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Abstract
AIM: To assess the effects of ME-49 Toxoplasma gondii 
(T. gondii ) strain infection on the myenteric plexus and 
external muscle of the jejunum in rats.

METHODS: Thirty rats were distributed into two 
groups: the control group (CG) (n  = 15) received 1 mL 
of saline solution orally, and the infected group (IG) (n  
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INTRODUCTION
Several pathogens invade animals via the digestive 
tract. Some of these pathogens (viruses, bacteria, 
protozoans and helminths) are able to survive in the 
hostile environment of the intestinal lumen. However, 
others, such as the protozoan Toxoplasma gondii (T. 
gondii), break the barrier of the intestinal epithelium, 
invade the lamina propria (causing an inflammatory 
reaction) and migrate to the bloodstream to spread 
in the host organism, searching for sites to evade the 
immune system[1-4].

The consequences of oral infection with T. gondii 
may vary, depending on parasite genotype and 
host species, from asymptomatic infection to the 
development of several alterations that may lead to 
death of the host[1-3].

In rats, it is known that the intestinal mucosa still 
shows signs of injury, detected by histopathological 
analysis, even after T. gondii had crossed the intestinal 
barrier, spreading through the host organism, forming 
tissue cysts (chronic phase)[5]. In addition, components 
of the nervous system intrinsic to the digestive tract, 
the enteric nervous system (ENS), reveal signs of 
plasticity due to alterations induced by toxoplasmic 
infections in the intestinal wall. Therefore, available 
experimental studies carried out in rats[5-15] have 
shown that these plastic alterations depend on several 
factors such as strain; infectious stage (tachyzoites, 
bradyzoites, sporozoites) and inoculation route (oral 
or intraperitoneal) of the parasite; infection phase 
(acute or chronic) assessed; digestive tract region 
and group of nervous cells assessed. For instance, 
while chronic infection caused by tachyzoites from a 
genotype Ⅰ strain (for the SAG2 gene) causes atrophy 
of cell bodies in ileal myenteric neurons[7], this same 
infection causes hypertrophy of cell bodies in colonic 
myenteric neurons[8].

It is also possible that other alterations can be 
mediated by enteric glial cells. These cells form a vast 
network throughout the gastrointestinal wall, especially 
where there are myenteric and submucosal plexi[16]. 
Enteric glial cells are small and star-like[17] and can be 
identified by the presence of specific proteins such as 
the glial fibrillary acidic protein, vimentin, glutamine 
synthetase and S100. They contain neurotransmitter 
precursors such as GABA and NO and express 
receptors for determined cytokines such as interleukin 
(IL)-1β, IL-6, TNFα, and neuropeptides such as 
neurokinin A and substance P after activation[17-19]. Due 
to these characteristics, they act together in the neuro-
immune axis established in the intestinal wall, and are 
therefore able to modulate some motility functions 
and gastrointestinal secretions. However, just one 
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= 15) inoculated with 1 mL of saline solution containing 
500 oocysts of M-49 T. gondii  strain orally. After 36 d 
of infection, the rats were euthanized. Infection with T. 
gondii  was confirmed by blood samples collected from 
all rats at the beginning and end of the experiment. The 
jejunum of five animals was removed and submitted to 
routine histological processing (paraffin) for analysis of 
external muscle thickness. The remaining jejunum from 
the others animals was used to analyze the general 
population and the NADH-diaphorase, VIPergic and 
nitrergic subpopulations of myenteric neurons; and the 
enteric glial cells (S100-IR).

RESULTS: Serological analysis showed that animals 
from the IG were infected with the parasite. 
Hypertrophy affecting jejunal muscle thickness was 
observed in the IG rats (77.02 ± 42.71) in relation 
to the CG (51.40 ± 12.34), P  < 0.05. In addition, 
31.2% of the total number of myenteric neurons died 
(CG: 39839.3 ± 5362.3; IG: 26766.6 ± 2177.6; P  < 
0.05); hyperplasia of nitrergic myenteric neurons was 
observed (CG: 7959.0 ± 1290.4; IG: 10893.0 ± 1156.3; 
P  < 0.05); general hypertrophy of the cell body in the 
remaining myenteric neurons was noted [CG: 232.5 
(187.2-286.0); IG: 248.2 (204.4-293.0); P  < 0.05]; 
hypertrophy of the smallest varicosities containing VIP 
neurotransmitter was seen (CG: 0.46 ± 0.10; IG: 0.80 
± 0.16; P  < 0.05) and a reduction of 25.3% in enteric 
glia cells (CG: 12.64 ± 1.27; IG: 10.09 ± 2.10; P  < 0.05) 
was observed in the infected rats. 

