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Abstract
The evasion from controlled cell death induction has 
been considered as one of the hallmarks of cancer 
cells. Defects in cell death signaling are a fundamental 
phenomenon in colorectal cancer. Nearly any non-inva-
sive cancer treatment finally aims to induce cell death. 
However, apoptosis resistance is the major cause for 
insufficient therapeutic success and disease relapse 
in gastrointestinal oncology. Various compounds have 
been developed and evaluated with the aim to meet 
with this obstacle by triggering cell death in cancer 
cells. The aim of this review is to illustrate current ap-
proaches and future directions in targeting cell death 
signaling in colorectal cancer. The complex signaling 
network of apoptosis will be demonstrated and the 
“druggability” of targets will be identified. In detail, 
proteins regulating mitochondrial cell death in colorec-
tal cancer, such as Bcl-2 and survivin, will be discussed 
with respect to potential therapeutic exploitation. Death 
receptor signaling and targeting in colorectal cancer 
will be outlined. Encouraging clinical trials includ-
ing cell death based targeted therapies for colorectal 
cancer are under way and will be demonstrated. Our 
conceptual understanding of cell death in cancer is 
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rapidly emerging and new types of controlled cellular 
death have been identified. To meet this progress in 
cell death research, the implication of autophagy and 
necroptosis for colorectal carcinogenesis and therapeu-
tic approaches will also be depicted. The main focus of 
this topic highlight will be on the revelation of the com-
plex cell death concepts in colorectal cancer and the 
bridging from basic research to clinical use.
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Core tip: This review highlights current strategies tar-
geting cell death signaling in colorectal cancer. The role 
of apoptosis, autophagy and necroptosis in the normal 
colon mucosa as well as in colorectal cancer onset and 
therapy is defined. Relevant small molecule compounds 
as well as antisense based approaches for the treat-
ment of colorectal cancer are illustrated. Furthermore, 
clinical trials investigating new cell death based com-
pounds are discussed. Finally, future directions in trans-
lational cell death research are discussed. 
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CELL DEATH IN THE NORMAL 
COLORECTUM
The crypts of  the colorectal mucosa are organized in a 
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polarized fashion. Very few stem cells at the base of  a 
crypt comprise the pool of  the regenerative epithelium 
in which cells travel from bottom to top of  the crypt. On 
the apical edge of  the mucosa, about 1010 cells per day die 
by apoptosis and are subsequently shed in the lumen[1]. 
This fact illustrates the essential need of  a proper regulat-
ed cell death for the homeostasis of  a normal colorectal 
mucosa. However, defective signaling or dysbalanced reg-
ulation of  apoptosis is a very likely cause for the initiation 
and progression of  an adenoma to carcinoma sequence 
ending up in colorectal cancer (CRC). Of  note, proteins 
relevant for apoptosis (e.g., Bak or Bcl-2) are not equally 
expressed in all parts of  the colorectal mucosa pointing 
on distinct regulation of  death in the intestine[2,3].

In addition to apoptosis as the classical form of  pro-
grammed cell death, autophagy, a controlled process of  
cellular self  digestion of  great importance in situations 
of  cellular stress or upon energy deprivation, has been 
shown to be active and relevant in colorectal glands. In 
contrast to apoptosis, the autophagic flux intensity de-
creases in the crypt from bottom to top[4]. This has been 
indicated by high expression levels of  proautophagic 
protein Beclin-1 and the conversion of  LC3-Ⅰ to LC3-Ⅱ 
in lower crypt cells. On their way to the apex of  a crypt 
the epithelial cells lose Beclin-1 expression and accumu-
late high levels of  SQSTM1/p62, which is an ubiquitin-
associated adaptor protein maintaining autophagic flux[4].

In summary, the integrity of  the complex interplay of  
cell death signaling is fundamental for mucosal develop-
ment and homeostasis in the colorectum. Defective or 
dysbalanced cell death signaling is involved in the patho-
genesis of  a variety of  colorectal diseases from chronic 
bowel diseases (Crohn’s disease as well as ulcerative coli-
tis) to colorectal carcinoma.

