized of  the transcription 
factors involved[6,22-27]. These humoral mediators, in turn, 
recruit neutrophils and then other immune cells from 
the bloodstream, such as macrophages, monocytes and 
lymphocytes, which amplify and sustain the inflamma-
tory reaction in the pancreatic tissue[9,15,16]. Furthermore, 
experimental anti-inflammatory approaches - ranging 
from genetic deletion of  cytokine receptors[28] or specific 
integrins[29,30], neutralization of  cytokines, chemokines, 
adhesion molecules or other mediators[18,19,30-36], blockade 
of  neutrophil recruitment[29,35-39], or complement inhibi-
tion[40] - have resulted in a significant reduction of  mor-
tality. However, whereas these experimental studies great-
ly improved our knowledge on the role of  inflammation 
in the pathogenesis of  acute pancreatitis, their results 
have not led to a progression in the treatment of  patients 
affected by acute pancreatitis, and the few clinical tri-
als conducted to date have yielded poor results[14,16,41-43]. 
Therefore, it is not surprising that research concerning 
the pathogenesis of  acute pancreatitis has recently fo-
cused on the role of  phosphoinositide 3-kinases (PI3Ks), 

a family of  lipid and protein kinases involved in intracel-
lular signal transduction and modulation of  inflammatory 
and immune responses[44-48]. This article presents a brief  
summary of  PI3K structure and function, with particular 
attention paid to their role in inflammatory pathologies, 
and discusses the recent advances involving PI3Ks in the 
pathogenesis of  acute pancreatitis. 

CLASSIFICATION AND STRUCTURE OF 
PI3Ks 
PI3Ks are a class of  enzymes involved in intracellular 
signal transduction that were first described in the late 
1980s[49,50]. They possess both protein and lipid kinase ac-
tivity, with the latter function being the most extensively 
studied[45-47]. PI3Ks have historically been divided into 
three classes based on protein structure and substrate 
specificity[45-47].  

Class I PI3Ks rely on the functional association of  
a catalytic subunit and a regulatory subunit, the latter of  
which modulates the activity of  the heterodimer as well 
as its targeting to the plasma membrane upon receptor 
ligation, thereby allowing the enzyme access to the phos-
phatidylinositol substrates[45-47]. Class I PI3Ks have been 
further divided in two subgroups: IA and IB[45-47]. Class 
IA includes three members, PI3Kα, PI3Kβ and PI3Kδ, 
which are heterodimers composed by a specific p110 cat-
alytic subunit (p110α, p110β and p110δ) and a regulatory 
p85 subunit. These isoforms are activated following stim-
ulation of  tyrosine kinase receptors, which include many 
growth factor receptors, such as those for epidermal 
growth factor[51], platelet-derived growth factor[52], fibro-
blast growth factor[53], growth hormone[54,55], insulin-like 
growth factor[56], insulin[57] and many interleukins (ILs)[58]. 
Nonetheless, a certain degree of  isoform specificity has 
been demonstrated for several biological processes. For 
example, activation of  the tyrosine kinase insulin recep-
tor largely depends exclusively on PI3Kα[59,60]. On the 
contrary, PI3Kd is specifically recruited in immune cells 
upon the activation of  T and B cell receptors, natural 
killer stimulatory receptors, Fc receptors, and Toll-like 
receptors[61,62]. In addition, although class I PI3Ks usually 
act downstream of  receptor tyrosine kinases, PI3Kβ is 
more effectively activated by G-protein-coupled recep-
tors (GPCRs) than by tyrosine kinases[63-65]. PI3Kγ is the 
only member of  the PI3K class IB, and its structural 
organization is represented by the association of  either 
a p84/p87 or p101 regulatory subunit with the p110γ 
catalytic subunit[45-47]. PI3Kγ is activated by direct binding 
with G-protein βγ subunits, thus signaling downstream 
of  GPCRs, such as chemokine receptors[45-47]. Moreover, 
PI3Kγ signaling activity can further be potentiated by 
Ras-GTP[66]. The main class I PI3K activity relies on the 
phosphorylation of  phosphoinositides at the D3 posi-
tion of  the inositol ring, which leads to conversion of  
phosphatidylinositol (4,5)-bisphosphate to the second 
messenger phosphatidylinositol (3,4,5)-trisphosphate 
(PIP3)[45-47,67,68]. PIP3, upon membrane translocation, binds 
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with high affinity to the pleckstrin homology (PH) do-
main of  its many effectors[45-47]. These effectors include 
protein kinases Akt/ protein kinase B (PKB), PDK1, Btk, 
GAP, and GEF for small GTPases, which mediate fun-
damental intracellular signaling events implicated in cell 
proliferation and migration, metabolic homoeostasis, and 
cell survival[45-47]. The signaling activity of  class I PI3K is 
finely regulated by at least two lipid phosphatases, namely 
the SH2-containing inositol phosphatases 1 and 2 and 
the phosphatase and tensin homolog, which respectively 
dephosphorylate the inositol ring of  PIP3 on position 5 
or 3[69-71]. 

