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Abstract
Traditionally bacteria have been considered as either 
pathogens, commensals or symbionts. The mammal 
gut harbors 1014 organisms dispersed on approximately 
1000 different species. Today, diagnostics, in contrast 
to previous cultivation techniques, allow the identifica-
tion of close to 100% of bacterial species. This has 
revealed that a range of animal models within differ-
ent research areas, such as diabetes, obesity, cancer, 
allergy, behavior and colitis, are affected by their gut 
microbiota. Correlation studies may for some diseases 
show correlation between gut microbiota composition 
and disease parameters higher than 70%. Some dis-
ease phenotypes may be transferred when recolonizing 
germ free mice. The mechanistic aspects are not clear, 
but some examples on how gut bacteria stimulate re-
ceptors, metabolism, and immune responses are dis-
cussed. A more deeper understanding of the impact of 
microbiota has its origin in the overall composition of 
the microbiota and in some newly recognized species, 

such as Akkermansia muciniphila , Segmented filamen-
tous bacteria and Faecalibacterium prausnitzii , which 
seem to have an impact on more or less severe disease 
in specific models. Thus, the impact of the microbiota 
on animal models is of a magnitude that cannot be 
ignored in future research. Therefore, either models 
with specific microbiota must be developed, or the mi-
crobiota must be characterized in individual studies and 
incorporated into data evaluation.
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Core tip: Full characterization of the gut microbiota of 
animal models has revealed that animal models within 
different research areas, such as diabetes, obesity, 
cancer, allergy, behavior and colitis, are highly affected 
by their gut microbiota. The mechanistic aspects are 
not clear; however, the impact of the microbiota on 
animal models is of a magnitude that cannot be ig-
nored in future research. Therefore, either models with 
specific microbiota must be developed, or the micro-
biota must be characterized in individual studies and 
incorporated into data evaluation.
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INTRODUCTION
Host-microbiota relationship
The gut is an ideal incubation chamber for bacteria 
adapted to the mammal body temperature and the anaer-
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obic environment. Thousands of  years of  co-existence 
has led to such adaptation, and the mammal gut harbors 
1014 organisms dispersed over approximately 1000 dif-
ferent species, dependent on how the cut-offs are set for 
similarity. Within the traditional approach to laboratory 
animal bacteriology, bacteria have been considered as 
either pathogens, commensals or symbionts; however, 
there seems to be a need for a broader understanding 
of  this. When first inside the gut, the bacteria will be fed 
and will be allowed to propagate, while the host organ-
ism will benefit from otherwise unavailable products of  
microbial digestion. Generally, pathogenicity is not in 
the interest of  the microorganism, because it induces a 
strong and eradicating immune response from the host, 
and even in the case of  microbial victory in this battle, 
the end result may be the death of  the host and the need 
for the microbe to relocate to a new habitat. The host 
immune system, on the other hand, needs to protect the 
host from invasion without being so aggressive that it 
loses the microbe and thereby all its benefits.

Complexity of microbial impact on the host
A more advanced understanding of  the impact of  the 
microbiota takes into consideration both the overall 
composition and the balance between the members of  
the microbiota, as well as some newly recognized species, 
which, by themselves, seem to have an effect on the spe-
cific models. Some of  these have a symbiotic effect, while 
others push disease development in a more detrimental 
direction. However, same species may act in favor of  the 
development of  one disease, while being more protective 
against another disease, and the mechanistic potential of  
the species may differ between different parts of  the gut. 
For most of  these bacteria, it is their abundance, rather 
than their qualitative presence or absence, which are re-

sponsible for their effect on the host[1-4]. The microbiota 
is normally not very diverse in the upper part of  the gut, 
e.g. in the ileum, where there is a huge accumulation of  
lymphatic tissue available for stimulation[3,5-10]. It gradually 
becomes more diverse as the gut contents pass through 
the large intestine and become feces (Figure 1)[3,5-11]. In 
both man and mouse, a microbiota with a low diversity is 
indicative of  an increased risk of  developing inflammato-
ry disease[12,13]. Furthermore, in animals, a microbiota that 
is roughly similar in the upper part of  the gut, may differ 
substantially in the lower part of  the gut and vice versa[3,14]. 
Finally, there might be essential differences between the 
effects of  the various species at different ages of  the 
animals, which may explain why some species favor the 
development of  one disease, while protecting against an-
other.