CELL DEATH IN INTESTINAL DISEASE 
AND CARCINOGENESIS
Colorectal carcinoma can occur sporadically, the most 
common situation, on the base of  defined mutations 
and also as a final consequence of  chronic inflammatory 
diseases of  the intestine[5,6]. The intriguing field of  cancer 
related to chronic inflammation will not be in the focus 
of  this review and the reader might refer to comprehen-
sive literature by others addressing this issue[7-11].

During the development of  CRCs from benign pol-
yps through adenomas and finally adenocarcinomas, cell 
death plays a fundamental role. Key regulating proteins 
of  an appropriate mucosal cell death undergo changes 
in expression during the transition of  an adenoma-carci-
noma-sequence[12-14]. For instance, antiapoptogenic Bcl-2 
gets lost during the development from adenoma to car-
cinoma[14]. However, especially the value of  cell death re-
lated proteins as biomarkers for prognosis and prediction 
of  CRC is of  great interest, but the available literature is 
inconsistent and controversial[15-17]. In summary, apop-
tosis signaling proteins are in the context of  biomarkers 
either ill defined or need further validation[18]. The reason 

for these contradictory reports might be due to the ex-
traordinary heterogeneity of  CRCs and the broad variety 
of  the carcinogenesis driving mutations[5,19,20]. The aim of  
this review is to identify possible targets in the cell death 
signaling network and discuss the compounds available to 
foster killing of  colorectal cancer cells.

TARGETING CELL DEATH IN 
COLORECTAL CANCER
Apoptosis: Implications for therapy
Defects in apoptosis signaling are common in colorectal 
cancers. An acquired resistance towards cell death may be 
a key feature of  both, carcinogenesis and therapy resis-
tance[21]. However, proteins within the apoptosis signaling 
pathways have been evaluated for their value as predictive 
and or prognostic markers as well as targets for therapeu-
tic approaches[18]. Figure 1 shows a synopsis of  apoptosis 
signaling and indicates relevant targets and compounds.

INTRINSIC PATHWAY
Mitochondria are in the very centre of  the intrinsic path-
way of  apoptosis. The mitochondrial membrane integrity 
is regulated by the Bcl-2 family of  proteins. A tight bal-
ance of  pro- and antiapoptotic Bcl-2 proteins governs 
cell’s fate at the mitochondrial surface. In response to 
several unfavorable conditions (e.g., growth factor with-
drawal, DNA damage), this balance shifts towards death. 
In this case, the proapoptotic proteins (e.g., BAX and 
BAK) are released by their antiapoptotic relatives (Bcl-2, 
Bcl-xL, Mcl-1, Bcl-w and A1)[22]. The proapoptotic pro-
teins finally lead to mitochondrial outer membrane per-
meabilisation and the immediate release of  cytochrome 
C (cytC) into the cytosol. Together with APAF-1 and 
Caspase 9, cytC forms a death inducing protein platform 
called apoptosome which in turn leads to activation of  
caspase 3 as the central downstream event of  cell death 
execution[23].