The tissue distribution of  class Ⅰ PI3K isoforms 
is quite different: PI3Kα and PI3Kβ are widely ex-
pressed[45-47], whereas PI3Kγ and PI3Kδ are mainly ex-
pressed in leukocytes[44-47]. However, the expression of  
PI3Kγ has also been reported in the heart and in the 
endothelium[72,73], as well as in breast and pancreatic can-
cers[74-76]. Analogously, PI3Kδ expression has also been 
demonstrated in neurons, and in melanoma and breast 
cancer cells[77,78]. 

Class Ⅱ PI3Ks are high molecular mass monomers, 
characteristically containing C2 and Phox homology 
(PX) domains that are fundamental for localization at the 
plasma membrane[45-47,79,80]. Their specific mechanism of  
activation and signaling, as well as their physiologic role 
in the regulation of  cellular functions or their involve-
ment in the pathogenesis of  human diseases have only 
recently begun to be elucidated by the research[45-47,79,80]. 
For example, class Ⅱ PI3K-C2α has been demonstrated 
as critically required for endocytosis[81] and for vascular 
integrity[82]. Interestingly, PI3K-C2γ is expressed in the 
exocrine pancreas[83], but its role in this organ remains 
largely unknown. 

Finally, class Ⅲ PI3K includes only one member, 
vacuolar protein sorting 34 (VSP34), which is only able 
to generate phosphatidylinositol 3-phosphate[45-47,80]. The 
physiologic importance of  VSP34 and/or its involvement 
in human pathology are currently unclear[45-47,80]. 

Although very little is known about class Ⅱ and Ⅲ 
PI3Ks, there is increasing interest in developing inhibitors 
of  these two classes for use as anticancer agents[45-48,79,80]. 

ROLE OF PI3Ks IN INFLAMMATORY 
CELLULAR RESPONSES 
The involvement of  PI3Ks in inflammation has been 
recently highlighted by studies using genetic or phar-
macologic inhibition of  different PI3K isoforms[45-47]. 
Genetic ablation of  PI3Kα and PI3Kβ was lethal during 
embryonic development[84,85]; however, PI3Kδ and PI3Kγ 
knock-out mice were viable and mainly showed altera-
tions of  both innate and adaptive immune responses[86-89]. 
Ultimately, those results led to a better characterization 
of  the regulatory role of  these two PI3K isoforms in in-
flammatory pathologies. 

PI3Kγ and PI3Kδ act in partnership to regulate the 
recruitment of  neutrophils and monocyte/macrophages 

to the site of  inflammation and then to coordinate the 
respiratory burst[44-47]. In PI3Kγ-null mice, neutrophils 
and macrophages display reduced migration in response 
to different stimuli that act through GPCRs, such as 
N-formylated peptides (fMLPs), C5a, or IL-8[72,86-88]. In 
addition, in vivo investigation of  a peritonitis mouse mod-
el showed highly impaired leukocyte recruitment[86-88]. On 
the contrary, PI3Kδ appears to be specifically involved 
in regulating the directional neutrophil movement in 
response to chemotactic agents[90,91]. Endothelial activity 
of  both PI3Kγ and PI3Kδ also has a role in regulating 
neutrophil adhesion to inflamed vessel wall[91,92]. At the 
inflammatory sites, PI3Kγ and PI3Kδ also cooperate in 
order to regulate the production of  reactive oxygen spe-
cies; this is a biphasic process in which the initial phase 
is dependent on PI3Kγ activation and is followed by an 
amplification phase mediated by PI3Kδ[86-88,90,91]. 

