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Abstract

Gut microbes comprise a high density, biologically
active community that lies at the interface of an animal
with its nutritional environment. Consequently their
activity profoundly influences many aspects of the
physiology and metabolism of the host animal. A range
of microbial structural components and metabolites
directly interact with host intestinal cells and tissues
to influence nutrient uptake and epithelial health.
Endocrine, neuronal and lymphoid cells in the gut
also integrate signals from these microbial factors to
influence systemic responses. Dysregulation of these
host-microbe interactions is now recognised as a major
risk factor in the development of metabolic dysfunction.
This is a two-way process and understanding the
factors that tip host-microbiome homeostasis over
to dysbiosis requires greater appreciation of the host
feedbacks that contribute to regulation of microbial
community composition. To date, numerous studies
have employed taxonomic profiling approaches to
explore the links between microbial composition and
host outcomes (especially obesity and its comorbidities),
but inconsistent host-microbe associations have
been reported. Available data indicates multiple
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factors have contributed to discrepancies between
studies. These include the high level of functional
redundancy in host-microbiome interactions combined
with individual variation in microbiome composition;
differences in study design, diet composition and host
system between studies; and inherent limitations to
the resolution of rRNA-based community profiling.
Accounting for these factors allows for recognition
of the common microbial and host factors driving
community composition and development of dysbiosis
on high fat diets. New therapeutic intervention options
are now emerging.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: The development of dysbiosis is driven by
multiple factors. These include selective pressures
imposed on the microbial community by the diet
composition and feedback effects that involve
either diet-host interaction or diet-microbiome-host
interaction. The role of microbial signals in dysbiosis is
well established but the involvement of host feedback
mechanisms in aberrant host-microbial interactions is
an under-appreciated part of disease progression. New
opportunities to intervene in diseases of dysbiosis can
result from targeting these distinct processes. These
include stimulation of the host ability to self-regulate
and blocking of deleterious host responses.
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INTRODUCTION

The gastrointestinal tract of animals typically harbours a
large resident community of microorganisms that we will
term the microbiome. The main function of the gut is to
enable harvesting of nutrients from the external environ-
ment, however, animals live in a dynamic environment
where their energy demands, exposure to foreign micro-
organisms and their access to nutrients are continually
changing. Consequently gut functions also include con-
tainment of microbial activity to the intestinal lumen and
integration of sensory perception of the intestinal envi-
ronment with behavioural and physiological responses.
Put simply, the gut is a major site for endoctine, immune
and neural signalling in addition to digestion and nutrient
absorption.

Many aspects of host physiology are strongly shaped
by the presence and activities of the gut microbiome.
The primary axis of host-microbiome interaction is in
the intestinal tissues where microbial growth in the lumen
contributes to the digestion of ingested food and directly
shapes the chemical milieu of the gut. Host cells in the
intestines are highly exposed to microbial activity, and
microbial influence ranges from stimulation of receptors
on those cells, to supply of energy sources to epithelial
cells and triggering of developmental pathways in intes-
tinal tissues'™” (Figure 1). Although the primary interac-
tion with microbes is at the intestinal epithelium, their
influence is projected beyond the gut through secondary
host-microbiome interactions, which occur externally to
the epithelium. Some of these influences such as nutrient
uptake and systemic inflammation, result from translo-
cation of or “escape” of microbial products[3’4]. Others
such as appetite regulation, gut motility, energy balance
and immune tone, result from the integration of mul-
tiple signals from the gut environment and bidirectional
communication along the gut-brain axis™, Accordingly,
it is now widely recognised that differences in microbial
composition and activity result in effects of fundamental
importance to health.

The breadth of potential influence of the microbi-
ome means mechanisms that serve to regulate the mi-
crobial interface with host systems are critical for health.
This view gives tise to the concept of dysbiosis: Disease
states that result from dysregulated host-microbe interac-
tions. Dysbiosis contributes to the underlying pathophys-
iology of a wide range of diseases, including obesitym,
diabetes™ inflammatory bowel diseases”, non-alcoholic
fatty liver diseases""! (213

" and cardiovascular diseases .
With awateness of the importance of dysbiosis in mul-
tiple diseases, attention has focused on how to define the
microbe involvement in different diseases. The objectives
here encompass the following: Identification of micro-
biota signatures (or biomarkers) that help define different
dysbiosis states, ideally at the pre-clinical stage. Identifica-
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tion of the triggers of dysregulated host-microbe interac-
tions that ultimately lead to disease. Development of in-
tervention strategies based around restoration of normal
host-microbiome interactions. Underpinning all these
objectives is the need to understand the dynamics of gut
microbial community composition. This review focuses
on mechanisms that drive the changes in microbial com-
munity composition that ultimately lead to shifts in host-
microbiome interactions.

EVIDENCE FOR, AND LIMITS OF,
MICROBIOME INFLUENCE ON HEALTH

Comparative studies on germ-free (GF) and convention-
ally raised (CONV) animals have been instrumental in
establishing that the gut microbiome has influence on
the physiological, immunological and nutritional state of
its host. Such studies have consistently shown that GF
animals are characterised by reduced intestinal vascula-
ture!) undeveloped gut-associated lymphoid tissue' " and
alterations in nutrition and energy metabolism!”, all of
which are largely restored by reintroduction of gut bacte-
ria. Collectively there is compelling evidence that the gut
microbiome can influence postnatal development of gut
tissues and the physiological state of animals.