BH3-mimetics
Within the intrinsic pathway of  apoptosis, the antiapop-
totic Bcl-2 proteins have been extensively studied as 
“druggable” targets. Various small molecules targeting the 
antiapoptotic proteins by binding to their BH3 cleft. This 
mechanism of  action causes a release of  multidomain 
proapoptotic Bcl-2 proteins (e.g., Bim, Bak or/and Bax) 
which in turn promote cell death. ABT-737 and its orally 
available derivate ABT-263 (navitoclax) are potent inhibi-
tors of  Bcl-2, Bcl-w and Bcl-xL. ABT-263 has recently 
been shown to induce cell death in colorectal cancer cells 
in vitro synergistically with the inhibition of  the prosur-
vival kinase MAP kinase/ERK kinase 1/2[24]. This mech-
anism of  death induction by ABT-263 was completely 
dependent on Bax and Bim. Several phase I trials in solid 
cancers have proven the safety of  ABT263 in combina-
tion with established therapy regimes (www.clinicaltrials.
gov). ABT-737 has been shown to act synergistically with 
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oxaliplatin on CRC cells in vitro[25]. An ex vivo evaluation 
of  ABT-737 in samples of  ovarian tumors is under way 
(www.clinicaltrials.gov). In addition, ABT-737 enhanced 
apoptosis in CRC cells induced by cyclo-oxygenase-2 in-
hibitor celecoxib[26]. Importantly, the sensitivity of  cancer 
cells towards ABT-737 is dictated by the expression of  
NOXA and its control by Mcl-1, which is not targeted by 
ABT-737[27,28]. Interestingly, Mcl-1 sparing BH-3 mimet-
ics such as ABT-737, ABT-199 and ABT-263, have been 
shown to effectively induce apoptosis in hypoxic regions 
of  human colorectal tumor spheres. Hypoxia led to a 
profound downregulation of  Mcl-1 which is responsible 
for ABT-737 resistance in many settings[29]. This work is 
of  great interest since few normal tissues are exposed to 
hypoxia, but it is a common challenge for growing tu-
mors[30]. HA14-1 is a highly selective small molecule tar-
geting Bcl-2 only. HA 14-1 has been shown to overcome 
TRAIL resistance in CRC cells by counteracting Bcl-2 
overexpression[31,32].

Obatoclax is a first-in-class BH-3 mimetic with an 
inhibitory profile including Bcl-2, Bcl-xL, Bcl-w, Mcl-1 
and A1 (pan-Bcl-2-inhibitor)[33]. Given the crucial role of  
Mcl-1 for resistance towards BH-3 mimetics, obatoclax is 
a promising new agent targeting the complete antiapop-

toic Bcl-2 protein family members at once. Few studies 
investigated the potency of  obatoclax for colorectal can-
cer treatment. It has been recently shown that cell death 
induction through inhibition of  the proproliferative pro-
tein Notch by gamma secretase inhibitors is fostered by 
obatoclax[34]. 

Oblimersen is an antisense oligonucleotide target-
ing the first six codons of  Bcl-2. Antisense technology 
represents a highly specific approach for downregulation 
of  antiapoptotic proteins without off-target effects[35]. A 
phase Ⅰ trial has shown the safety of  oblimersen in com-
bination with irinotecan when intravenously administered 
in patients with metastatic CRC[36]. 

In summary, Bcl-2 proteins are context-sensitive tar-
gets in colorectal cancer treatment alongside established 
chemotherapy or radiation. Future studies are urgently 
warranted to reveal the potential of  BH-3 mimetics in 
colorectal cancer in the clinical setting.

IAP inhibitors
The inhibitor of  apoptosis (IAP) family acts by blocking 
caspase activity (primarily caspase 3). IAPs are found to 
be overexpressed in several cancer entities including CRC 
and are able to protect cancer cells from various death 
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approved for regional treatment of  melanoma and soft tis-
sue sarcoma in Europe. The use of  TNF-α as a systemic 
approach is hampered by severe toxicity and adverse side 
effects such as hypotension, organ failure and cachexia[57]. 
The efficacy of  TNF-α for CRC treatment remains to be 
clarified, but might be restricted due to TNF-α’s nature 
as a proinflammatory cytokine. TNFerade® is an adenovi-
ral delivered, intratumoral therapy with a proven safety in 
rectal cancer patients[58,59]. In advanced pancreatic cancer, 
TNFerade® was safe but did not prolong survival of  pa-
tients[60]. The final investigation of  TNFerade® for CRC 
treatment remains elusive. Furthermore, human mono-
clonal antibody-cytokine fusion protein L19-TNF has 
been shown to be safe in solid tumors and effective in 
sarcomas[61,62]. Again, more studies addressing the efficacy 
for CRC treatment are needed.