Modern microbiological identification techniques
Over recent decades, new methods based upon molecu-
lar biology diagnostics have been developed. Such meth-
ods, which include quantitative real-time polymerase 
chain reaction (qPCR) assays[15], pyrosequencing[16] and 
metagenomic sequencing, have permitted identification 
of  close to 100% of  the gut’s operational taxonomic 
units (OTU), which include both cultivable and non-
cultivable bacterial species, and in principle, viral, eukary-
otes and Archea[17], although they are seldom specifically 
tested for at present. In contrast, previous cultivation 
techniques only allowed cultivation and identification of  
10%-20% of  the bacterial species present in the gut[18]. 
These molecular biology-based tools have enabled de-
tailed correlation studies. Such studies have revealed that 
a range of  animal models within a range of  different 
research areas are affected by their gut microbiota[19].

GENERAL MECHANISMS UNDERLYING 
THE GUT MICROBIOTA EFFECT
As described below, the impact of  the microbiota on an-
imal models is well documented, while the mechanisms 
underlying this are less clear. Some hypotheses, though, 
make more sense than others. As techniques for the 
full characterization of  the microbiota have been devel-
oped over the last decade, we are only now beginning to 
achieve an understanding of  how the microbiota actually 
exerts its effect on the host; however, some examples 
can be given.

Window of opportunity
In early life, there is a window for the induction of  oral 
tolerance in the gut[20]. This seems essential to avoid in-
flammatory disease later in life[21]. Molecular structures 
in bacteria known as microbial-associated molecular pat-
terns (MAMP) stimulate pattern-recognition receptors 
(PRR) in the host, thereby inducing innate responses[22]. 
Among the most important PRRs are the toll-like recep-
tors (TLR), which are present in different types on a 
range of  different cell types[22-29] (Figure 2). An impor-
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Figure 1  The approximate composition of the gut microbiota in the ileum, 
cecum and feces of mice[3,7,8,11,16].



tant example of  a MAMP is lipopolysaccharides (LPS), 
which are important parts of  the cell wall of  Gram 
negative bacteria[30], such as Proteobacteria[31], from 
which it stimulates TLR4. Another important example is 
peptidoglycan, found in the cell walls of  Gram positive 
bacteria, which stimulates TLR2[32] and flagellin deriving 
from flagellated bacteria, leading to stimulation of  TLR5[33]. 
Therefore, as different types of  MAMPs stimulate differ-
ent TLR’s dispersed on a variety of  different cell types[23], 
and as MAMPs are also dispersed and shared between 
members of  the microbiota[22], there is a vast range of  
innate host responses to bacteria.

Adult life stimulation
The age of  the animal also makes a difference. For 
example, stimulation of  TLR1, TLR2 and TLR4 in early 
life leads to higher production of  interleukin (IL)-6 than 
stimulation later in life[34]. Germ free animals have more 
T helper cells type 2 (TH2) and less TH1 cells[35], as the 

stimulation of  the gut lamina propria dendritic cells, e.g. 
by polysaccharide A (PSA) from Bacteroides fragilis, induces 
IL-12 secretion, which favors TH1 at the cost of  TH2[36]. 
Host-bacterial interactions, probably mediated through 
glucagon-like peptide 2 (GLP-2), seem to control the gut 
barrier function[37]. Metabolic endotoxaemia is responsible 
for the phenomenon whereby excess intake of  dietary 
fat increases plasma LPS levels[38,39], which in mice, is 
a sufficient molecular mechanism to trigger metabolic 
diseases, such as obesity and diabetes[40].

