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Abstract
The small and large intestine of the gastrointestinal 
tract (GIT) have evolved to have discrete functions with 
distinct anatomies and immune cell composition. The 
importance of these differences is underlined when 
considering that different pathogens have uniquely 
adapted to live in each region of the gut. Furthermore, 
different regions of the GIT are also associated with 
differences in susceptibility to diseases such as cancer 
and chronic inflammation. The large and small intes-
tine, given their anatomical and functional differences, 
should be seen as two separate immunological sites. 
However, this distinction is often ignored with findings 
from one area of the GIT being inappropriately ex-
trapolated to the other. Focussing largely on the murine 
small and large intestine, this review addresses the 

literature relating to the immunology and biology of 
the two sites, drawing comparisons between them and 
clarifying similarities and differences. We also highlight 
the gaps in our understanding and where further re-
search is needed.
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Core tip: The small and large intestine of the gastroin-
testinal tract (GIT) have evolved to have different func-
tions and have a distinct anatomy, biology and immu-
nology. Despite this, findings from the small intestine 
are often inappropriately attributed to large intestine 
and vice versa . The importance of these biological dif-
ferences is underlined when considering that different 
regions of the GIT are associated with different infec-
tions and pathologies. This review addresses the litera-
ture relating to the small and large intestine – clarifying 
the similarities and differences between the two sites. 
We also highlight the gaps in our understanding where 
further research is needed.
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INTRODUCTION
The gastrointestinal tract (GIT) is the largest mucosal 
surface in the body; approximately 8.5 m long in humans 
and 30 cm long in mice, with approximately 80% of  this 
compromising of  the small intestine[1-3]. The duodenum, 
jejunum and ileum make up the anterior to posterior 
structure of  the small intestine, with the caecum, colon 
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and rectum comprising the large intestine. As a conse-
quence of  its main role in food processing and nutrient 
extraction, the mucosal surface of  the intestine is at high 
risk from attack by pathogens that contaminate the host’
s food. In addition to thwarting attack from pathogens, 
the intestine is also home to a large number of  com-
mensal microbes (the microbiome) to which tolerance 
must be maintained. Therefore, it is paramount that the 
local immune system strikes an effective balance between 
tolerance and immunity. The large and small intestine 
are anatomically and functionally different and should 
be considered as two separate immunological sites which 
is significant when considering the aetiology and patho-
genesis of  intestinal tract diseases. Regarding infection, 
the small and large intestine are susceptible to different 
pathogens; whipworm species such as Trichuris trichuria 
(human) or Trichuris muris (T. muris)(mouse) and Clostridi-
um difficile colonise the large intestine whereas Ancylostoma 
duodenale (human), Ascaris lumbricoides (human), Heligmo-
somoides polygyrus (mouse), Trichinella spiralis (human and 
mouse) and Norovirus infect the small intestine. Similar 
distinctions are seen in allergy and autoimmunity; Coeliac 
disease is restricted to the small intestine and ulcerative 
colitis to the large intestine whereas Crohn’s Disease af-
fects any region of  the gastrointestinal tract (GIT). More-
over, cancer of  the small intestine is rare whereas colon 
cancer is more common (2.4 patients per 100000 com-
pared with 54 per 100000 respectively)[4]. Appreciating the 
immunological heterogeneity between the small and large 
intestine can provide answers to why this spectrum of  
disease along the GIT is apparent. Furthermore, a greater 
understanding of  the cellular diversity within the GIT 
aids in the development of  region-specific therapeutic 
targets for inflammatory bowel diseases and allergy. This 
review aims to highlight the differences and similarities 
between the small and large intestine of  mice discussing 
both architectural and immune components.

INTESTINAL EPITHELIAL CELLS
The large and small intestine are lined with a single layer 
of  columnar epithelial cells that are linked via complexes 
of  junctional proteins and desmosomes creating a sealed 
yet dynamic barrier[5]. Enterocytes and enteroendocrine 
cells are found throughout the GIT and are involved in 
nutrient and water absorption[6] and hormone produc-
tion[7]. The base of  the crypts in the GIT contain undif-
ferentiated stem cells from which progenitor cells are 
derived[8-10] and develop into any of  one of  four major 
differentiated epithelial cell types; enterocytes, Paneth 
cells, goblet cells, enteroendocrine cells[6]. Leucine-rich 
repeat-containing G protein-coupled receptor 5 stem 
cells are intermingled with Paneth cells in the small intes-
tine supplying necessary signals for the stem cell niche[11]. 
However, there are distinct cellular features between 
small and large intestinal epithelial cells (EC) that have 
evolved out of  the need to perform different digestive 
processes. Small intestine EC play a critical role in nutri-

ent absorption that is reflected in their unique structure. 
In addition to the small intestinal epithelium being folded 
in such a way to create the crypts of  Lieberkühn, it is fur-
ther adapted with finger-like projections called villi thus 
collectively increasing the surface area for maximal nutri-
ent absorption (Figure 1). Furthermore, villous EC are 
striated with numerous actin-rich microvilli that further 
maximise their surface area. In contrast, the large intes-
tine, which is primarily involved in water absorption and 
fermentation, has EC which lack villi.

 Although the primary role of  the villi is nutrient ab-
sorption, they are also intimately associated with immune 
cells (described below), highlighting their role in immu-
nity. The different functions of  the small and large intes-
tine place different demands on the immune system. For 
example, most protein antigens are taken up in the small 
intestine by specialised cells including Microfold or “M” 
cells. M cells transcytose luminal particulate antigens, ef-
fectively passing them onto underlying immune cells. M 
cells are most abundant overlying the Peyer’s patches of  
the small intestine but have also been described in the vil-
lous epithelium[12]. In the large intestine, M cells are less 
numerous and are usually associated with isolated lym-
phoid follicles and colonic patches[13]. 