CD95 (Apo1/Fas)
CD95 and its ligand have a highly complex role in the 
colorectal mucosa as well as in onset and progression of  
CRC. In CRC tissue, CD95 has been shown to be ex-
pressed at higher levels compared to adjacent healthy mu-
cosa[63]. Tumor stromal cells and infiltrating immune cells 
should be considered as bystander targets of  CD95 trig-
gering[64,65]. There is some evidence for a metastasis pro-
moting function of  CD95 signaling in colorectal cancer 
via induction of  epithelial to mesenchymal transition[66]. 
As response to hypoxia and radiation, CD95 becomes ac-
tivated on CRC cells and induces local invasion and pro-
motes liver metastasis in mice[67,68]. In addition, invasive 
properties of  CRC cells have been linked to CD95 signal-
ing[69,70]. At least in vitro, CD95 participates in the activity 
of  PEG-liposomal oxaliplatin induced death in CRC[71]. 
The anti-Fas monoclonal antibody CH-11 showed anti-
tumor activity in CRC cells with high expression levels 
of  CD95. This death inducing effect was effectively 
prevented by overexpression of  Bcl-2 pointing on a piv-
otal role of  mitochondria for CD95 signaling in CRC[72]. 
Moreover, there is evidence for a regulatory effect of  
other antitumor drugs [5-fluorouracil (5-FU), mitomycin 
(MM), cisplatin (CP) and all-trans retinoic acid] on CD95 
expression of  CRC cells. Here, MM and CP were able to 
increase CD95-induced apoptosis. By contrast, 5-FU led 
to a receptor downregulation causing immune escape of  
CRC cells[73]. In summary, CD95’s value as a therapeutic 
target in CRC is complex and might be limited due to the 
multifaceted role of  CD95 in immune-mediated tumor 
surveillance[74]. As for TRAIL detailed below, several ways 
of  resistance to CD95-induced death further complicate 
CD95-based therapeutic approaches[75-77]. 

Tumor necrosis factor inducing ligand-system
Tumor Necrosis factor inducing ligand (TRAIL) recep-
tors have been considered as extraordinary promising 
antitumor targets, since activation preferably kills tumor 
cells while sparing healthy cells[54]. However, normal co-
lon mucosa epithelium is resistant to TRAIL-induced 
death[78]. TRAIL directly targets death receptor 4 (DR4) 

stimuli[37,38]. Several compounds inhibit IAPs (primarily 
XIAP and Survivin). AEG35156 is a second generation 
antisense oligonucleotide targeting XIAP. Preclinical and 
early clinical data revealed a promising death-inducing 
potential of  AEG35156 in several solid tumor entities 
including CRC[39-42]. Survivin is a second promising target 
among the IAP family overexpressed in CRC. Survivin 
antisense oligonucleotides strikingly cleared the way for 
death induction in CRC cells in vitro[43]. Embelin, a natu-
rally occurring benoquinone, has been proven effective 
in various tumor entities by targeting survivin and other 
antiapoptotic proteins (Bcl-2 and Bcl-xL)[44]. In the co-
lon, Embelin was able to sufficiently attenuate colitis and 
carcinoma development in rodents[45,46]. Finally, a double 
edged approach targeting survivin and XIAP might be a 
very promising approach for CRC treatment[47].

SMAC mimetics
Second mitochondria activator of  caspases (SMAC)/ 
Diablo is a mitochondria derived, proapoptotic protein 
acting by blocking IAPs thereby promoting caspase de-
pendent cell death[48]. SMAC mimetics have been shown 
to strongly sensitize CRC cells towards NSAID induced 
apoptosis through a feedback amplification resulting 
in the activation of  caspase 3[49]. In TRAIL-induced 
apoptosis in CRC cells, SMAC/Diablo release from the 
mitochondria plays a pivotal and role and is Bax depen-
dent[50,51]. Further studies are warranted to clarify the 
exact role of  SMAC for colon carcinogenesis and CRC 
therapy.