EXAMPLES OF SOME ANIMAL 
MODELS UNDER IMPACT OF THE GUT 
MICROBIOTA
Impact of germ free status
The clearest documentation of  a general microbial impact 
on rodent models is observed when comparing a conven-
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Figure 2  Examples of some theories on potential pathways for the impact of gut microbiota on animal models of human disease. Bacterial colonization may 
double the density of capillaries in the small intestinal epithelium, thereby promoting intestinal monosaccharide absorption[28]. Undigested food components may be 
fermented into SCFAs and subsequently act as signals for GPRs of importance for the development of obesity[26,29]. Bacteria may express several key enzymes rele-
vant for hepatic lipogenesis[27,50], and hepatic and muscular fatty acid oxidation[31]. Molecular structures in the cell walls of bacteria may act as MAMPs, which stimulate 
TLRs on the host cells to induce innate immune responses.  The complex of TLR1, TLR2, TLR6 and TLR10 is expressed on a range of cell types such as enterocytes, 
macrophages, dendritic cells, natural killer cells, mast cells, T cells, B cells, neutrophilic cells and Schwann cells, and may be stimulated by various MAMPs, e.g. pep-
tidoglycan, from Gram positive bacteria cell types[21,23-25,31-33]. TLR4, expressed by e.g. macrophages, dendritic cells, mast cells, natural killer cells and enterocytes, is 
stimulated by lipopolysaccharides from Gram negative bacteria[30], while flagellin from various bacteria may stimulate TLR5 expressed by e.g. mucosal dendritic cells 
and macrophages[33]. Mucin-degrading Akkermansia muciniphila may reduce the mucus layer to increase TLR-stimulation[79]. SCFAs: Short chain fatty acids; GPR: 
G-protein receptor; MAMP: Microbial-associated molecular pattern; TLR: Toll-like receptor.
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Table 1  Examples of rodent models in which germ free status 
has a documented impact

seems to be an association between the gut microbiota 
and at least some of  the metabolic parameters. For ex-
ample, in leptin-deficient obese mice, there is a strong 
correlation between glycated hemoglobin levels and the 
composition of  the gut microbiota[1]. Further, these mice 
have significantly more Firmicutes and fewer Bacteriode-
tes members compared with their wild-type and heterozy-
gous litter mates[10]. Their obese phenotype may be trans-
ferred with the microbiota by recolonizing germ free lean 
wild-type mice[65]. In C57 Black substrain 6 (C57BL/6) 
mice on both high and low calorie diet, continuous oral 
ampicillin improves glucose tolerance[66,67]. However, this 
effect is mainly caused by an early life impact on glucose 
tolerance, and the effect ceases immediately after ter-
mination of  treatment; thereafter, the glucose tolerance 
may even decrease[68,69]. Several studies describe cross-
talk between the brain and the gut through both the vagal 
system and the hypothalamus-pituitary-adrenal (HPA) 
axis[70]. Stressing animal models changes their micro-
biota[71], and the composition of  the gut microbiota has 
an impact on responses in rodent stress tests[72,73]. Innate 
immune system cytokines, such as IL-1, IL-6 and tumor 
necrosis factor α (TNFα), which may originate from a 
gut microbiota provocation, induce “sickness behav-
ior”, changing the priorities of  the organism to enhance 
recovery and survival[74]. However, metabolites formed 
by microbial decomposition in the gut may also have a 
direct impact on the brain[75]. In mouse models of  atopic 
dermatitis, more than 70% of  the variation observed in 
the local tissue cytokine response may be shared with the 
variation in gut microbiota[76]. Changes in the structure 
of  the microbial community seem to reduce the number, 
as well as the size, of  tumors in azoxymethane/dextran 
sodium sulfate (AOM/DSS) colon cancer-induced mice, 
and tumor induction may be achieved by colonizing germ 
free mice with microbiota from induced mice[77].