ANTI-MICROBIAL PROTEINS
In addition to processing antigens, the intestinal epi-
thelium plays a direct role in innate mucosal defence via 
production of  anti-microbial peptides (AMPs). The re-
quirement for different types of  AMPs varies along the 
GIT reflecting the need to respond to different commen-
sal and pathogenic microbes that colonise the GIT[14-17]. 
Paneth cells, a specialized lineage of  cells unique to the 
small intestine, are a major source of  AMPs including 
α-defensins (also called cryptdins in mice)[18], lysozyme, 
ribonucleases [such as angiogenin 4 (ANG4)], secretory 
phospholipase A2[14,16,17] and C-type lectins [such as the 
regenerating islet derived protein (REG3) family][19,20]. 
AMPs are thought to act as mediators in host defence 
against pathogens[21] and in shaping the microbiome com-
position for the maintenance of  homeostasis[14,22]. AMPs 
such as REG3γ and REG3β promote spatial segregation 
of  microbial populations from the epithelial surface of  
the small intestine[15,20]. AMPs also help shape microbial 
diversity and thus may contribute to the relatively low 
bacterial burden in the duodenum compared with the 
large intestine[23]. In addition to the production of  AMPs, 
Paneth cells may directly recognise pathogens via pattern 
recognition receptors enabling them to initiate innate im-
mune responses[17,20,23,24].

 The unequal distribution of  Paneth cells along the 
GIT, however, is not the sole factor participating in the 
differential arsenal of  antimicrobial proteins between 
the small and the large intestine. Enterocytes along 
the entire GIT can be induced to express a distinct 
group of  AMPs[16,17]. Enterocytes in the small intestine 
stimulate the production of  REG3γ and REG3β[19,20], 
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whereas those in the large intestine drive the synthesis of  
β-defensins[25] and cathelicidins[26]. As well as differences 
between the large and small intestine, within the large in-
testine there is also a different AMP profile between the 
proximal and distal gut which may be related to different 
microbial composition[27].

Goblet cells exhibit a non-homogenous distribution 
along the intestinal epithelium, and are more abundant 
in the large intestine. They release a panel of  bioactive 
compounds including mucins, AMPs [such as resistin-like 
molecule β (Relmβ; also known as FIZZ2)[28], ANG4[29], 
REG3γ and REG3β[27]] and trefoil peptides[30] that further 
contribute to innate immune defence. REG3γ expression 
is minimal in the large intestine compared to the small in-
testine[15,20]. In contrast, Relmβ is expressed mainly in the 
large intestine and only a small amount is present in the 
normal terminal ileum and there is no Relmβ expression 
in the other areas of  the small intestine[28]. Relmβ may 
exert a function analogous to REG3 proteins in the small 

intestine, keeping bacteria at a distance in the large intes-
tine[15]. The prevalence of  different AMPs at distinct sites 
of  the GIT is due to both the distinctive primary cellular 
source but also due to different expression profiles of  
the same cells (enterocytes or goblet cells) in the different 
regions.

Alterations in microbial composition, due to physio-
logic[27,31] or pathologic states[32,33], as well as alterations in 
bacterial-epithelial interaction[27] can also change AMP ex-
pression patterns. The intricate cross talk between AMP 
expression and the microbiome generates a feedback 
loop, where AMPs can influence microbiome structure 
and microbes themselves can direct AMP synthesis[14,15]. 
Strikingly, short chain fatty acids, products of  bacterial 
fermentation of  dietary fibres and/or host mucin glycans 
can drive the expression of  AMPs on colon epithelial 
cells[34], emphasizing the impact of  bacterial metabolites 
on AMP site-specific expression. AMPs are concentrated 
within the mucus layer overlying the intestinal epithe-

15218 November 7, 2014|Volume 20|Issue 41|WJG|www.wjgnet.com

Figure 1  Schematic representation of the structural and cellular heterogeneity within the small and large intestine during homeostatic conditions. The 
small (A and C) and large (B and D) intestine differ greatly in their structure and cellular composition. The small intestinal epithelium is folded to create crypts of Li-
eberkühn, has finger-like projections called villi and epithelial cell possess striated microvilli (A) whereas the large intestine (B) has crypts and lacks villi. The small in-
testine has Peyer’s patches, the main site of Microfold or “M” cells that transcytose luminal particulate antigens that are rare in the larger intestine. Both the small and 
large intestine are covered by mucus, which is much thicker in the large intestine (B) than in the small intestine (A). The large intestine houses the largest and most 
diverse microbial populations of the two sites (B). Anti-microbial peptides are also differentially expressed along the gastrointestinal tract. The distribution of immune 
cells also differ in the small and large intestine (inset C and D) with Natural killer T cells, Intraepithelial lymphocytes (IEL), eosinophils and dendritic cells found in the 
highest numbers in the small intestinal epithelium under steady state conditions. Cell populations are defined in the key.
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polysaccharides[47]. Thus, mucus functions not only as a 
barricade of  enteric microorganisms, but also plays a role 
in the determination of  bacterial composition alongside 
AMPs and sIgA. 

The essential role of  mucins in GIT health is dem-
onstrated by reports showing the severe pathologies that 
develop in MUC-deficient animals[48-52]. Furthermore, de 
novo induction of  MUC5AC in the mouse large intestine 
plays a key role in resistance to intestine nematode infec-
tion[53]. The mucin barrier responds dynamically to mi-
crobial signals and the immune response with an impact 
on mucin biosynthesis rate, secretion and glycosylation 
profiles[36,54,55]. Further research on the dynamic mucin 
changes during infection and inflammation is warranted 
to shed more light on mucus function and the potential 
for different roles in the small and large intestine. 