EXTRINSIC PATHWAY
The extrinsic pathway of  apoptosis becomes activated in 
case of  binding of  a specific ligand to its surface death 
receptor. Most engaged receptors belong to the tumor ne-
crosis factor receptor family (TNFR, CD95/FAS, TRAIL) 
and share broad similarity in structure and action[52,53]. 

In response to ligand binding, the receptor homotrimer-
ises and an adaptor molecule (FADD, TRADD) contain-
ing a death domain (DD) is recruited to the cytosolic DD 
of  the receptor. Procaspase 8 is hereafter recruited and 
catalytically activated in its active form. Finally, caspase 8 
leads to an activation of  caspase 3 where extrinsic and in-
trinsic pathways of  apoptosis converge[54]. In addition to 
this direct road to death via caspase 8 and caspase 3, there 
is a possible detour integrating mitochondria to enhance 
the death signal. The BH3 only protein Bid is a direct tar-
get of  Caspase 8 and after cleavage of  Bid truncated Bid 
(tBid) is able to activate mitochondria herewith involving 
intrinsic apoptosis[55,56]. 

The receptors involved in extrinsic cell death signaling 
have been shown to be promising targets. Various com-
pounds and approaches aim to induce apoptosis via direct 
receptor activation. 

Tumor necrosis factor-α/tumor necrosis factor receptor
Recombinant tumor necrosis factor-α (TNF-α) has been 
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and death receptor 5 (DR5). The recombinant, soluble 
ligand rhApo2L/TRAIL as well as several antibodies tar-
geting DR4 and/or DR5 have been developed and tested 
for clinical use. 

The agonistic DR4 antibody HGSETR1 (Mapatu-
mumab) and the agonistic DR5 antibody HGSETR2 
(Lexatumumab) induced apoptosis in vitro as well as in 
xenograft bearing nude mice when combined with radia-
tion[79]. In addition, both agonistic antibodies have strong 
synergistic effects with the mitosis disrupting agent pa-
clitaxel in CRC cells in vitro and in vivo. This sensitizing 
effect is due to an upregulation of  the cognate recep-
tors[80]. Several other antibodies targeting DR4 or DR5 
have been shown to have strong antitumor potential on 
CRC cells[81-85]. Dulanermin (rhApo2L/TRAIL), an opti-
mized and soluble form of  TRAIL, has been successfully 
evaluated in early clinical trials[86]. A clinical trial with Du-
lanermin in combination with a chemotherapy backbone 
(FOLFIRI) for patients with metastatic CRC has been 
completed recently and data from this trial should be 
available soon (www.clinicaltrials.gov).

It is important to have in mind that several CRC cells 
show intrinsic or acquired resistance towards TRAIL-
induced apoptosis. Several proteins have been shown to 
counteract TRAIL-induced apoptosis. For instance, two 
decoy receptors within the TRAIL system can counteract 
DR4 and DR5 activation[87]. Moreover, the interference 
of  antiapoptotic Bcl-2 proteins with TRAIL-receptor-
mediated apoptosis has been reported[54,88]. Again at the 
mitochondrial level, Bax is apparently mandatory for 
TRAIL’s efficiency to kill CRC cells, since Bax deficiency 
completely abrogates TRAIL-induced death[89]. Fur-
thermore, high levels of  XIAP block TRAIL-induced 

mitochondrial activation[90]. At the receptor level, muta-
tions of  caspase 8 have been reported to cause TRAIL 
resistance[91]. Moreover, high expression levels of  FLIP 
counteract the interaction between the adaptor FADD 
and Caspase 8 in CRC cells[92,93]. Pennarun and coworkers 
presented proof  of  concept of  a combined approach: 
Downregulation of  Mcl-1 and FLIP by multikinase in-
hibitor sorafenib and NSAID aspirin resensitized cells 
towards TRAIL[94]. These data are indicative for the 
feasibility of  a combination approach of  TRAIL recep-
tor targeting and mitochondrial activation, e.g., by BH3-
mimetics.