EXAMPLES OF THE IMPACTS OF 
SPECIFIC BACTERIAL SPECIES
Verrucomicrobioa
Akkermansia muciniphila (A. muciniphila) is a Gram negative 
bacterium, which in mice is the only species belonging to 
the phylum Verrucomicrobia[78]. It interacts via its mucin 
degrading capabilities with enteroendocrine cells to mod-
ulate gut barrier function, and it is capable of  producing 
certain short chain fatty acids (SCFA’s) with a direct ac-
tion on the receptor G-protein receptor 43 (GPR43)[79]. 
Abundance of  A. muciniphila is reduced in mice with 
obesity and type 2 diabetes[80], and it gradually disappears 
as aging leptin deficient obese mice develop insulin resis-
tance[1]. In non-obese diabetic (NOD) mice it becomes 
more abundant when mice are fed a gluten-free diet, 
which decreases the incidence of  type 1 diabetes[81]. Early 
life treatment with vancomycin in NOD mice allows A. 
muciniphila to become a dominant gut microbiota mem-
ber, which reduces the incidence of  type 1 diabetes[3], 
but enhances susceptibility to allergic asthma[82], which 
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Model Disease

Models with increased disease incidence or severity
   β-lactoglobulin induced mouse[51] Allergy
   NOD mouse[42] Type 1 diabetes
   MyD88 KO NOD mouse[42] Type 1 diabetes
   Restrained mouse[43] Stress
Models with decreased disease incidence or severity
   Ovalbumin-specific TCR TG mouse[44] Allergy
   Swiss-Webster mouse[45] Anxiety
   Collagen induced rat[52] Arthritis
   HLA-B27 TG rat[53] IBD
   IL-2 KO mouse[54,55] IBD
   IL-10 KO mouse[56] IBD
   TCRα KO mouse[57] IBD
   Dextran sulfate sodium induced mouse[46] IBD
   SAMP1/Yit mouse[47] IBD
   Adoptive T-cell transfer in the mouse[48] IBD
   Carrageenan, LPS, or formalin induced mouse[49] Inflammatory 

pain
   C57BL/6 mouse[65] Obesity
   C57BL/6 mouse[65] Type 2 diabetes

tional model with a microbiota with a germ free version. 
In several studies, this has revealed essential differences 
in disease expression (Table 1)[22,41-57]. Although germ free 
mice eat more, they are leaner, and they have less body 
fat compared with conventional mice because they are 
less efficient in extracting energy from their diet[50]. Germ 
free mice have increased expression of  obesity-related 
peptides, such as glucagon-like peptide 1 (GLP-1) in the 
brain[58], which is relevant, because central GLP-1 reduces 
food intake in rats[59]. Germ free mice also behave differ-
ently from microbiota-harboring mice and this behavior 
may be normalized by colonization[43]. However, for this 
phenotype there also seems to be an important time win-
dow in early life[60]. Germ free mice with a mutation caus-
ing a defect in the skin barrier suffer from a more severe 
B-lymphoproliferative disorder, because they express sig-
nificantly higher levels of  the proinflammatory cytokine 
thymic stromal lymphopoietin[61]. Inflammatory bowel dis-
ease (IBD) occurs either because of  a TH1/TH17 response 
(Crohn’s disease) or a TH2 response (ulcerative colitis) to 
gut commensals[62]. Therefore, IBD under germ free con-
ditions does not develop at all in, e.g. Human Leucocyte 
Antigen subtypes B27 (HLA-B27) transgenic rats[53] and 
IL-10 knockout mice[56]. For the IL-10 knockout mice[63] 
it does not occur even under barrier protected conditions 
(Table 1). IL-2 knockout mice may, under germ free con-
ditions, show mild focal intestinal inflammation[64] (Table 
1).