The effects of microbes are interdependent with
effects of diet or the host genotype. For instance, GF
and CONV compatisons are not precisely recapitulated
in different animal models"”, and there are also cha-
racteristic variations in microbiome composition between
species'' . Some of these variations almost certainly
reflect genetically encoded differences in life history
(carnivores »s herbivores) or gut structure (ruminants
vs monogastrics). Others will reflect more subtle tissue
specific differences, for example, the organisation of
gut-associated lymphoid tissue in dogs and rodents are
distinct!"™. Collectively these points serve to illustrate
a broader issue. Host-microbiome interaction involves

effects of the microbiome on the host, as well as effects
of the host on the microbiome and these both occur
within the context of environmental effects on the system
(especially the nutritional environment). Studies that have
addressed the influence of microbiome on differences
between GF and CONYV against defined genetic and diet
differences in animals highlight the importance of this
tripartite interaction™"”,

The importance of variation in host diet and genotype
has been observed through GF-CONV comparisons
across different strains and species of inbred rodents.
In a seminal paper Bickhed, Gordon ez al™ raised the
prospect that gut microbiota represent an environmental
factor in obesity. They showed that GF C57BL/6
mice had less fat deposition than CONV counterparts
despite higher food consumption. Moreover, the faecal
caloric content of GF mice was significantly higher
than that of CONV counterparts. These findings led
to the conclusion that gut microbiota promote energy
harvesting and fat storage, and the hypothesis that GF
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Figure 1 Axes of host-microbial interaction that influence health. Short chain fatty acids (SCFAs) and microbe-associated molecular patterns (MAMPs) are the
key microbial signals detected by the host. Outcomes of host-microbiome interactions are contingent on the microbial product involved, the type of host cells exposed
to microbial signals and the location of contact. The primary intersection points occur at the intestinal epithelial interface. Sampling of luminal MAMPs and uptake of
SCFAs have a direct impact on gut epithelium, lymphoid and neuroendocrine systems. The secondary intersection points occur externally to the intestinal tissues.
Translocated or “escaped” microbial products can activate pattern recognition receptors (PRRs) and specific G protein coupled receptors (GPRs) on a wide range of
host cells beyond the epithelium. A compromised gut barrier amplifies host-microbiome interactions in the secondary intersection points and the downstream effects of
PRR and GPR signalling cascades. Host outcome is an emergent property of all axes of interactions.

animals are protected from obesity*". In contrast to
this mouse model, GF Fischer 344 rats displayed similar
body weight and adiposity relative to CONV in two out
of three experimental cohorts, and differences in daily
food intake between the GF and CONV groups were
insigniﬁcantm. Although this suggests different animal
species may respond differently, it is important to note
that these studies used standard rodent chow from
different suppliers and almost certainly the diets were
compositionally distinct">*",

Intersection between diet and genotype can also
influence the phenotype of GF and CONV animals.
The significance of this issue is highlighted in a report
comparing the effect of three different diets on GF
and CONV C3H mice™. There was no difference in
weight gain between GF and CONV groups under low
fat diet, but GF C3H mice actually showed significantly
higher weight gain on a high fat diet (HFD) compared
to CONV. Previous reports of obesity resistance on
HFD in GF C57BL/6 mice had used a formulation with
similar macronutrient balance but distinct sources of
carbohydrates and fat™”. When the two versions of high
fat formulation were directly compared, GF and CONV
C3H had comparable body fat content on the HFD with
low sugar formulation but GF C3H mice was obesity
resistant on the HFD with high sugarml. In summary,
GF-CONV compatisons in different animal/diet models
consistently show differences in energy harvest (faccal
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caloric content), energy storage (weight and body fat)
and energy expenditure. Typically the effect of microbial
presence is to increase adiposity, however, this does
vary between experimental models and even between
cohorts in the same model system. The major identifiable
variables are animal species/strain and diet composition
which differ between experimental cohorts.

Further exploration of the importance of microbiome
composition has provided robust evidence supporting a
causal link between gut microbiome composition and host
outcomes. Specifically, some phenotypic traits of CONV
animals can be recapitulated by conventionalisation of
GF animals through microbiome transplantation“1’23’25].
When GF mouse models are conventionalised with gut
microbiota from either obese or lean mice, metabolic
profiles and physiological attributes of the recipients
reflect their donors™!, Evidently emergent properties
of the total microbial community can drive differences
in metabolic and physiological phenotypes. Precisely
which microbes or how many ate needed is unclear. For
example, monocolonisation of GF mice with Enterobacter
¢loacae (a member of Proteobacteria isolated from an obese
human) induced obesity and systemic insulin resistance
in mice on HFD, while GF mice on HFD did not exhibit
the same disease phenotypes[ q,

In conclusion, host metabolic health is strongly
influenced by the gut microbiome. The influence of gut
microbes is dependent on microbiome composition and
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is interactive with the effects of diet and host genotype.
The mechanisms of microbial influence stem from
microbial activity in the intestinal tract, but are projected
to the body system uzz multiple integrated pathways. The
complexities of these interactions mean that although
variations in microbial community composition can
lead to different outcomes, associations may be diet or
system-specific.

IDENTIFYING MICROBIAL MARKERS FOR
METABOLIC DISEASES

Gut microbial community in health and disease-
taxonomic insights

Broadly speaking microbiome association studies have two
objectives: (1) To identify links with specific disease states””;
and (2) To identify features of a healthy microbiome that
may be a target in the restoration of health™. Although
there have been many reports of microbiome associations
with obesity or metabolic health indicators in cross-
sectional studies™", experimentally controlled treatments
P2 and animal models (Table 1), consistent
patterns across studies are hard to discern. As discussed
above the influence of the microbiome on host health is
interdependent with diet and the host system. As such the
apparent lack of consistent associations is likely to reflect
the confounding effects of diet, host genotype and host
epigenetic state. Since HFDs in Table 1 are not of the same
formulation, some of the discrepancies observed almost
certainly reflect variations in diet. Differences will also
reflect some inherent limitations of taxon-based description
of the gut microbial community.