Taken together, a final and clinical proof  of  concept 
for individualized TRAIL tailored therapy for CRC is still 
elusive and large cohort prospective trials addressing this 
issue are needed. Table 1 provides an overview of  strate-
gies and trials targeting TRAIL receptors in CRC. The 
awaited results from the Dulanermin trial in metastatic 
CRC might gain important information for further study 
designs using TRAIL based therapy.

ALTERNATIVE CONTROLLED CELL 
DEATH IN COLORECTAL CARCINOMA 
The conceptual understanding of  cell death is under con-
stant expansion and various subtypes of  cellular death 
have been defined[1,95,96]. Among the emerging cell death 
concepts, this work will deeper discuss necroptosis and 
autophagy in order to dissect the current knowledge con-
cerning colorectal carcinogenesis and CRC treatment.

Necroptosis
Necrosis has long been considered as a passive, mainly 
accidental and uncontrolled form of  cellular death. To 
date there is a growing body of  literature implicating a 
tight regulation of  necrotic processes similar to apopto-
sis[97]. Therefore, a programmed form of  necrosis, termed 
necroptosis, has been defined. The signaling events 
responsible for initiation and execution of  necroptosis 
have been studied best in the context of  TNFR signaling. 
Necroptosis is crucially mediated by receptor-interacting 
protein 1 (RIP 1) along with its cognate kinase RIP3. 
Upon TNF induction, a multimeric complex containing 
FADD, caspase 3, RIP 1 and RIP 3 assembles[98]. This 
complex is termed complex IIb or necrosome. The deter-
mination of  cells’ fate is complicated by the observation 
that the ubiquitination status of  the engaged proteins (e.g., 
RIP) appears to be the master switch between apoptosis 
and necroptosis[99]. Necroptosis has also been demon-
strated after activation of  TRAIL receptors on hepato-
cytes and colorectal cancer cells[100]. Mechanistically, there 
are various central proteins involved in both, apoptosis 
and necroptosis. Which form of  cell death prevails, is cell 
type and stimulus dependent[101-103]. Necroptosis and its 
role in various diseases, including CRC and inflammatory 
bowel disease, are currently under investigation[104-107]. 
There is evidence for a central role of  caspase 8 as a key 
switch from apoptosis to necroptosis in carcinoma re-

Table 1  Targeting apoptosis in colorectal cancer: An over-
view of current clinical trials

Drug Target Clinical1 Ref.

Smac mimetics IAPs Phase Ⅰ (NCT01573780) [49,139]
Survivin peptide 
vaccine

survivin Phase Ⅰ-Ⅱ (NCT00108875) [140,141]

Oblimersen Bcl-2 Phase Ⅰ (NCT00004870) [142,143]
Dulanermin DR4/5 dual Phase Ⅰb (NCT00671372) [86]
Tigatuzumab DR5 Phase Ⅰ [144]
CS-1008 DR5 Phase Ⅰ (NCT01220999) [145]
HGS-ETR1 DR4 Preclinical in vivo [79]
HGS-ETR2 DR5 Phase Ⅰ (NCT00428272) [79,146]
rhApo2L/TRAIL DR4/DR 5 Phase Ⅰ-Ⅱ [147]

(NCT00819169)
Conatumumab DR5 Phase Ⅱ (NCT01327612) [148]
ABT-263 Bcl-2/Bcl-xl Phase Ⅰ (NCT00891605, 

NCT01009073)
[24]

ABT-737 Bcl-2/Bcl-xl Preclinical in vivo [25,26,30]
Gossypol Pan-Bcl2 Preclinical in vivo [149]