Impact of fluctuations in the gut microbiota composition
Within animal models of  the metabolic syndrome, there 

NOD: Non-obese diabetic; MyD88: Myeloid differentiation primary 
response gene 88; KO: Knockout; TCR: T cell receptor; TG: Transgenic; 
HLA-B27: Human leucocyte antigen subtype B27; IL-2: Interleukin 2; 
SAMP1/Yit: Senescence accelerated mice prone line 1 Yakult; LPS: Lipo-
polysaccharide. IBD: Inflammatory bowel disease.
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is in accordance with other studies showing allergy and 
diabetes to counteract one another in NOD mice[83,84]. 
Induction of  IBD in mice with dextran sodium sulfate 
(DSS) reduces the number of  extracellular vesicles de-
rived from A. muciniphila, and feeding DSS induced mice 
such vesicles reduces the severity of  IBD[85], which fits 
well with observations in humans[4]. However, it not only 
reduces the severity of  diseases: its presence is correlated 
with higher severity when infecting mice with Salmonella 
typhimurium[86], and AOM/DSS colon cancer-induced 
mice have an increased abundance of  A. muciniphila[77], 
which may be explained by its ability to downregulate the 
natural killer cell receptor, NKG2D, which is part of  the 
anti-carcinogenic defense[87].

Firmicutes
Segmented filamentous bacteria (SFB’s) are clostridia-re-
lated Gram-positive bacteria[88]. The term has been applied 
for decades to describe intestinal bacteria of  a uniform 
morphology[89]. However, today the term refers to one 
single species, also known as Candidatus Savagella[90]. SFBs 
induce secretion of  the pro-inflammatory cytokine IL-17 
from TH17 cells[91], which in the adult mouse is correlated 
with a low number of  regulatory T cells[92]. The presence 
of  SFB’s differs between mice from different vendors[92], 
and SFB positive NOD mice have a significantly lower 
incidence of  type 1 diabetes compared with SFB nega-
tive ones[93]. In the adoptive transfer severe combined 
immune deficiency (SCID) mouse model of  IBD, SFBs 
are essential for the induction of  severe inflammation[48]. 
Furthermore, SFBs and the induced TH17 are important 
in the defense against intestinal pathogens. For example, 
mice infected with Citrobacter rodentium, a potent murine 
colon pathogen, exhibit severe symptoms if  they lack 
SFBs[91].

IBD in IL-10 knockout mice is enhanced by Enterococ-
cus fecalis[94,95], which is probably linked to its production of  
gelatinase[96].

Faecalibacterium prausnitzii (F. prausnitzii) is a clostridia-
related bacterium[97] linked to a protective effect against 
human Crohn’s disease[98]. Oral feeding of  F. prausnitzii 
reduced the severity of  2,4,6-trinitrobenzenesulfonic 
acid (TNBS)-induced colitis in mice, and some studies 
indicated that this may also be the case in both multidrug 
resistance gene deficient (mdr1a knockout)[99] and in the 
DSS-induced mouse models of  colitis[100].

High abundances of Lactobacillus spp. and bifidobac-
teria are correlated strongly with low levels of  inflamma-
tion in mice[101] and leptin in rats[102], which also fits well 
with these bacteria acting protectively against IBD in 
IL-10 knockout mice[103], allergic sensitization in mice[104], 
and myocardial infarction in rats[102]. Lachnospiraceae seems 
quantitatively correlated to improved glucose tolerance 
in leptin-deficient obese mice[1].

In stressed mice, there is correlation between their Fir-
micutes levels and their responses in the stress tests[73]. 
Ingestion of  Lactobacillus rhamnosus in mice regulates their 
emotional behavior and central γ-aminobutyric acid (GABA) 

receptor expression via the vagus nerve[72].

Bacteroidetes
A high abundance of  the Gram negative family Prevotel-
laceae, perhaps restricted to one unclassified genus, in 
the gut of  leptin-deficient obese mice correlated with 
impaired glucose tolerance[1].By contrast, in AOM/DSS 
induced colon cancer mice, a high abundance of  Pre-
votellaceae correlated with a low tumor burden[77]. P. copri, 
which has been correlated with the development of  ar-
thritis in humans, seems to increase the severity of  DSS 
induced colitis in mice[5]. Caspase-3 knockout mice exhibit 
a lower inflammatory response to DSS induction of  
colitis compared with wild-type mice; however, this pro-
tective effect of  the mutation is decreased by cohousing 
knockout mice with wild-type mice, which significantly 
increases the abundance of  Prevotella spp. in the knockout 
mice[105].