Community profiling has two key requirements. These
are the ability to recognise biologically distinct units and the
capacity to effectively sample all such units in a community.
The size and diversity of microbial communities mean
that it is essential to meet these requirements with high
throughput approaches. The limitations of the species
concept in bacteriology, combined with poor cultivability
of bacteria meant that historically this has been impossible.
Advances in sequencing technologies and analysis programs
over the past decade have made effective sampling possible
for the first time. However, recognition of biologically
meaningful taxonomic units is still limited.

The most widely used marker for community profiling
is the 16S ribosomal RNA (tRNA) gene. Sample sizes of
thousands to even millions of sequence reads are now
readily obtained. A feature of the 16S rRNA is thatitis a
very flexible phylogenetic marker and taxonomic units can
be readily made at a variety of scales. Generally defining
taxonomic units at coarse scale (e.g., phylum; about 80%
16S rRNA identity) simplifies the analytical task of
comparing units but at the expense of explanatory power.
Variation in the gut microbiome is readily observable at
this scale™™. Many studies have reported an association
between the ratio of the two dominant gut phyla,
Bacteroidetes and Firmicutes, with obesity in cross-sectional
studies and in experimental treatments”**). However

in humans
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numerous exceptions have also been reportedﬁo'm, and
a recent exhaustive meta-analysis of human microbiome
project data found no consistent relationship between
the Bacteroidetes:Firmicutes ratio and obesity”™. An almost
certain contributing factor is that such coarse taxonomic
units are less biologically meaningful than fine scale units.

There are some attributes of the gut microbiome that
one can reasonably predict from the taxonomic profiles at
phylum scale. For instance, Firmicutes and Bacteroidetes have
fundamental differences in cell envelope composition,
and polysaccharide foraging strategyM. However, detailed
predictions of microbial functions and/or properties
based on phylum classification alone are unrealistic. At
finer scales of classification the biological homogeneity
of taxa increases and more consistent patterns are
observable. For example, it has been proposed that human
gut microbiome variation occurs in three predominant
variants termed enterotypes, which are recognisable
through co-occurrence patterns defined by the genera
Bacteroides, Prevotella and Ruminococens™. Recently this
concept has been intensively explored, highlighting
that observation of specific patterns of association is
subject to analytical and classification approacheslssj,
particularly how sequences ate clustered into operational
taxonomic units (OTUs) and how OTU-based distances
between communities are calculated. This effect of
analytical approach is likely to exist wherever community
profiling does not (or cannot) classify into ecologically
homogeneous units (ecotypes).

The inability to recognise ecotypes is an inherent
limitation of 16S tRNA sequencing based approaches.
Closely related species can have differential responses to
specific nutrient sources and have divergent ecological
roles™*". Perhaps the most striking illustration of this
issue derives from a study conducted by Li ez al™ whete
they used community fingerprinting and metabolomics
to test for associations between Clostridia and urinary
metabolites in humans. Distinct populations in the
fingerprinting analysis that had mutually exclusive asso-
ciations to different sets of urinary metabolites were
classified to Faecalibacterium prausnitzii (F. pransnit3ii).
This indicates that strains of I prausnitzii inseparable
by tRNA-based classification had distinct metabolic
impacts in the gut system. Hence, it is not surprising
that even microbiome associations reported at the finest
scales possible with rRINA-based classification are often
contradictory between different studies. For instance,
F. prausnitzii was found to be over-represented in obese
subjects in comparison to the lean counterpartsm, which
suggests high proportion of F. prausnitzii within the gut
community is an indicator of poor health outcomes.
Yet, other investigations have reported that healthy
individuals carry more F. prausnitgii than patients with
type 2 diabetes™ or chronic inflammation’. Another
example is the association of Akkermansia muciniphilia
(A. muciniphilia) with health in some animal studies'®"
other studies have noted an increased proportion of 4.
muciniphilia in obesity™ and type 2 diabetes™, or a role in
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Figure 2 Multiple host-mediated mechanisms regulate bacterial growth and their activities. These pathways may act against the microbiota in a generalised
manner or influence bacteria with distinct properties (blue). A: Substrates from diet are key energy sources for bacterial growth. Changes in feeding pattern will shape
the microbiome structure and associated products; B: Ingestion of dietary fibre and osmotically active compounds promotes gut motility. Faster transit rate flushes out
slow growing organisms and those without the ability to adhere to the intestines; C: Release of bile in response to dietary fat selects against bile-sensitive bacteria but
promotes those with the capacity to obtain energy via anaerobic respiration; D: Mucin secreted by goblet cells physically prevents the penetration of bacteria into gut
epithelium, and it also promotes bacteria that utilise mucin as growth substrates; E: Paneth cells in the gut epithelium secrete effector molecules with broad-spectrum
antimicrobial activity, e.g. defensins, lysozyme and RegIly, which contribute to the innate barrier against microbial colonisation; F: Migration of flagellated bacteria is
inhibited by secretory immunoglobulin A (IgA), which facilitates the exclusion of bacteria at the epithelium; G: When mucin synthesis and release is impaired, patho-
bionts may penetrate the mucosal epithelium and trigger the inflammatory cascade. Byproducts of inflammation confer a growth advantage for organisms that obtain

energy through anaerobic respiration.

metagenome signatures[w, but more specific signatures
have also been reported. Aside from microbial metabo-
lites, MAMPs also stimulate host responses. Consistent
with this, metagenome studies have found enrichment of
microbial genes that encode cell motilityl37J as well as an
increase in flagellin proteinsl()SJ associated with the obese
state.