1Further detailed information on clinical trials: www.clinicaltrials.gov. 
The compounds included in the table directly target apoptotic proteins 
and show antitumor effects in vivo. The phase of the clinical trials is stated 
and trial identifier indicated in brackets where applicable. IAP: Inhibitors 
of apoptosis; DR: Death receptor; TRAIL: Tumor necrosis factor related 
apoptosis-inducing ligand.
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lated inflammatory bowel disease[104].
The relevance of  necroptotic cell death for colorectal 

cancer cells has been evaluated preclinically in the context 
of  azathioprine plus buthionine sulfoximine treatment 
in CRC and HCC[108]. This work shows a necroptosis 
phenotype with mitochondrial dependency illustrating 
the interplay between necroptosis and apoptosis. An-
other study investigated the role of  hypoxia for necrop-
totic death in colorectal cancer cells. In this study, RIP-
dependent necroptosis can be conferred by pyruvate 
scavenging of  mitochondria derived radicals[109]. Finally, 
targeted approaches to induce necroptotic cell death in 
cancer cells are still missing due to the absence of  ap-
propriate compounds for clinical usage so far. It has been 
shown that TRAIL receptor ligation causes necroptosis 
in an acidic extracellular milieu. Necrostatin-1, a chemical 
inhibitor of  RIPK1, sufficiently blocked TRAIL-induced 
necroptosis in this experimental setting[100]. An indirect 
or secondary activation of  necroptosis has been reported 
after treatment of  CRC cells with TRAIL or inhibition 
of  the multifaceted kinase GSK3-β[100,110].

Autophagy 
Autophagy is an evolutionary conserved process by 
which cells collect proteins and organelles, deliver them 
to the lysosomal compartment where the cargo is finally 
degraded for recycling[111]. The implications of  autophagy 
for cell physiology as well as for onset and progression 
of  various diseases including cancer are rapidly emerg-
ing[112,113]. A disruption of  autophagic flux leads to an in-
tracellular accumulation of  organelles, protein aggregates 
and lipid droplets. These accumulations may lead to the 
production of  reactive oxygen species and cause meta-
bolic insufficiency. Especially in stressful situation and 
in conditions of  energy deprivation, a disruption of  au-
tophagic flux can promote carcinogenesis. For instance, 
the allelic loss of  the essential autophagy protein Beclin 1 
(also known as Atg6) causes HCC in mice[114,115].

By contrast, autophagy is essential for the survival of  
cancer cells and cancer cells show an extraordinary high 
level of  autophagy. However, autophagy induction pro-
motes survival under conditions of  hypoxia and growth 
factor withdrawal[116]. Autophagosome formation is most 
prominent in tumors growing in a hypoxic environment. 
With regard to these findings, drugs inhibiting autophagy 
are promising anticancer agents. The anti-malaria drug 
Chloroquine is a known inhibitor of  autophagy and is 
currently being under investigation in several clinical 

trials (www.clinicaltrials.gov, Table 2)[117]. Various other 
compounds or drugs are known regulators of  autophagy 
and have been evaluated preclinically as treatment op-
tions for CRC[118-121]. In vitro, Chloroquine has been ef-
fective in overcoming 5-FU resistance in CRC cells[122,123]. 
Intriguingly, the approved chimeric anti-EGFR antibody 
cetuximab exerts its antitumor effect at least partly via 
autophagy-induced cell death[123]. 

Counterintuitive, drugs directly inducing autophagy 
are under clinical investigation as therapeutic approaches 
in CRC, too. Mammalian target of  rapamycin is a promi-
nent target to induce lethal autophagy in colorectal can-
cer cells[124]. The Rapamycin derivate Everolimus has 
recently been established for the treatment of  colorectal 
neuroendocrine tumors[125]. A Phase Ⅱ study with Evero-
limus showed appropriate tolerability, but failed to show 
meaningful efficacy in heavily pretreated patients with 
metastatic CRC[126]. Another trial using a combination of  
vascular endothelial growth factor receptor tyrosine ki-
nase inhibitor tivozanib with everolimus resulted in stable 
disease of  50 % of  all patients with metastatic cancer en-
rolled[127,128]. These partly contradictory findings highlight 
the important implication of  autophagy in colorectal car-
cinogenesis. 