CONCLUSION: It was concluded that infection with 
oocysts of ME-49 T. gondii  strain caused quantitative 
and plastic alterations in the myenteric plexus of the 
jejunum in rats.

Key words: Enteric nervous system; Infectious diseases; 
Glial cells; Nitric oxide; Neuronal plasticity; Small 
intestine; Toxoplasmosis; Vasoactive intestinal peptide
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Core tip: The authors assessed the effects of ME-49 
Toxoplasma gondii  (T. gondii ) strain infection on the 
myenteric plexus and external muscle of the jejunum 
in rats. They found an uncommon result when T. gondii  
infection was evaluated in rats: death of myenteric 
neurons and enteric glial cells. In addition, the remaining 
neurons showed hypertrophy and the number of 
nitrergic neurons increased. These alterations were 
possibly responsible for hypertrophy of the external 
muscle observed in the jejunal wall. The strain (ME-49) 
and the life form (oocysts) of T. gondii  used here were 
the determinants of all these findings.
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study has assessed enteric glial cells during T. gondii 
infection[5].

Considering the lack of studies on the impact of 
the infection caused by genotype Ⅱ strains on the 
jejunal myenteric plexus, this study was carried out to 
assess the possible alterations caused by oral infection 
with T. gondii oocysts (ME-49 strain, genotype Ⅱ) 
in the jejunum of rats. Specifically, we evaluated 
the thickness of intestinal wall; quantitative and 
morphometric of the total population of myenteric 
neurons as well as three subpopulations: NADH-
diaphorase positive - composed of mitochondria-rich 
neurons; Nitrergic - produce nitric oxide; VIPergic 
- produce vasoactive intestinal peptide; and the 
total population of enteric glial cells that express the 
cytoplasm structural cytoplasmic protein: S-100.

MATERIALS AND METHODS
The experimental protocol of this study was previously 
approved by the Ethics Committee in Research 
Involving Animal Experimentation from Paranaense 
University, Brazil (Protocol 12361/2008).

Animal care and use statement
The animal protocol was designed to minimize pain or 
discomfort to the animals. During the experiments, 
the rats was maintained in an air-conditioned room 
(approximately 25 ℃), 12 h/12 h light/dark, with food 
and water ad libitum. Half of the animals (infected 
group) received, by intragastric gavage, 500 T. gondii 
sporulated oocysts in 1 mL of sterile saline solution. 
The rats in the control group received only sterile saline 
solution. Thirty-six days after infection, the rats were 
euthanized in a chamber saturated with halothane for 
tissue collection.

Experimental design
The study included thirty 60-day-old male Wistar rats 
(Rattus norvegicus), weight 258.5 ± 13.6 g, which 
were equally and randomly assigned into the control 
[control group (CG); n = 15] and infected [infected 
group (IG); n = 15] groups.

In order to obtain the oocysts, cats (Felis catus) 
were inoculated orally with tissue cysts of T. gondii 
(ME-49 strain, genotype Ⅱ), isolated from infected 
mice (Mus musculus). Stools were collected for seven 
days. Oocysts were concentrated by the Sheather 
method and sporulated in sulfuric acid at 2%[20]. 

Each rat in the IG received, 500 T. gondii sporulated 
oocysts re-suspended in 1 mL of sterile saline solution 
orally, while rats in the CG received only saline 
solution. Both groups were maintained in an air-
conditioned room (approximately 25 ℃), and received 
commercial feed for rodents and water ad libitum. 

Infection by T. gondii was confirmed by blood 
samples collected from all rats at the beginning and 
end of the experiment. The serum was submitted to 

the direct agglutination method[21] in order to verify the 
presence of serum anti-T. gondii antibodies. Sera were 
considered positive when titers were greater than 25. 