GIT MICROBIOTA AND MICROBIOME 
The microbiota is the community of  commensal, symbi-
otic, and pathogenic microorganisms that reside within 
the GIT with the combined genetic material of  these 
microorganisms comprising the microbiome. The mi-
crobiota consists of  approximately 500-1000 bacterial 
species[56-59] yet represents a small fraction of  the known 
bacterial phyla. The most abundant phyla are Bacter-
oidetes and Firmicutes; however, species belonging to 
other phyla such as Proteobacteria and Actinobacteria are 
also encountered[22,60,61]. The GIT microbiota increases 
longitudinally along the GIT[59,62] with 1010-1011 bacteria 
per gram of  intestinal contents in the large intestine but 
only 103-104 bacteria per gram of  intestinal content in 
the duodenum and jejunum[63]. The bacterial density and 
abundance also increases transversely from the mucus 
to the lumen[62]. Additionally, the composition of  the gut 
microbiome varies along the length of  the gut depending 
on the intestinal site and specific niches[61,64]. For example, 
Firmicutes and, more specifically the families Lachno-
spiraceae and Ruminococcaceae are more prevalent at 
mucosal surfaces of  the large intestine compared to the 
lumen[65]. The reasons for these differences include the 
slow transit time, changes in oxygen tension along the 
GIT, and the action of  secreted factors including gastric 
acid and bile salts in the small intestine[66-68]. Moreo-
ver, the microbiota of  the small intestine is adapted to 
process simple carbohydrates whereas large intestinal 
microbial communities efficiently degrade complex 
polysaccharides[69]. Among the multiple factors that can 
sculpt the GIT microbial architecture, diet and metabolic 
requirements have a major role in the microbiome differ-
ences throughout the GIT[70-72]. Interestingly, ileal micro-
biota display a relative instability over time in humans[73], 
whereas most bacterial strains of  the large intestine reside 
for most or a lifetime[74]. Data in mice are lacking regard-
ing the temporal variability of  microbial populations in 
different sites.

The disparity in microbial communities inhabiting dif-
ferent niches of  the gut is reflected by disparate mucosal 

lium[35] (Figure 1).

MUCUS AND MUCINS
Mucus functions as a physical, chemical and immuno-
logical barrier and is enriched in mucin glycoproteins[36], 
nonspecific AMPs[37] and secretory immunoglobulin A 
(sIgA) and G (IgG)[36]. Mucins are the major structural 
components of  mucus, which comprises a family of  17 
mucins[38] and are produced in the GIT as either mem-
brane bound or secreted. In the small and large intestine, 
the mucus layer consists of  secreted MUC2 and smaller 
amounts of  transmembrane MUC1, 3A/B, 4, 12, 13, 15 
and 16[36]. In the large intestine the mucus layer is ap-
proximately four-fold thicker than that of  the duodenum 
and jejunum[39].

The mucus barrier consists of  two layers; a thinner 
inner “firm” mucus layer, which is physically difficult 
to dislodge and is considered devoid of  bacteria, and a 
thicker outer “loose” mucus layer, in which anaerobic 
microbiota may reside[40]. There is a debate in the litera-
ture regarding the presence of  a firm mucus layer in the 
small intestine. Atuma et al[39] have shown the existence of  
a firm and loose mucus layer throughout the gut (including 
both the small and large intestine) with the mucus layer 
of  the large intestine characterized by a more substantial 
layer of  “firm” mucus. However, recent findings indi-
cate that MUC2 forms a single soluble mucus gel in the 
small intestine, which is not attached to the epithelium 
and is penetrable to bacteria[41,42]. The absence of  a firm 
organized mucus in the small intestine may allow direct 
antigen sampling by dendritic cells (DCs) conditioning 
them to a tolerogenic state, highlighting the importance 
of  MUC2 in gut homeostasis[42]. The novel finding that 
MUC2 alone or coupled with bacterial antigens can de-
liver immunoregulatory signals both to underlying DCs 
and intestinal ECs advances the concept of  the role of  
mucus as a barrier. Despite the recent advances on mucus 
research, there is much we do not know about the organi-
zation of  mucus network in the small and large intestine 
and how AMPs may modulate it. Recent evidence that 
Reg3γ affects the distribution of  mucus in the ileum but 
not in colon[43] raises important questions regarding the 
effects of  AMPs on mucus structure given the unequal 
distribution of  AMPs along the GIT. 

A distinguishing feature of  mucins is their heavy 
glycosylation, which is determined by the expression 
pattern of  glycosyltransferases[36,41]. A disparity in mu-
cin glycan content is evident between different sites of  
the GIT[44] and, in fact, in adjacent crypts or even in the 
same crypt[36]. Sialylated and sulfated glycans dominate 
the small intestine, whereas fucosylation is prevalent in 
the large intestine[44]. The mucin glycosylation profile may 
affect bacterial composition, providing potential adhe-
sion sites[45] as well as bacterial energy sources[46]. Mice 
deficient in fucosylation of  mucins exhibit an altered 
microbial structural configuration and expression profile 
in a manner dependent on the availability of  diet-derived 
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immune responses, which are time and region dependent. 
Immune tolerance in response to the gut microbiome is 
established earlier in the large intestine compared with 
the small intestine[15]. Also, different bacteria strains can 
have different effects on host immune responses in dif-
ferent parts of  the gut[75]. Administration of  the probiotic 
Lactobacillus salivarius UCC118 elicits regulatory T cell re-
sponses in the small intestine, whereas, it activates inflam-
matory responses in the large intestine[75].