In summary, small scale single-cohort, tRNA-based
studies of diet-microbiome-host interactions in response
to HFD typically identify associations. Cursory compati-
sons of such studies reveal a confusing picture, however
more detailed consideration of common ecological or
physiological features reveals common patterns. Microbial
structural motifs and metabolites with robust associations
to HFD formulations and disease states have been seen
and are regarded as the mechanistic links between gut
microbiome and systemic complications. It is noteworthy
that these MAMPs and microbial metabolites are present
in the intestinal lumen but their systemic loads are known
to increase during a HFD clrlaller1gel4’66’b81 and in vari-
ous aspects of metabolic disorders™"*!. This raises the
question of feedback processes that may further shape
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microbial community structure and the progression into
dysbiosis.

FACTORS THAT SHAPE GUT
COMMUNITY DYNAMICS AND

FUNCTION

Intrinsic factors

Multiple host mechanisms are involved in restricting mi-
crobial growth and activity to the intestinal lumen (Figure
2). These processes may act against the gut microbiome
in a generalised manner or target specific bacteria with
distinct properties. Host secretions in the gut can func-
tion as environmental stressors that regulate bacterial
growth. The primary role of bile acids is to facilitate
dietary fat absorption but their amphipathic proper-
ties also disrupt bacterial membrane integrity and result
in antibacterial activitym. When rats are fed with diet
supplemented with bile acids, their gut communities are
characterised by a reduction in Bacteroidetes and enrich-
ment in Clostridia and E;yfzpe/otmbzm]. Intriguingly, this
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compositional change mirrors the patterns reported in
. 7 . . .
HFD studies™., Higher amounts of bile acids are also

[71]
, 4 me-

linked to lower caecal concentrations of butyrate
tabolite produced by subsets of gut bacteria. This finding
suggests bile acids either select against the proliferation
of butyrate producing bacteria or inhibit the metabolic
pathways leading to butyrate synthesis. Collectively, bile
acids have a contributing role in determining microbial
composition and the products released by the gut micro-
biome.

At the intestinal interface, host-derived molecules
work in synergy to exclude microbial colonisation along
the gut epithelium and modulate the microbial composi-
tion in the vicinity. Secretory immunoglobulin A (IgA)
1s known to control bacterial migration patterns by se-
questering the movement of motile organisms, thereby
preventing their penetration across the gut epithelium'™,
Antimicrobial peptides such as defensins and Regllly also
influence microbial cornposition[73’74]. Mice expressing hu-
man o-defensin genes had marked depletion of segment-
ed filamentous bacteria and less interleukin 17-producing
T cells in the lamina propria than those with o-defensin
deficiency™. Regllly, on the other hand, generally selects
against Gram positive bacteria, as LPS on Gram negative
bacteria inhibit RegIlly activitym’m. Host secretions can
also shape the gut microbiome by providing an ecological
niche for specific bacteria. For instance, mucin, a glyco-
sylated protein covering the intestinal epithelium, is a spe-
cific growth substrate for many commensal gut microbes,
including Ruminococens’ | Bacteroides™ and Akkermansid”
In the event of gut inflammation, byproducts of immune
responses may alter the gut microbiome by favouring the
growth of selected organisms. For instance, host cells
release reactive oxygen and nitrogen species into the lu-
men, which react to form nitrate’™ ™. It has been shown
that Escherichia coli uses exogenous nitrate as electron ac-
ceptors for anaerobic respiration, giving it a competitive
advantage over fermentative organisms’ .

Host feeding behaviour

While host secretions play an important role in determin-
ing the gut community structure, external factors such as
host feeding behaviour are equally influential (Figure 2).
A main driver of microbial change is the macronutrient
intake of the host, in particular the type of carbohydrate
ingested[57’84]. Changes in intake are likely to influence the
gut microbiota composition or their nutrient acquisition
strategies[
mice have found that Bacteroides thetaiotaomicron responded
to depletion of dietary polysaccharides by upregulating a
set of genes adapted to degradation of host mucus gly-
cans"™. Similarly, Rumincoccus gnapus switches on different

85 : . . .
. For instance, experiments in monocolonised

sets of carbohydrate-utilising enzymes in response to the
availability of carbon sources (monosaccharides »s mu-
cin) in the environment™. Escherichia coli can also adapt
to nutrient changes in the environment by altering porin-
mediated outer membrane permeability, broadening
nutritional acquisition capacity[sﬂ, but at the expense of
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reduced resistance against bile®™. Increase in the amount
of fermentable polysaccharides changes intestinal transit
rate, which modulates the membership of the gut com-
munity™. Faster transit rate may flush out slow growing
organisms and those without the ability to adhere to the
mucosal lining of epithelial cells. Altered microbial com-
position and associated metabolites, in turn, feedback
to gut motility[sg’gm, which strongly influences nutrient
absorption in the gut”"”?. Additionally, high consump-
tion of dietary saturated fat enhances the secretion and
0594 which provides a
strong selection pressure on the gut commensals due to

taurine conjugation of bile acids

its antibacterial activity. However, influx of taurocholic
acid presents an additional source of sulphated com-
pounds for bile tolerant, sulphate/sulphite-reducing bac-
teria (SRBs) to utilise in anaerobic respirationm, thereby
promoting their expansion in the gut community. Chang-
es in diet can alter microbial composition in the matter
of days”™. If the altered state persists over time, it will
result in a different repertoire of microbial products ac-

cumulating in the gut system”.