Bacteroides vulgatus seems to enhance IBD in HLA-B27 
transgenic rats[106] and IL-10 knockout mice[95], and in 
the Bio Breeding (BB) rat, a spontaneous type 1 diabetes 
model. The fecal microbiota differ and contain an in-
creased number of  Bacteroides spp. before onset of  diabe-
tes[107]. As in all other mammals, Bacteroides spp. form an 
important part of  the Bacteroidetes fraction of  the rodent 
gut[16]. These Gram negative bacteria are important for the 
processing of  complex molecules to simpler ones in the 
gut[108]: complex glycans are their key source of  energy[109]. 
B. fragilis toxins cause symptoms of  diarrhea and IBD 
in germ-free mice[110], and they induce colonic tumors 
strongly in multiple intestinal neoplasia (MIN) mice[111]. 
On the other hand, B. fragilis PSA, which is important for 
the inflammatory gut response to pathogens[36], also pro-
tects against Helicobacter hepaticus-induced colitis in mice; 
probably via the prevention of  IL-17 secretion[112]. Feeding 
the maternal immune activation (MIA) mouse model with 
B. fragilis reduces symptoms of  autism, which is probably 
linked to the normalization of  the levels of  a specific gut 
metabolite[113].

The abundance of  Alistipes spp., a bacterium of  the 
Rikenellaceae family, seems to increase when mice are 
stressed by grid floor housing[73].

Proteobacteria
Escherichia coli (E. coli) enhances IBD in HLA-B27 over-
expressing rats[106], although E. coli Nissle stabilizes the 
enteric barrier in mice[114]. When reducing type 1 diabetes 
by pre-weaning treatment of  NOD mice with vancomy-
cin, a vast increase in the abundance of  Proteobacteria 
in the pups was observed[3].

Actinobacteria
Bifidobacterium spp. in rodents have a positive impact on 
the regulatory  and innate immunity[101,115]. Perinatal sup-
plementation of  B. longum reduced TH1 and TH2 responses 
in allergen sensitized mice[104]. On the other hand, their 
numbers are also increased in gluten-fed NOD mice with 
a high incidence of  type 1 diabetes compared with NOD 
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mice on a gluten-free diet[81].

DISCUSSION
The information gained over the last decade on how 
the entire microbiota, as well as some of  its individual 
members, affect animal models of  very different types, 
has prompted the scientific community to incorporate 
this in future production and quality assurance of  animal 
models. It is not possible to regard these matters from a 
“Specific pathogen-free” concept, as some of  the spe-
cies act in favor of  the development of  one disease, 
while against the development of  another disease, e.g. 
SFB’s both protect against type 1 diabetes and induces a 
TH17 response in favor of  the development of  Crohn’s 
disease. Furthermore, the balance between the different 
fractions of  the microbiota is also likely to make a dif-
ference. Ultimately, it is often a quantitative rather than 
a qualitative presence that makes the difference. There-
fore, it is likely that we will see more tailor-made rodent 
models, i.e. commercial breeders and research groups 
have sought to produce animals with a specific microbi-
ota for the conditions under test. One obvious idea may 
be to breed such animals by selective breeding; however, 
this does not seem to increase the microbiota similarity, 
although the microbiota of  offspring show a clear clus-
tering with the mother’s microbiota[116,117]. It is probably 
rational to inoculate germ free mice with a tailor-made 
microbiota around weaning, as they are conventionalized 
in SPF conditions[118]. The window for induction of  oral 
tolerance in animal models may also be turned around, 
such that a low bacterial stimulation in the open phase 
of  this window may be essential to develop target diseas-
es in the model. When stimulated later on, the nature of  
this stimulation is also essential, because commonly used 
disease models in rodents are driven by specific subsets 
of  T cells[19]. Another alternative will be to characterize 
the microbiota composition for animals in sensitive stud-
ies and incorporate this in the data evaluation by chemo-
metric or multifactorial statistical means. The impact of  
the gut microbiota on animal models is of  a magnitude 
that cannot be neglected in the future.
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