Differences in bacterial colonisation of  the GIT im-
pact on functionality in three ways: structural, protective, 
and metabolic. Due to the larger microbial load of  the 
large intestine, there is likely to be a greater pressure on 
maintaining a structural barrier with a thicker mucus layer 
and abundant goblet cells[40]. As the presence of  a firm 
mucus layer in the large intestine prevents direct contact 
between the microbiome and EC[40] then bacteria/epi-
thelial cell crosstalk may be more prevalent in the small 
intestine. However, there may be non-cognate interac-
tions with epithelial cells that are mediated via bacterial 
products or secretions which given the greater density of  
bacteria in the large intestine may be of  greater signifi-
cance in this region of  the GIT. Isolated large intestine 
EC can distinguish between different commensal bacteria 
by secreting different chemokines[76] and thus may con-
tribute directly to homeostasis. In terms of  protection, 
the GIT microbiome can resist colonisation by patho-
gens by direct competition for nutrients and space and/
or via production of  microbicidal compounds[32]. The 
microbiome and its associated metabolites[77] play addi-
tional roles in resistance against infection by for example, 
priming immune cell function[78-80] and by promoting the 
development and/or regulation of  innate lymphoid cells 
(ILCs)[62,81,82] and, specifically in the ileum, Th17 cells[83-85]. 
Conversely, the immune system also helps shape the 
composition of  the microbiome[86]. It can be inferred, 
therefore, that changes in the microbiome along the GIT 
contribute to differences in the types and function of  im-
mune cells throughout the GIT. 

IMMUNE CELLS OF THE GIT
The GIT contains the largest immune system in the body 
and is densely populated with many different immune 
cells. The greatest density of  immune cells resides in the 
small intestine, which is perhaps not surprising given its 
absorptive function. Throughout the GIT differences in 
the make-up and functionality of  immune cells are ob-
served with many aspects of  their function, particularly 
in the large intestine, not fully understood. 

DCS AND MACROPHAGES 
Mononuclear phagocytes can be subdivided into mac-
rophages or dendritic cells, however, there has been ex-
tensive debate as to what distinguishes the two[87,88]. The 
extent of  macrophage and DC heterogeneity within the 
large and small intestine is considerable (Table 1 and Fig-
ure 2), presumably reflecting the anatomical and physi-

ological differences in the two sites. Data to date shows 
that DCs are more abundant in the small intestine. Nev-
ertheless, DCs in the large intestine are functionally im-
portant to intestinal health as their absence or depletion 
can result in severe pathology and tissue destruction[89].

DCs can be classified as conventional, inflammatory 
or plasmacytoid based upon the differential expression 
of  key surface markers and their functional characteris-
tics. There are clear regional differences of  DC subtypes 
throughout the GIT, which may be of  functional signifi-
cance. Conventional lymphoid resident DC (CD11chigh, 
MHCIIhigh CD64-)[90] do not migrate or present antigen 
to T cells within their local environment and can be 
grouped into CD8α+, CD11b+ and CD8α-CD11b- DCs 
which within the small intestine are located in Peyer’
s patches[91,92]. In the lamina propria (LP) of  the small 
intestine CD11b+CD8α- DCs are the most abundant[93]. 
CD8α-CD11b- DCs have been identified in regions of  
the large intestine[94], although CD11chiCD11b-CD8α+ 
lymphoid DCs have not been identified in homeosta-
sis[93,94]. Furthermore, whereas in the small intestine, DC 
are readily observed near the epithelium and are able to 
rapidly respond to damage or infection, in the large intes-
tine DCs are rare in the LP and need to be recruited to 
the site of  infection or injury[94,95]. 

Interestingly within the small intestine, approxi-
mately 80% of  the CD11chi LP DC express CD103[93] 
which have been shown to induce FoxP3+ Treg devel-
opment[96,97] and also the up-regulation of  gut homing 
receptors on lymphocytes which is in part mediated by 
retinoic acid[98-101]. Although this function was originally 
thought to be unique to DCs of  the small intestine, DCs 
in the large intestine can also induce expression of  the 
GIT homing receptor α4β7 on T cells[102]. To add further 
complexity, CD103+ DCs can be divided into CD103+ 
CD11b+ and CD103+ CD11b- subtypes with the latter 
being more abundant in the large intestine[103]. Conven-
tional CD103+ CD11b+CD8α- DC have a migratory phe-
notype and are thought to sample antigen in the small 
intestine under steady state conditions and contribute 
to immune tolerance. They are thought to lack expres-
sion of  the macrophage markers CX3CR1 (Fracktalkine 
receptor) and F4/80 and are rare in the steady state large 
intestine[95].

The behaviour of  monocyte-derived inflammatory 
DCs appears to be comparable in both the small and 
large intestine. They accumulate in the large and/or small 
intestine in infection[104] and inflammation[105], for example 
in T cell-mediated colitis and Toxoplasma gondii infection. 
In the small intestine plasmocytoid B220+ CD11cintermediate 
DCs are found in the LP in relatively low numbers but 
higher than that seen in the large intestine where they 
primarily reside in lymphoid follicles[94], representing less 
that 5% of  DCs. 

The identity of  cells expressing CX3CR1 and their 
functional significance is again controversial. In the 
murine small intestine and in particular the jejunum, 
CX3CR1+ cells can produce transepithelial dendrites that 
extend through the epithelial barrier and directly sample 

Bowcutt R et al . Heterogeneity in the GIT



15221 November 7, 2014|Volume 20|Issue 41|WJG|www.wjgnet.com

luminal contents[106-108]. However, the phenomenon of  
transepithelial dendrites in the large intestine may be a 
rare or transient event[95]. It was originally thought that 
these cells were static in the epithelial layer although more 
recent data has suggested that these CX3CR1hi cells are 
also capable of  migration[109]. Recently it has been dem-
onstrated that CX3CR1+ cells are a heterogeneous popu-
lation expressing varying levels of  CX3CR1[90] calling for 

a re-evaluation of  the data surrounding CX3CR1+ cells, in 
particular, analysis of  the expression levels of  CX3CR1 

and CD64 to distinguish between macrophages and DC. 
In addition to CX3CR1, macrophages can be further 

defined by expression of  CD11b, F4/80 and CD64[90]. 
In the large intestine CD11b+F4/80+ macrophages pre-
dominantly reside within the LP and are rarely found as-
sociated with the epithelium in naïve animals[110] whereas, 

Table 1  Immune cell populations within the small and large intestine

Cell type Small intestine Large intestine Ref.