HOST-MICROBIOME FEEDBACKS IN
METABOLIC DYSFUNCTION AND
INFLAMMATION

MAMPs as mechanistic links between gut community
and host outcome

A number of pattern recognition receptors (PRRs) on
host cells, such as toll-like receptors (TLLR4 and TLR5)
and nucleotide-binding oligomerisation domain recep-
tors (NOD1 and NOD?2) are specialised for detection of
MAMPs such as LPS, peptidoglycan (PGN) and flagellin.
The structure and/or the extent to which MAMPs are re-
leased from bacterial cells can vary between species. Thus
modification in community composition, or MAMPs
expression, can promote changes in the host system.
However MAMPs profile alone cannot determine host
outcomes, specific host receptors and loss of gut barrier
function are required to potentiate metabolic dysfunc-
tion. Localisation and expression of PRRs differ between
cell types[qg], this may explain the divergent outcomes of
each MAMP/PRR interaction.

Flagellin

A wide range of gut bacteria have the capacity to pro-
duce flagella, including members of the phyla Firmicutes™
and Proteobacterid™. Flagellin proteins derived from mo-
tile organisms are detected by TLR5, which is selectively
expressed at a higher level in the cecum and proximal
colon”. TLR5 are present on the basolateral surface
of intestinal epithelial cells, apical surface of epithelial
cells associated lymphoid follicles and mucosal dendritic
cells™"™. TLR5 detection of flagellin is known to induce
the secretion of anti-flagellin IgA, which quenches the
motility of various Profeobacteria and Firmicutes speciesmj.
This restriction of microbial migration is a normal host
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response. When flagellin gains access into the intestinal
mucosa, it triggers pro-inflammatory responses and in-
creases the risk of chronic inflammation!""

Aside from localised responses in the gut, flagellin ac-
tivation is linked to regulation of physiological processes
beyond the gut system. Mice lacking TL.R5 had higher
food consumption, and developed obesity, dyslipidemia,
insulin resistance and hypertension in comparison to wild
type (WD), While some of these phenotypes can be
explained by increased dietary intake, food restriction in
TLRS5 knockout (KO) mice was only effective in prevent-
ing obesity but not insulin resistance. Remarkably, antibi-
otic treatment of TLR5 KO mice normalised food intake
and ameliorated metabolic defects, while transplantation
of TLR5 KO gut microbiota into WT' recipients recapitu-
lated metabolic dysfunction""”. These results suggest that
appropriate flagellin/TLRS signalling cascade have a ben-
eficial role in host feeding behaviour and thus, promote
metabolic health.

Lipopolysaccharides

LPS is a component of the outer membrane of most
Gram negative bacteria, including Bacteroidetes and Pro-
teobacteria. Chemical properties of LPS vary between
species, which lead to differential capacity in activating
the TLR4 signalling cascade"”, Tt is thought that species
from Proteobacteria exert a stronger immunostimulatory
effect than Bacteroides'™. In comparison to TLR5, TLR4
expression in intestinal epithelial cells is relatively low!""”
and they are localised in the basolateral compartment[%].
Under normal circumstances, only small amounts of LPS
pass through the gut epithelium and reach the blood-
stream!”. Consumption of HFD, however, is associated
with reduced expression of tight junction proteins in
the gut epithelium[w(’]. Loss of tight junction integrity in-
creases the paracellular space in the epithelium and facili-
tates the leakage of luminal contents, including LIPS, into
adjacent tissues and the circulatory system". Dietary
fat is also believed to enhance chylomicron absorption
of LPS from the intestinal lumen or enterocytes, which
are then exported into the circulatory system "™, Once
LPS escapes from the intestinal lumen it can be recog-
nised by cells with TLLR4 in the peri-intestinal region or in
insulin-targeting tissues, such as adipose tissue, liver, skel-
etal muscle and pancreas“og]. Activation of TLR4 induces
the release of pro-inflammatory cytokines, which drives
helper T cell (THelper) expansion and impairs insulin sig-
nallingm()’m]. In summary, LPS is an immunostimulatory
agent but its exposure to TLR4 expressing cells and the
capacity to drive dysbiosis is dependent on physiological
properties of the host system such as intestinal perme-
ability.

Physiological consequences of LPS/TLR4 signalling
are demonstrated in mice with CD14 or TLR4 deficien-
cies. During HFD treatment or LPS infusion, both KO
mouse models are protected from the hallmark features
of metabolic dysfunction observed in the WT' counter-
parts, including obesity, insulin resistance and inflamma-
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tion™""". These results indicate that TLR4 agonists, such
as LPS, can influence health. Yet, TLR4 is also stimu-
lated by non microbial structures, such as saturated fatty
acids'"?. Systemic lipid infusion can trigger the TLR4
inflammatory cascade in adipose tissue and give rise to
insulin resistance' . One might argue the activation of
TLR4 cascade and associated metabolic defects is due
to an excess of dietary lipid from HFD, rather than a
consequence driven by a microbiota-derived compound.
However, detoxification of LPS by intestinal alkaline
phosphatase“14], reduced microbial load after antibiotic
I o1 altered microbial profile after pre-
OLUST can all lower plasma LPS. All these
are thought to be concomitant with improved gut barrier
function and/or restoration of metabolic health!"**1,
Since broad (antibiotics) and selective (prebiotics) altera-
tions in the gut microbiota lead to improvements of

administration
biotics treatment

metabolic parameters during HFD, these findings are in
agreement that the availability of LPS has a fundamental
role in driving metabolic outcomes.