In addition to the roles of  PI3Ks in neutrophils and 
monocytes, these kinases also regulate fundamental cellular 
functions in mast cells and eosinophils[45-47]. Pharmacologi-
cal inhibition of  PI3Kδ reduces degranulation and cyto-
kine release induced in mast cells by immunoglobulin (Ig)E 
stimulation[93,94] and protects mice from passive cutaneous 
anaphylaxis induced by IgE and antigen injection[93,94]. In 
addition, inhibition of  PI3Kγ decreases adenosine-induced 
mast cell degranulation and resistance to passive systemic 
anaphylaxis[95], demonstrating a specific role for this kinase 
in sustaining and maximizing mast cell degranulation[93,95]. 
Furthermore, PI3Kγ is involved in eosinophil recruitment, 
modulation of  allergen-induced eosinophilic airway inflam-
mation, and airway remodeling[96,97]. 

PI3K activity is also involved in regulation of  the cel-
lular functions of  T and B lymphocytes, the main actors 
of  the adaptive immune response[45-47]. Both PI3Kγ and 
PI3Kδ are considered crucial for T cell development[45-47], 
since knock-out mice for either one or the other kinase 
show reduced numbers of  peripheral T lymphocytes 
and increased ratios of  double-negative (CD4-CD8-) to 
double positive (CD4+CD8+) cells in the thymus[87,98,99]. 
Moreover, PI3Kδ is heavily involved in CD4+ T cell 
maturation and differentiation in distinct T cell sub-
sets[45-47,61], whereas PI3Kγ is involved in T cell receptor-
stimulated proliferation and cytokine production[61,87]. 
PI3Kδ is also involved in the regulation of  B cell matu-
ration and activation[45-47]. PI3Kδ-null mice showed an 
increased proB/preB ratio, which was due to a blockade 
of  the maturation process that occurs between these two 
stages[89,100,101], as well as reduced IgM and IgG antibody 
responses, which were associated with a paradoxical in-
crease in production of  IgE[89,102,103]. In line with these 
critical functions, PI3Kδ and PI3Kγ/δ inhibitors show 
important anti-proliferative activity in different forms of  
human hematologic malignancies, with particular efficacy 
in lymphomas[104].

PI3KS IN INFLAMMATORY DISEASES
PI3Kγ and PI3Kδ have been extensively investigated as 
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injection. In the cerulein-induced model, wortmannin 
administration inhibited early trypsinogen activation, an 
effect associated with reduced redistribution of  cathepsin 
B and intracellular colocalization of  lysosomal hydrolases 
with digestive enzyme zymogens[119]. Moreover, wortman-
nin reduced the extent of  pancreatic edema, neutrophil 
sequestration within the pancreas, acinar cell necrosis, and 
hyperamylasemia in the same model. Wortmannin also re-
duced pancreatic trypsin activity, acinar cell necrosis and 
myeloperoxidase activity in the second acute pancreatitis 
model, which had been induced by retrograde infusion of  
the rat pancreatic duct with the bile salt sodium taurocho-
late. Ex vivo experiments showed that wortmannin and 
LY294002 inhibited cerulein-induced trypsinogen activa-
tion without affecting the changes to the cytoskeleton of  
acinar cells that had been induced by supramaximal ceru-
lein stimulation, in particular the redistribution of  F-actin 
from subapical to basolateral areas[119]. The authors also 
performed experiments aimed to identify which class of  
PI3K was involved in trypsinogen activation during pan-
creatitis, initially directed toward class I PI3K because of  
its known association with GPCRs, such as CCK recep-
tors. However, supramaximal concentrations of  cerulein, 
those that induced ex vivo trypsinogen activation, did not 
increase phosphatidylinositol-3,4-bisphosphate nor PIP3, 
nor did they induce phosphorylation of  Akt/PKB in 
these experiments[119], suggesting that class I PI3K were 
not involved. These results differ from those previously 
reported by another group, which had shown formation 
of  class I PI3K products after stimulation with maximal 
concentrations of  cerulean[120]. On the contrary, both in 
unstimulated and cerulein-stimulated acini, wortman-
nin decreased levels of  the product of  class Ⅲ PI3K, 
phosphatidylinositol 3-phosphate, which is implicated in 
vesicle trafficking and fusion[119]. The authors proposed 
that cerulein-induced intra-cellular trypsinogen activation 
may be a consequence of  perturbed vesicle trafficking 
induced by the accumulation of  the phosphatidylinositol 
3-phosphate class Ⅲ PI3K product in a yet unidentified 
subcellular compartment[119]. 