Dendritic/macrophage 
Cells
Conventional DCs 
(CD11chigh MHCIIhigh 
CD64-)
   CD11b- CD8α+ Yes. Peyers Patches (PP) Not readily detected but have been identified after 

the use of Flt3 ligand
[93]

   CD11b+ CD8α- Yes. PP, Lamina Propria (LP), and express CD103) Yes. Isolated Lymphoid Follicles (ILF) and Colonic 
Patches. LP but scarce

[91,92]

   CD11b- CD8α- Yes. PP Unknown [91,92,94]
   CD103+ Yes Yes. CD103+CD11b- are more abundant [91,92]
Monocyte derived DCs
   Gr1+ CD11c+

   plasmacytoid DCs
Yes. Upon inflammation Yes Upon inflammation [104,105]

   CD11cintBB20+ 
   plasmacytoid DC

Yes. Small populations in LP Yes ILF but rare [93,95]

   CD11b+ F4/80+ Yes. Intraepithelial lymphocytes (IEL) and lamina 
propria lymphocytes (LPL)

Mainly LPL, IEL are scarce [110,193]

Macrophages
   CX3CR1+ Yes Production of transepithelial identified. Higher 

frequencies in the jejunum. Fewer in ileum
Yes Production of transepithelial dendrites uncertain [95,106-108,194,195]

Other innate cells
   Eosinophil High numbers in steady state located below 

epithelium and in LP. Highest numbers are found in 
duodenum. High numbers of CD22+ eosinophils

High numbers in steady state located below 
epithelium and in LP. Low numbers of CD22+ 

eosinophils

[130-133,137,196]

   Basophils LP following infection, draining lymph node Draining lymph node [121-123]
   Mast cells Mucosal mast cells located close to the epithelium Mucosal mast cells located close to the epithelium [140]
   NK cells IEL and lymph nodes (LN) IEL unknown, LN [149,197]
   NKT cells IEL IEL, LPL [189,191,192]
   Innate lymphoid cells Nuocytes: Epithelium 0.2% of total cells and 

mesenteric lymph node (MLN)
Unknown [151]

Innate type 2 helper (Ih2): MLN peritoneum Unknown [153]
Multipotent  progenitor (MPP) type2: PP, MLN Caecal patch [155]

Natural helper cell: fat associated lymphoid cluster in 
helminth infection

Unknown [198]

T cells
IEL cells

1 T cell per 5-10 epithelial cells 1 T cell per 40 epithelial cells [176]

Proximal Mid Distal [199]
   αβ T cells    59%  60%  78%  64%
   DN      1%    1%    1%  20%
   CD4      6%    7%  15%    7%
   CD8αα    43%  32%  20%  58%
   CD8αβ    46%  54%  57%  12%
   gd T cells    41%  40%  22%  36%
   DN    15%  17%  17%  69%
   CD4 0.15% 0.2% 0.3% 0.2%
   CD8αα    83%  82%  82%  30%
   CD8αβ   0.3% 0.5% 0.4% 0.2%
LPL cells
   Th17 10%-15% of CD4+ cells 2%-3% of CD4+ cells [83]
   Regulatory T cells 50% of regulatory T cells are Tr1-like cells, 50% are 

FoxP3+ cells
Almost devoid of Tr1-like cells and 90% of regulatory 

T cells are Foxp3+
[182]

B cells
   IgA+ Yes LP and in Peyer’s patches Found in small numbers
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in the small intestine macrophages are found closely 
associated with overlaying enterocytes[87]. In the resting 
mouse colon, most F4/80+CD64+CD11b+ macrophages 
express unusually high levels of  CX3CR1, but there is 
also a significant population of  CX3CR1int cells that ex-
pands preferentially in inflammation. It has recently been 
determined that these cells represent stages in a single 
differentiation continuum from lymphocyte antigen 
6C monocytes to mature CX3CR1hi macrophages[90,111]. 
Importantly, there are no known differences in macro-
phage subset proportions between the small and large 
intestines[111]. Macrophages exist in different activation 
states including classical and alternative, based upon the 
cytokines they are exposed to[112]. Alternatively activated 
macrophages have been shown to be important in small 
intestine pathogens such as the helminth Heligmosomoides 
polygyrus[113] but do not appear to play a direct role in the 
response to large intestine parasite T. muris[114]. Whether 
this contrast is due to the different helminths or a differ-

ential role in the small vs the large intestine is not known. 
It will be interesting to see if  differences between the 
small and large intestinal monocyte/macrophage lineages 
become apparent as more research is done in this emerg-
ing area of  research.

NEUTROPHILS
Neutrophils are an essential component of  innate immu-
nity and host defence. They initiate innate immunity as 
well as directly kill pathogens via the release of  extracel-
lular “traps”[115], contribute to inflammation by producing 
interleukin (IL)-17 and IL-23[116], and may act as profes-
sional antigen presenting cells in promoting Th1 and 
Th17 differentiation[115]. Neutrophils are rare in the in-
testine although their expansion in response to infection 
or injury is a hallmark feature of  GIT diseases including 
inflammatory bowel disease (IBD)[117], colorectal carci-
noma[118], coeliac disease and infection[119]. The microbiota 

CD11b- CD8α+

CD11b+ CD8α-

CD11b- CD8α-

CD103+

CX3CR1+

Gr1+ CD11c+

Plasmacytoid DC

F4/80+ CD11b+

Small intestine Large intestine

Homeostasis                            Inflammation                                      Homeostasis