Peptidoglycan

NOD1 and NOD2 are sensors of PGN, but each recep-
tor has a different substrate preference. NOD1 prefer-
entially binds to a structural variant commonly found in
Gram negative bacteria”, while NOD2 detects a com-
mon motif of gram positive and gram negative organ-
isms""™. Similar to TLR4, NODI1 activation is implicated
in the development of insulin resistance. Administration
of NOD1 agonist to adipocytes upregulates the expres-
sion of pro-inflammatory cytokine TNF-o and chemo-
kine MCP-1 in a dose dependent manner, which affects
insulin signalling and decreases insulin-mediated glucose
uptake"”, Mice lacking NOD1 are protected from HFD-
induced glucose intolerance and translocation of intact
Gram negative bacteria from the gut lumen to mesenteric
adipose tissue (MAT) and blood, compared to the W,
The authors also demonstrated that bacterial transloca-
tion to MAT and the associated inflammation preceded
glucose intolerance, suggesting NOD1 interaction with
Gram negative gut bacteria drives the pathophysiology
associated with HFD.

Apart from NODI1 signalling, NOD?2 activation in
the skeletal muscle also influences insulin action and
glucose homeostasis. Tamrakar ez al”" have shown that
a NOD?2 agonist significantly reduced insulin-stimulated
glucose uptake in rat skeletal muscle cell line, whereas
NOD1 activation had minimal effect. However, inter-
ference with the NOD?2 cascade does not necessarily
protect the host from dysbiosis. Malfunctions in NOD2
signalling in patients with Crohn’s disease or in NOD?2
KO mice, are linked to dysregulation of microbial con-
tainment, resulting in bacterial translocation to intestinal
surface and aberrant stimulation of mucosal immune sys-
tem*"*). Taken together, these findings demonstrate the
diverse outcomes of host-microbial immune signalling,
The net response is strongly dependent on the target site
and is possibly linked to the ratio of Gram negative to
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Gram positive organisms as different PGN ligands lead
to divergent downstream response.

SCFAs as mechanistic links between gut community
and host outcome

SCFAs, such as acetate, propionate and butyrate, are
arguably the most influential microbial metabolites in
the context of health and disease. Both community
composition and the available fermentable substrates
influence the net SCFA proﬁle[54’124’125]. As a consequence
SCFA profile is an emergent property of the community
and it is difficult to predict from taxon-based analysis.
The majority of SCFA production is utilised locally by
the gut epithelial cells but significant amounts are also
transported across the epithelium to distant tissues
via the circulatory system. Butyrate is metabolised in
the gut epithelium and is the key energy source for
colonocytes'*". Propionate and acetate are metabolised
as substrates for energy metabolism and lipid synthesis
in the liver and other peripheral tissues'>". Absorption
of SCFAs accounts for 6%-9% of the total energy
intake for humans and can contribute up to 44% in
other animals"**'*’. In addition to their role as an energy
substrate, SCFAs are signalling molecules in modulating
neuroendocrine and anti-inflammatory responses at
various sites.

SCFA signalling: neuroendocrine function and energy
regulation

G protein coupled receptors, GPR41 and GPR43, are
the primary mediators of SCFA signalling. Butyrate and
propionate have high stimulatory effect towards GPR41,
while butyrate, propionate and acetate all show similar ac-
tivity towards GPR43"™". Evidence from KO models has
led to the proposal that SCFA signalling »i2 GPRs modu-
lates energy balance, with WT mice having higher fat
deposition than GPR41 KO™. The GPR41 KO is also
characterised by a reduced expression of intestinal pep-
tide YY (PYY), an enteroendocrine L cell hormone that
in WT animals inhibits gut motility, potentially increasing
the time for energy harvest and absorptionm”. Similarly,
GPR43 KO mice are resistant to HFD-induced obesity,
insulin insensitivity, and dyslipidernialml, and there is sup-
porting evidence that acetate and propionate promote
adipogenesis through GPR43™,

Other gut hormones ate also influenced by SCFA signals.
Glucagon-like peptide 1 (GLP-1) secreted by enteroendoctine
cells has a range of effects that encompass promotion
of satiety and glucose homeostasis'™" and its release
can be stimulated by oral administration of butyratelmj.
Supplementation of butyrate to HFD fed mice reduced
food intake and improved glucose control compared to
HFD mice without the treatment'™”| these phenotypic
differences might be driven by dlfferentlal secretion of
GLP-1. Consistent with this observation, mice with
impaired GPR43 signalling had reduced GLP-1 secretion,
concomitant with glucose intolerance™”. In adipocytes,
SCFA activation of GPR41 induce the expression and
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production of leptin”, a hormone that regulates feeding
behaviour, metabolic rate and immune response.