Subsequent studies by different research groups have 
further analyzed the specific role of  the PI3Kg isoform 
in the pathogenesis of  acute pancreatitis. Gukovsky et 
al[121] used PI3Kγ-deficient mice as well as pharmacologic 
PI3K inhibitors to investigate the role of  PI3K in CCK-
induced responses in isolated pancreatic acinar cells. These 
experiments showed that both PI3Kγ genetic ablation 
and PI3K inhibition greatly diminished the CCK-induced 
calcium response in pancreatic acini by inhibiting both 
intracellular calcium mobilization and calcium influx, 
showing that PI3Kγ is required for pathologic calcium 
responses to CCK hyperstimulation[121]. Further studies 
by the same group demonstrated that PI3Kγ regulates 
calcium signaling in pancreatic acinar cells by inhibiting 
sarco(endo)plasmic reticulum calcium-ATPase[122,123]. In 
addition to its regulatory role on calcium signaling, PI3Kγ 
is also implicated in regulating trypsinogen activation[121]. 
CCK-induced trypsinogen activation was, indeed, reduced 

potential therapeutic targets in autoimmune and allergic 
diseases, and in pathologic conditions where inflamma-
tion has a crucial role for onset and progression[44-48]. 

Blockade of  PI3Kγ by genetic ablation or by using se-
lective pharmacological inhibitors reduces the incidence 
and severity of  disease in the MRL-lpr mouse model of  
systemic lupus erythematous[105] and in two different ex-
perimental models of  rheumatoid arthritis, induced either 
by collagen injection or by transgenic overexpression 
of  human tumor necrosis factor-α[106,107]. Inhibition of  
PI3Kδ also reduces inflammation and bone and cartilage 
erosion in a model of  arthritis induced by the administra-
tion of  arthritogenic serum[108].

Consistent with the role of  PI3Ks in mast cell and 
eosinophil activation[93-97], genetic ablation of  PI3Kγ 
reduces leukocyte infiltration, hyper-responsiveness, 
and airway remodeling in an ovalbumin (OVA)-induced 
model of  asthma[96,97,109]. Similarly, inhibition of  PI3Kδ 
either by genetic ablation or specific inhibitors decreases 
eosinophil infiltration, T helper cell (Th2) cytokine pro-
duction (IL-4, IL-5 and IL-13), bronchiolar inflammation, 
and airway remodeling in the same OVA-induced asthma 
model[110,111]. 

PI3Ks are also involved in the pathogenesis of  car-
diovascular diseases in which inflammation has a relevant 
role, namely atherosclerosis and myocardial infarction[46]. 
PI3Kγ inhibition is effective in reducing plaque size in 
a model of  early-stage atherosclerosis (apolipoprotein 
E-null mice)[112] and in the more aggressive low-density 
lipoprotein receptor knockout (LDLR-/-) model that 
mimics progressive familial hypercholesterolemia[113]. 
Interestingly, transplantation of  bone marrow from 
PI3Kγ-null mice into LDLR-/- mice also reduces plaque 
size[113], indicating that the formation of  atherosclerotic 
lesions is regulated by PI3Kγ expressed by immune cells. 
Moreover, PI3Kγ inhibition has been found to influence 
cellular composition of  atherosclerotic plaques (as sug-
gested by the observation of  a reduction of  infiltrating 
macrophages and T cells) and to increase plaque stabil-
ity[113]. Finally, in agreement with the pathogenic role of  
inflammation in ischemia-reperfusion injury, TG100-115, 
a dual inhibitor of  PI3Kγ and PI3Kδ, reduces infarct size 
and preserves myocardial function in an in vivo model of  
myocardial infarction[114].

PI3KS IN ACUTE PANCREATITIS 
Little is known about the physiological role of  PI3Ks 
in pancreatic acinar cells[115]. However, pharmacologic 
analysis has implicated PI3Ks in cholecystokinin (CCK)-
induced phosphorylation of  p70S6 kinase and focal ad-
hesion kinase and in regulation of  exocytosis[115-118].

The involvement of  PI3Ks in the pathogenesis of  
acute pancreatitis was first demonstrated in a study by 
Singh et al[119] using two unrelated inhibitors of  all PI3K 
isoforms, wortmannin and LY294002, in two different ro-
dent models of  acute pancreatitis, one induced by supra-
maximal secretagogue stimulation and the other by duct 
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by about 60% in pancreatic acini isolated from PI3Kγ-
null mice[121], an effect that may also be partially mediated 
through calcium signaling[121]. Finally, both PI3K inhibi-
tors and PI3Kγ genetic deletion inhibited CCK-induced 
NF-κB activation in vitro, indicating a regulatory role for 
PI3Kγ in the NF-κB response[121]. This result did not 
confirm those previously reported by Singh et al[119] in the 
rat cerulein-induced pancreatitis model; however, in that 
study, NF-kB activation was only measured at one time 
point and only in vivo, not ex vivo[119]. Of  note, CCK-elic-
ited responses in PI3Kγ-null isolated acini were further 
inhibited by LY294002, implicating involvement of  other 
PI3K isoforms[121]. 