Peyer’s patch
Lymphoid follicle

A B

Figure 2  Schematic representation of the distribution of dendritic cell and macrophage subset in the small and large intestine under homeostatic condi-
tions and upon inflammation. In homeostasis dendritic cells (DCs) and macrophages are found in close contact with the epithelium in the small intestine (A) where-
as in the large intestine they are rare and in the LP (B) and are recruited in response to inflammatory stimuli. Within the small intestine lymphoid resident DC (CD11chigh, 
MHCIIhigh CD64-) can be grouped into CD8α+, CD11b+ and CD8α-CD11b- DCs, which are located in Peyer’s patches. In the lamina propria (LP) of the small intestine 
CD11b+CD8α- DCs predominate. CD8α-CD11b- DCs have been identified in regions of the large intestine, including the ILFs, but CD11b-CD8α+ DCs are rarely found 
during homeostasis. Plasmacytoid B220+ CD11cintermediate DC are present in very low numbers in the LP of the small intestine and ILFs of the large intestine. In the small 
intestine CX3CR1+ cells can produce transepithelial dendrites that extend through the epithelium to directly sample luminal contents. This has not been demonstrated 
in the large intestine during homeostasis. In addition to CX3CR1, macrophages can be further defined by expression of CD11b, F4/80 and CD64. Upon inflammation, 
Gr1+ monocyte-derived inflammatory DCs accumulate in both the small and large intestine.
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may play a role in neutrophil expansion in ulcerative coli-
tis and infection[117,120]. Data on regional differences along 
the GIT are lacking. Given the importance of  neutrophils 
in effector immunity and their prominence in chronic 
inflammatory conditions it would be important to know 
if  there are regional or functional differences in the neu-
trophils along the GIT that are of  relevance to mucosal 
immunity and injury.

BASOPHILS
Basophils are uncommon or absent in the small intesti-
nal mucosa, although they accumulate in high numbers 
in the LP of  the small intestine following Nippostrongylus 
brasiliensis (N. brasiliensis) infection[121]. Furthermore, they 
are recruited to the draining lymph node during helminth 
infections and have a role in the development of  type 2 
responses[122,123]. The presence of  basophils in the large 
intestine is not known, although one study suggests a role 
for basophils in the expulsion of  the large intestinal para-
site T. muris[123] implying the possibility of  their presence 
or (transient) recruitment to the large intestine[123]. Several 
studies also suggest that basophils have the ability to 
present antigen[123,124]. Given the potential importance of  
basophils both in potentiating type 2 immunity it would 
be interesting to determine whether there are differences 
in basophil function along the GIT. 

EOSINOPHILS
Eosinophils have multiple roles including supporting 
plasma cell function[125], recruitment of  DCs[126] and regu-
lation of  obesity[127] with the GIT containing the largest 
number of  eosinophils in the body under steady state 
conditions[128,129]. Within the GIT the duodenum con-
tains the largest population of  eosinophils[130]. In both 
the small and large intestine eosinophils reside primarily 
in the LP and submucosa with some being detected in 
the villi of  the small intestine[130]. Eosinophilia is seen in 
response to infection and in inflammation of  both the 
large[131,132] and small intestine[133]. Circulating eosinophils 
are recruited to the GIT by different mechanisms with 
steady state recruitment to the large intestine dependent 
on I-CAM1[134] and small intestine recruitment involving 
α4β7

[135]. Additionally during inflammation, β7 and α4β1 

integrins are important in recruitment to the small and 
large intestine, respectively[136]. Eosinophil populations 
within the GIT can be distinguished phenotypically with 
CD22+ eosinophils being most frequent in the jejunum 
and rarest in the large intestine[137]. The functional signifi-
cance of  these phenotypic variants is however not known 
although the increased frequency of  eosinophils in the 
small vs the large intestine implies they may be of  greater 
functional significance in this region of  the GIT, at least 
in the steady state.

MAST CELLS
Mast cells are major effector cells in the immune response 

to infection, driving pro-inflammatory responses via the 
release of  inflammatory mediators and recruitment of  
other immune cells[138,139]. They are long-lived cells and 
enriched at barrier surfaces including the skin and in-
testinal mucosa[138]. Mast cells are resident cells in both 
the large and small intestine and mastocytosis is often a 
feature of  GIT infection and inflammation. Two types 
of  mast cell have been identified in the murine small and 
large intestine based upon differential expression of  mast 
cell proteases (MCP): Mucosal m-MCP1+ and m-MCP2+ 
cells that reside close to the epithelium and connective 
tissue mast cells that express mMCP4, mMCP5, mMCP6 
and mMCP7 that are within the submucosa[140]. Mucosal 
mast cells produce lower levels of  histamine and high 
amounts of  cysteinyl leukotrienes compared with con-
nective mast cells. Mast cells are critical cells in the expul-
sion of  the small intestinal helminth Trichinella spiralis[141] 
whereas their role in resistance to the related large intesti-
nal dwelling helminth T. muris infection is less clear[139,142] 
and presumably reflects functional differences between 
mast cells in the small and large intestine. Mast cells may 
also play a role in the pathophysiology of  food allergy, 
cancer, irritable bowel syndrome and inflammatory bowel 
disease[143,144]. Mast cells may also contribute to altering 
intestinal permeability. It is known that mucosal mast 
cells can enhance epithelial barrier permeability in the 
small intestine[145] and mastocytosis is a feature of  IBD, a 
hallmark feature of  which is increased intestinal perme-
ability. However, in the large intestine, which has a higher 
baseline epithelial resistance, a role for mast cells in me-
diating increased permeability is less likely[146]. Whether, 
these conflicting observations in permeability reflect the 
fact that mast cells are functionally different along the 
GIT or there are differences in mast cell subset function 
in homeostasis vs disease is not known, and is worthy of  
further investigation. 