Interactions viz the gut-brain axis are also involved in
the coordination of metabolic homeostasis. Propionate
produced in the gut can activate GPR41 in the nerve
fibres of the portal vein, which resulted in upregulation
of genes required in intestinal synthesis of glucose, or
intestinal gluconeogenesis (IGN)""". The IGN-derived
glucose contributes to reduced appetite, improved glu-
cose control and decreased hepatic glucose production,
concomitant with lower body weight**"*’. These emer-
gent outcomes of propionate-induced IGN are mediated
by the portal nervous system as denervation can abolish
these effects™*"™,

It is evident that SCFA interactions with GPRs and
subsequent neuroendocrine signalling affect a wide range
of physiological functions, and the emergent outcomes
are contingent on the type and location of the receptors
as well as the agonists. As a consequence variation in
microbial community composition that alters the SCFA
profile can drive host responses viz signalling pathways.
The range of pathways triggered is influenced by other
factors such as gut barrier function and SCFA transloca-
tion that impact which tissues are exposed to SCFA. The
host responses, including appetite and intestinal motility,
have potential to feedback to gut community composi-
tion.

SCFAs and immune regulation

The actions of SCFAs extend beyond energy balance and
endocrine function, they are also involved in shaping im-
mune regulation and possibly the progression of autoim-
mune diseases. In models of colitis, arthritis and asthma,
GF mice and CONV GPR43 KO mice showed increased
production of inflammatory mediators and enhanced
recruitment of immune cells. Notably, exacerbated in-
flammation in GF mice was attenuated by acetate supple-
mentation, supporting SCFA/GPR43 signalling resolves
inflammatory 1'espons.es“40J However, other studies have
proposed that SCFA mediated GPR43 signalling also has
a role in potentiating tissue destruction!*""**

Despite the competing views on the role of SCFAs/
GPR signalling in inflammatory outcomes, SCFAs have
emerged as the key microbial signal in modulating the
balance of pro-inflammatory THeper and anti-inflammato-
ty T regulatory cells (Treg). Atarashi e @/ have shown
that SCFA-producing species from Clostridium clusters IV
and XIVa had greater capacity in expanding the popula-
tion of colonic Tre than Bacteroides fragilis, which releases
polysaccharide A (PSA) to promote immune homeosta-
sis. More importantly, SCFAs on their own can modu-
late Treg responses and increase the expression of anti-
inflammatory cytokine interleukin-10, which dampens
pro-inflammatory responses and reduces the proliferation
of effector CD4+ T cells"*. Diets which promote SCFA
production or administration of butyrate alone are able
to recapitulate these effects" . Butyrate can also down
regulate the expression of pro-inflammatory mediators in
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intestinal macrophages, such as nitric oxide, interleukin-6,
and interleukin-12 by histone deacetylase inhibition, a
mechanism independent of GPR activation "\

These host-microbial immune feedbacks in the gut
are proposed to have a role in the pathophysiology of
autoimmune diseases in genetically susceptible individu-
als, such as type 1 diabetes (I'1D). T1D is characterised
by T cell mediated destruction of pancreatic 3 cells and
deficiencies in Treg numbers or function*'*”. Given the
link between butyrate and T cell homeostasis, gut mi-
crobiota might be an environmental risk factor in T1D.
High throughput sequencing studies have shown that the
T1D gut is depleted in butyrate producing bactetia and a
key gene involved in butyrate synthesis"”. Butyrate deple-
tion is linked to increased intestinal permeability, which
precedes the clinical onset of T1D"""", In individuals
who are genetically susceptible to T1D, an aberrant gut
microbiota with reduced butyrate production is predicted
to increase the risk of the following events: increased
intestinal permeability, leakage of MAMPs, subclinical
intestinal inflammation, homeostatic imbalance of T cells
and ultimately autoimmunity in pancreas[152’153J.

In conclusion the widespread effects of SCFAs mean
that factors altering their concentration and profile have
multiple interacting consequences for the host and mi-
crobiome. SCFA are primary metabolites of microbial
growth. Consequently the SCFA profile of the gut will be
especially responsive to diet as changes in microbial nu-
trient supply can alter both community composition and
their metabolic activity. These SCFA changes can lead to
changes in gut barrier integrity, energy metabolism and
inflammatory responses. All these may impact on host
health, but also can feedback to impact microbial com-
munity structure. SCFAs are key factors in the interaction
between gut microbiome and the host.

Hydrogen sulphide and gut epithelial function

While butyrate fortifies the structural integrity of gut
epithelium, other microbial metabolites, such as HaS,
are implicated in impaired epithelial function. HaS is
produced when sulphated compounds are utilised as
terminal electron acceptor in anaerobic respiration. Most
gut bacteria with this capability belong to the Desulfovi-
brionaceae family“54j. H>S is known to interfere with energy
metabolism in the gut epithelium“ssj, ultimately leading to
cell death, concomitant with gut inflammation"". I vitro
studies of intestinal epithelial cells have demonstrated
that H»S influences the expression of genes linked to cell
cycle progression and stimulates both inflammatory and
DNA repair responses“57’158]. Collectively, there is robust
evidence that HoS has deleterious effects on the gut epi-
thelium. A recurrent feature of HFD studies, especially
those in which diet formulations have a high proportion
of saturated fat, is an increase in Desulfovibrionaceae and
gut inflammation (Table 1). Again the inferred loss of
gut barrier function and associated changes in host-mi-
crobiome interaction have the potential to drive feedback
responses in the microbial community.
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DIET, PATHOBIONT EXPANSION AND
DYSBIOSIS-A MODEL REVISITED

The interplay between diet, gut microbiome and host
health has been the subject of numerous studies, and
mechanisms that tip homeostasis to dysbiosis are start-
ing to emerge. Nutrient competition is a major driver of
community dynamics. Available evidence indicates that
access to inorganic electron acceptors such as nitrate and
sulphate occupies a special place in determining the out-
come of nutrient competition between pathobionts and
commensals at the epithelial interface™. The availability
of these is tightly linked to inflammation and cell dam-
age”™. We postulate that microbes whose competitive
advantage is dependent on anaerobic respiration adopt
a pro-inflammatory life history strategy (which results
in increased nitrate) and that their competitors promote
mucosal homeostasis (which limits nitrate). Obesity and
diet can skew the outcome of these opposing strategies
by altering the “tipping point” at which inflammatory
processes lead to elevated gut nitrate (Figure 3).