Our research group independently studied the effects 
of  genetic ablation of  PI3Kγ on the severity of  acute 
pancreatic damage induced in vivo by supramaximally 
stimulating doses of  cerulein or administration of  a 
choline-deficient, ethionine-supplemented (CDE) diet[124]. 
Although amylase secretion in isolated pancreatic acini 
was not different in PI3Kγ-null mice compared to wild-
type mice, the genetic ablation had significantly reduced 
the extent of  acinar cell injury/necrosis in both models. 
A partial but significant reduction in the extent of  aci-
nar cell injury/necrosis was evident six hours after the 
beginning of  cerulein administration. On the contrary, 
serum amylase levels were not decreased and pancreatic 
water content was even increased in the PI3Kγ-deficient 
mice compared to the wild-type mice. In addition, only 
minimal neutrophil infiltration was seen at time points 
as early as six hours. Therefore, this protective effect can 
likely be ascribed to the lack of  PI3Kγ influence on the 
early intra-acinar cell events, as indicated elsewhere[121]. 
Our study also showed an increase in the number of  
apoptotic acinar cells in PI3Kγ-null mice (identified by 
terminal dUTP nick-end labeling and caspase-3 activity), 
which is consistent with the described protective role of  
apoptosis in acute pancreatitis[125,126]. As we did not ob-
serve any activation of  Akt/PKB, the major effector of  
PI3K survival signaling[127,128], it can be hypothesized that 
PI3Kγ may interfere with other death signaling pathways, 
such as caspase activation, cytochrome c release, or mito-
chondrial depolarization, which have been implicated in 
the direct pro-apoptotic effect exerted by supramaximal 
concentrations of  CCK in pancreatic acini[129].

We also observed a significant reduction of  both 
acinar cell injury/necrosis and neutrophil infiltration 
in PI3Kγ-null mice after prolonged administration of  
cerulein for 13 h[124]. This protective effect may be re-
lated to the ability of  PI3Kg to regulate the neutrophil 
chemotaxis and respiratory burst that follows neutrophil 
activation[44-48] or to enhance neutrophil apoptosis, thus 
favoring the removal of  activated neutrophils from the 
pancreatic tissue[130]. Moreover, cerulein-induced pancre-
atic COX-2 up-regulation, which modulates the course of  
acute pancreatitis[131-133], was also blunted in the PI3Kγ-
null mice, likely contributing to the observed protective 
effect of  genetic ablation[124].

PI3Kg deletion was also found to reduce acinar cell 

injury/necrosis, neutrophil infiltration and lung injury in 
a second model of  necrotizing acute pancreatitis induced 
by administration of  a CDE diet[124]. Furthermore, the 
genetic ablation reduced the mortality rate, indicating 
that PI3Kγ influences the development of  injury to other 
organs, in particular the lungs. Indeed, a recent study by 
another group has shown that the PI3K-Akt pathway 
mediates the protective effect exerted by estrogens on 
lung injury during cerulein-induced acute pancreatitis[134], 
indirectly confirming our hypothesis.  

PI3Kγ is also known to possess scaffold functions 
that regulate cAMP levels[72,135], and it can bind protein 
kinase A (PKA) and different phosphodiesterases[136] to 
control a PKA-mediated negative feedback signal that 
promotes cAMP destruction. Given the importance of  
cAMP elevation in the protection from acute pancreati-
tis[137], it is therefore possible that some of  the effects of  
PI3Kγ are independent of  its catalytic activity. 

CONCLUSION
The activation of  PI3Ks, and in particular of  the class 
IB PI3Kγ isoform, has a relevant role in the biochemical 
events, namely calcium signaling alteration, trypsinogen 
activation, and NF-κB transcription, all of  which are nec-
essary for the initiation of  acute pancreatic injury. The 
ability of  PI3Kγ to modulate acinar cell apoptosis, as well 
as to regulate local neutrophil infiltration and systemic 
inflammatory responses during the course of  acute pan-
creatitis, renders PI3Kγ an ideal therapeutic target. The 
availability of  inhibitors selective for specific PI3K iso-
forms might provide new valuable therapeutic strategies 
to improve the clinical course of  this disease.
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