ILCS 
ILCs are a newly identified member of  the lymphoid 
lineage that are capable of  producing type 1, type 2 and 
Th17 cytokines yet do not express any of  the cell surface 
markers associated with other immune cell lineages[147,148]. 
Three groups of  ILCs have been described based prima-
rily upon their cytokine profiles. 

Group 1 ILCs produce Interferon (IFN)-γ[147] with 
the prototypical member being Natural killer (NK) cells 
that comprise about 2% of  small intestinal epithelia-
associated lymphocytes in both lymphocyte-replete and 
-deficient mice[149]. Although NK cells increase in the 
draining lymph nodes in response to infection in the 
large intestine[149] their exact number and distribution in 
the large intestine are currently unknown. As well as NK 
cells IFNγ-producing non-cytotoxic ILC1s have been 
described which are more prevalent in the small intestine 
than the large intestine[150].

Group 2 ILCs produce Th2 associated cytokines 
following stimulation and require IL-7 for their develop-
ment[147] and include natural helper cells, nuocytes and 
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IH2 cells. However, it is not clear if  these populations 
represent one cell type or are distinct and stable subsets 
of  group 2 ILCs[147]. All of  these ILCs are scarce in naive 
mice[151] therefore differences between intestinal regions 
under steady state conditions are hard to analyse. The ILC 
populations are elicited after small intestinal helminth in-
fection[151-153] with, nuocytes being the predominant IL-13 
expressing cell type within the mesenteric lymph node and 
small intestine after N. brasiliensis infection[151]. Similarly, in 
the large intestine, nuocytes are the main IL-13 produc-
ing cell type during experimental colitis[154]. Differences in 
the infection models driving inflammation however make 
it difficult to compare the populations directly following 
infection in the small and large intestine. 

A multipotent progenitor like cell cell has been de-
scribed which gives rise to cells of  the monocytes/mac-
rophage and granulocyte lineage[155]. These cells expand 
under the influence of  IL-25 and are found within Peyer’
s patches of  the small intestine and the caecal patch of  
the large intestine[156]. In the small intestine these cells 
expand in response to N. brasiliensis infection and in the 
large intestine they expand in response to T. muris[156], and 
have been shown to have important roles in promoting 
Th2 cytokine responses to helminth infections in both 
the small and large intestine. 

Group 3 ILCs produce IL-17A and/or IL-22[147] with 
the prototypical members being LTi cells. Recently, an-
other subset of  group 3 ILCs has been identified that is 
crucial for the IL-22-mediated innate immune response 
against intestinal bacterial pathogens including Citrobacter 
rodentium[157]. Depletion of  these IL-22 producing cells re-
sulted in systemic inflammation and bacterial dissemina-
tion which could only be rescued by exogenous IL-22[143]. 
This population is primarily located in the LP of  the 
intestine being three times more frequent in the small in-
testine than the large intestine[157]. 

Based upon the experimental evidence obtained to 
date, ILCs may play an important role in GIT barrier de-
fence and perhaps intestinal inflammation; however more 
work needs to be done in this newly identified population 
of  cells and differences between the small and large in-
testine are still emerging.

B LYMPHOCYTES AND IGA
B cells play a key role in adaptive mucosal immune re-
sponses via antibody production. In the GIT, IgA secret-
ing plasma cells represent the major pathway to blocking 
pathogen invasion. The GIT contains the largest number 
of  IgA-producing plasma cells, which collectively pro-
duce and secrete 3-5 mg of  antibody into the lumen each 
day[158]. IgA producing plasma cells are enriched in the LP 
of  the small intestine but are found in smaller numbers 
in the large intestine LP (our unpublished observations). 
There are regional differences in the distribution of  B cell 
follicles that contain IgA producing B cells. In the small 
intestine they reside within the Peyer’s patches whereas 
in the large intestine they reside in isolated lymphoid fol-
licles, although they are rarely seen, further emphasising 

differences in antigen presentation across the GIT. The 
mechanisms driving IgA production in the small and 
large intestine may overlap, particularly with regard to 
the role of  the intestinal microbiota. In the small intes-
tine the microbiota elicits IgA production, which leads 
to the development of  gut-associated lymphoid tissue 
(GALT)[159,160]. Conversely, IgA can supress the growth of  
commensal bacteria[161]. In the large intestine, Bacteroides 
acidifaciens, a member of  the microbiota has been shown 
to promote IgA production[162] but its not known whether 
this commensal drives GALT development.

T LYMPHOCYTES
In the GIT T cells are compartmentalised into the GALT, 
the LP, and the epithelium where they reside as epithelia-
associated lymphocytes or intestinal intraepithelial lym-
phocytes (iIEL)[163]. Different mucosal T cell subsets re-
side in the different compartments of  the GIT and there 
are striking differences in the distribution and function 
of  iIEL subsets in the small vs large intestine iIEL, which 
has been extensively reviewed elsewhere[164-167] and will 
not be discussed in any detail here.

iIELs that express the integrin CD103[168-172] are in 
close contact with the intestinal epithelium and contrib-
ute to the maintenance of  barrier integrity[170,173-175]. They 
are highly heterogeneous, comprising many different sub-
sets that exhibit distinct regional differences throughout 
the GIT (Table 1). iIELs can be divided into two main 
groups, induced IELs (type A) that arise from conven-
tional T cells and become activated in the periphery, and 
natural iIELs (type B) that develop in the thymus[164,165,176]. 
Both types of  iIELs can be further divided based on the 
expression of  the αβ or γδ T Cell Receptor (TCR) and 
on expression of  CD4 and CD8 (Table 1). The distribu-
tion of  iIELs in the small intestine is approximately one 
IEL per 5-10 epithelial cells vs one IEL per 40 epithelial 
cells in the large intestine[177,178]. A key difference between 
populations of  iIELs throughout the GIT is the ratio 
between naïve and activated to memory IELs, with the 
small intestine containing a smaller proportion of  naïve 
cells than the large intestine[179]. The function of  iIELS 
are not fully elucidated however in addition to immune 
and cytotoxic roles, they play a vital role in small intes-
tinal epithelial barrier maintenance[168] and defence by 
promoting epithelial tight junctions and Paneth cell anti-
microbial production[180]. It is not known whether colonic 
iIEL have analogous functions to these small intestinal 
populations.