Importantly, there is a broad overlap of  the apopto-
sis and autophagy signaling network. Most prominently, 
Bcl-2 proteins function as both, inhibitors of  apopto-
sis and autophagy by binding proautophagic Beclin1. 
Therefore, it has been shown that BH3-mimetics induce 
apoptosis and autophagy. For instance, ABT-737 can 
synergistically induce cell death with the COX2 inhibi-
tor celecoxib in CRC cells by facilitating autophagy and 
apoptosis[26,129].

CROSSTALK BETWEEN APOPTOSIS, 
NECROSIS AND AUTOPHAGY: 
MULTI-DEATH TARGETING STRATEGIES
The past decade of  cell death research has shown that 
necrosis, apoptosis and autophagy are regulated by simi-
lar pathways engaging the same proteins. It might be 
worthwhile targeting the apoptotic and autophagic ma-
chinery in a combined approach, since a massive induc-
tion of  autophagy is able to drive cancer cells in apop-
totic death. Recently, various efforts in this direction have 
been made in order to overcome cell death resistance in 
colorectal cancer. For instance, silibin, a plant derived 

Table 2  Targeting autophagy in colorectal cancer: An overview of current clinical trials

Drug Target Clinical1 Ref.

Hydroxychloroquine Autophagosome Phase Ⅰ (NCT01206530) Phase Ⅱ (NCT01006369) [122,150]
Everolimus/rapamycin mTOR Phase Ⅱ (NCT00419159, NCT01387880) [126,127,151]

1Further detailed information on clinical trials: www.clinicaltrials.gov. The compounds shown target relevant processes or pro-
teins involved in autophagy signaling. The phase of clinical trials is stated and trial identifier indicated in brackets where appli-
cable. mTOR: Mammalian target of rapamycin.
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natural compound, is able to induce both, apoptosis and 
autophagy[130]. In line with these observations, compound 
C, a small molecule inhibitor of  AMP-activated protein 
kinase, is able to sufficiently suppress colorectal cancer 
cell growth by inducing apoptosis and autophagy[131]. The 
capability of  such a double-edged approach has been 
successfully proven in vivo in a model of  hepatic metas-
tasis in mice[132]. Future studies are needed to further ex-
ploit combinatorial approaches for cell death induction in 
colorectal cancer.

CONCLUSION
From an oncological point of  view, it is of  outstanding 
importance to further increase research efforts aiming at 
more effective and individualized therapies. The effective-
ness of  monotherapeutic systemic approaches in colorec-
tal cancer treatment is limited. However, combined 
therapy regimes are now state of  the art. Manipulation 
of  cell death represents a promising tool to further am-
plify response to chemotherapy. In addition to direct cell 
death induction in cancer cells, triggering cell death via 
cancer-directed immunotherapy or immunomodulation 
with the aim to overcome major mechanisms of  immune 
resistance, is a newly arising field[133]. For example, recent 
reports on long-term results from first-in-human clinical 
trials using anti-PD1 antibody-based immunotherapy are 
encouraging[134]. Future trials are warranted to identify the 
best combinatorial approach yielding at cell death induc-
tion in cancer cells. 

On the way to personalized oncology, it will be man-
datory to broaden our knowledge concerning the selec-
tion of  patients for a specific therapeutic setting. Having 
in mind that cell death relevant proteins vary in their ex-
pression in different subsets and stages of  CRC, a strati-
fication of  patients to identify those who benefit most of  
a manipulation of  apoptosis requires further research. 

Finally, the question whether and how cell death 
could be measured to monitor therapy in patients needs 
further attention. There are some elegant and encourag-
ing studies evaluating liquid biopsy markers for cell death 
in cancer[135,136]. In addition, imaging of  cell death on rou-
tine basis for non-invasive monitoring of  tumor biology 
and therapeutic response might open new windows for 
therapy surveillance and outcome prediction in colorectal 
cancer[137,138].
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