The effect of obesity, or more specifically MAT, is
due to their potential to amplify the host response to
metabolites that escape the intestine. Adipose tissue mac-
rophages stimulated by MAMPs such as LPS switch to a
pro-inflammatory state and increase the production of
pro-inflammatory cytokines"””. Pro-inflammatory cyto-
kines can “escape” from the adipose tissue and promote
inflammation and insulin resistance in other tissues' "

The effects of diet are multiple but can be sum-
marised as driving microbial changes that alter gut barrier
function and immune tone. Diets that are depleted in fer-
mentable polysaccharides are associated with lower levels
of SCFA production. This state increases the risk of
epithelial cell starvation (due to low butyrate levels) and
reduces the numbers of Tre cells. Both host responses
have the effect of increasing the potential for inflamma-
tion. Epithelial cell starvation and/or inflammation can
both increase the availability of inorganic electron accep-
tors in the lumen that supports expansion of pro-inflam-
matory pathobionts, many of which are Profeobacteria. At
this point the potential for positive feedback exists since
the LPS of Proteobacteria is strongly pro-inflammatory.
Diets that ate also high in saturated fat exacerbate this
basic model. Dietaty fat results in increased bile secretion
which has been observed to select against key groups of
fermentative bactetia. Fat types that specifically promote
taurocholate may exacerbate the inflammatory processes
since they are strongly linked to expansion of SRBs and
production of HzS. Collectively these two aspects of diet
composition, levels of fermentable polysaccharide and
saturated fat, can operate in synergy to reduce the fitness

of bacteria that promote mucosal function »iz butyrate
production and enhance the competitiveness of bacteria
that drive inflammation za LPS.

In this conceptual framework there are two indepen-
dent host feedback pathways, bile secretion and nitrate
production, that facilitate the enrichment of pathobionts
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Figure 3 Hypothesised triggers and drivers in diet-induced dysbiosis. Progression from homeostasis to clinical manifestation of metabolic dysfunction may
emerge from shifts in microbe-associated molecular patterns (MAMPs; green) and metabolites (blue), initiated by long-term consumption of diets with reduced amount
of dietary fibre but high saturated fat. A: Reduction in the availability of fermenting substrates in conjunction with excess secretion of anti-bacterial bile acids can alter
the competition dynamics of commensal organisms and pathobionts. Consequent depletion of polysaccharide A and butyrate promotes immune dysfunction by alter-
ing the balance of regulatory T cells (Treg) and helper T cells (Therer); B and C: Shifts in microbial products contribute to the impairment of gut barrier function and the
leakage of MAMPs; D: Dietary factors, microbial signals and host responses act in concert to drive inflammation, which provides a positive feedback pathway in favour

of chronic disease development.

and drive pro-inflammatory responses. Host feedbacks
to the gut microbiome may be an important determinant
in disease progression, which warrants further investiga-
tion. Furthermore, there may be more than one type of
commensal or pathobiont that influence disease states,
especially when alternate microbial groups fulfil similar
ecological functions within the gut community. Although
Bilophila was the leading SRB pathobiont in the initial
saturated fat/taurocholic acid/inflammation model”,
the above mechanism is applicable to other SRBs that
produce H2S, such as Desulfovibrio in the Desulfovibriona-
ceae family and other representatives within the Clostridia
class"™*'*", Similarly, several SRBs in the Desuifovibrionaceae
family and other Proteobacteria have the capacity to utilise
nitrate"*” and thus, Enterobacteriaceae such as E. coli may
not be the only organisms with increased fitness during
inflammation.

FUTURE DIRECTIONS AND CONCLUSION

With many mechanistic links between gut community dy-
namics and host health are now established, microbiome-
based applications for preventing and attenuating the
progression of gut-related diseases are emerging. Poten-
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tial therapeutic strategies may be in the form of restoring
function or blocking feedback at specific nodes of the
host-microbial network. If pro-inflammatory tone at the
intestinal interface is the predominant driver of disease
states, improving Treg ability to suppress Theper actions
may ameliorate local and systemic complications associ-
ated with aberrant immune responses. Prebiotics with
fermentable dietary carbohydrates are known to promote
the proliferation of organisms that produce butyrate and
PSA' Stimulation of Tre differentiation by these
beneficial microbial signals may help resolve inflamma-
tion.

Aside from rational modifications in diet composi-
tion, a change in feeding cycle, e.g., intermittent fasting,
has been shown to have metabolic benefits"*”. Since
periodic fasting will change nutrient availability to gut mi-
crobes and potentially interrupt host feedbacks to the gut
microbiome, this may also help reverse dysbiosis. How-
ever, these postulated links require further investigations
for validation. In conclusion, integration of metagenom-
ics, metabolomics and taxonomic profiling has provided
important insights into the functions of gut microbiome
and the role of host-microbial crosstalk in dysbiosis. Our
emerging understanding of interplay between nutrition,
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gut microbial dynamics and host responses will further

the development of effective interventions on patho-
physiology of lifestyle diseases.
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