Compared to iIELs, the distribution of  LP T cell 
subsets throughout the GIT is less well characterised. 
TCRαβ+ CD4+ cells are found in greater numbers in the 
LP of  the both the small and large intestine in compari-
son to the epithelium[163]. In addition, classical CD4+ Th 
subsets are found in the LP with Th17 and Treg cells 
present in high numbers[83]. Indeed the intestine has the 
highest levels of  Th17, Th22 and FoxP3+ cells in the 
body[181]. This enrichment of  Th17 cells is particularly evi-
dent in the small intestine where approximately 10%-15% 
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of  CD4+ cells in healthy mice are IL-17+ compared to 
2-3% in the large intestine[182]. The GIT is also enriched 
in regulatory T cells (Treg) that can be subdivided into 
Foxp3- Tr1-like cells that produce large amounts of  
IL-10, and “natural” Foxp3+ Treg. In the LP of  the small 
intestine approximately 50% of  regulatory T cells have a 
Tr1-like phenotype, in stark contrast to the large intestine, 
which is relatively devoid of  Tr1-like cells. Instead, virtu-
ally all Treg cells in the large intestine are Foxp3+ (89%) 
in comparison to 54%-58% of  the Treg cells in the small 
intestine[183]. Indeed, it has become increasingly clear that 
mechanisms of  tolerance differ greatly between the small 
and large intestine with differential induction of  Foxp3+ 
Tregs and Tr1 cells. Nevertheless, more detailed studies 
are needed to understand the contribution of  dietary and 
bacterial antigens, antigen presenting cells and tissue resi-
dent cells in the induction of  Tr1 and Treg cells and the 
differences between the small and large intestine[184].

In addition to differences in T cell composition 
throughout the GIT there are differences in the mecha-
nisms of  T cell homing to the gut. This is believed to 
be one of  the key ways the tissue-specificity of  T cells 
are maintained[181]. The adhesion molecules expressed 
by small intestine homing T cells are well characterised 
with LFA-1, α4β7, αEβ7 (CD103) and CCR9 and retinoic 
acid playing an important role[100,101]. In contrast, the 
mechanisms involved in the recruitment of  T cells to the 
large intestine are less well defined. It has been demon-
strated that migration of  T cells to the large intestine is 
dependent on α4β7 but independent of  CCR9[185,186] and 
retinoic acid[187]. Recent work has identified a key role for 
transforming growth factor-β, combined with unknown 
factors, in induction of  GPR15 expression to drive Treg 
cell homing to the large but not small intestine[188]. Fur-
thermore, CD4 T cell recruitment to the large intestine 
has been shown to be chemokine dependent although 
the chemokines involved have yet to be identified[93]. The 
differences in homing to the large and small intestine still 
needs to be further clarified but research in this area has 
been hampered by a lot of  overlap between the chemok-
ines and their receptors. 

Natural killer T (NKT) cells are a subset of  T cells 
expressing the TCR/CD3 complex, NK.1 and Ly-49[189] 
that are CD1d-restricted T cells that respond to lipid 
rather than protein antigens. NKT cells have both regula-
tory and effector functions and play critical roles in the 
regulation of  immune responses in many disease settings 
including cancer[190]. NKT subsets do differ in frequency 
between the large and small intestine and have been ex-
tensively reviewed by van Dieren et al[191]. Higher numbers 
of  NKT cells are found in the large intestine (up to 11% 
are epithelia-associated and 7% LP associated) compared 
to the small intestine (2%-6% of  epithelia-associated 
lymphocytes)[191,192]. 

CONCLUSION
We have reviewed, for the first time, the broad regional 

diversity of  the cells, barrier and immune system of  the 
small and large intestine. From the external environment 
and the microbiome to the cells of  the innate and adap-
tive immune system the small and large intestine have 
clear differences that have marked effects on functional-
ity and responses to commensal organisms as well as 
pathogens. Given the significance of  the small and large 
intestine not only functionally but also in terms of  dis-
ease it is important to understand how these organs and 
the cells within them function, and how and why they 
are different. A greater understanding of  the immune 
system-microbiome interactions in the small and large 
intestine should reveal answers to important unanswered 
questions about disease susceptibility and mechanisms 
of  inflammation that are specific to the small or large 
intestine. Specifically, questions to be addressed include: 
identifying mechanisms of  epithelial crosstalk with the 
microbiome and whether it is the same in small and large 
intestine, how the microbiome promotes immune func-
tion when access to the LP is limited. What the role of  
innate cells like eosinophils, ILCs and mast cells are in 
the regions of  the gut in homeostasis and inflammation 
and how do they differ across the GIT, e.g., is CD22 a 
functional marker on small intestinal eosinophils? How 
do colonic and small intestinal macrophage and dendritic 
cell subsets differ functionally across the GIT in homeo-
stasis and infection. A widening awareness of  the differ-
ences between the small and large intestine can also influ-
ence the development of  therapeutics, e.g., in instances 
where probiotics may be beneficial for the treatment of  
diseases of  the small intestinal but not those of  the large 
intestine. In addition, in Crohn’s disease which can affect 
both the small and large intestine we may want to look at 
using specialised combination therapy in order to tackle 
the disease in both sites instead of  the use of  one drug 
which may be efficacious in one gut region. Although this 
review has focused on murine studies, some analogous 
data has been generated for humans but there is even 
more which remains unknown, especially in homeostasis, 
in the human GIT. It is clear that we can no longer make 
assumptions about similarities in function of  our gut cells 
along the GIT. 
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