Thirty-six days after infection, the rats were 
euthanized in a chamber saturated with halothane[22]. 
Necropsy was performed immediately and the jejunum 
was removed, using the following anatomic limits as 
reference: duodenojejunal flexure and ileocecal fold. 
Each intestinal segment was then measured, washed 
and underwent intestinal wall analysis techniques.

Histological analysis 
A two-centimeter ring from the proximal jejunum 
of five animals was submitted to routine histological 
processing (paraffin). From each jejunum, four 
transversal semi-serial 4 µm-sections were stained 
with hematoxylin and eosin (HE). Images of the 
histological sections were captured by a high resolution 
digital camera coupled to a trinocular photomicroscope 
(× 20 objective). These images were analyzed by 
the Motic Image Plus version 2.0 in order to carry out 
80 measurements of the external muscle thickness, 
distributed uniformly around the whole intestinal 
circumference. 

Histochemical technique
Wholemount preparations containing the jejunal 
myenteric plexus of five animals from each group 
were submitted to the Giemsa technique to highlight 
the total neuronal population[23]. From these same 
animals, 5 cm jejunal segments were submitted to a 
modified NADH-diaphorase histochemistry technique. 
These segments were washed in Krebs solution and 
then immersed for 5 min in Krebs solution + 0.3% 
Triton X-100 and washed (2 × 10 min each) with Krebs 
solution and immersed for 45 min in an incubation 
medium containing in each 100 mL: 25 mL Nitro Blue 
Tetrazolium (Sigma, St. Louis, MO, United States); 25 
mL phosphate buffer 0.1 mol/L, pH 7.3; 50 mL distilled 
water and 5 mg β-NADH (Sigma, St. Louis, MO, United 
States)[24]. The intestinal segments were then dissected 
using a stereo microscope with transillumination 
to remove the mucosa and submucosa in order to 
analyze the jejunal myenteric neuronal subpopulation 
rich in mitochondria (NADHd-p).

Immunohistochemical technique
Intestinal segments were washed with PBS 0.1 mol/L 
pH 7.4 and filled with Zamboni fixative solution[25] for 
18 h at 4 ℃. After fixation, segments were opened 
along the mesenteric edge and washed in 80% 
ethanol solution to remove the fixation agent, followed 
by dehydration in ethanol solutions with ascending 
concentrations (95%-100%), deorphanization in xylol 
and rehydration in ethanol solutions with descending 
concentrations (100%, 90%, 80%, 50%) and 
stored in PBS + sodium azide 0.04% at 4 ℃. After 
microdissection, wholemount preparations with the 
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Germany), a light microscope resolution camera 
coupled to a light microscope5 equipped with filters 
for immunofluorescence in a × 40 objective, then 
transferred to a microcomputer by the AxioVision 4.1 
program. Image-Pro Plus 4.5.0.29 (Media Cybernetics, 
Silver Spring, MD, United States®). software was 
adopted during the morphometric analysis of 
varicosities. Areas with 400 varicosities were measured 
for each animal, totaling 2000 per group. Only the 
nerve fibers which were not inside the ganglia were 
analyzed[29]. Photomicrographs were obtained through 
images provided by a confocal microscope (LSM 5 
Pascal, Zeiss®).

Statistical analysis
Data from neuronal counting were initially submitted 
to the Shapiro-Wilk test and those from the morpho-
metric analyses were submitted to the D’Agostino 
Pearson test to verify distribution type. Data with 
normal distribution were expressed by mean ± SD, 
and those with free distribution were expressed by 
the median and percentiles (P25; P75). The Student t 
test was adopted to compare data between the control 
and experimental groups regarding independent 
samples (for data with normal distribution) and the 
Mann-Whitney for data with free distribution, and P 
values less than 0.05 were considered significant. 
Correlation analysis was verified with the Spearman 
nonparametric test. Analyses were carried out with 
statistics software[30]. The statistical methods in this 
study were reviewed by Professor Aristeu Vieira 
da Silva from State University of Feira de Santana 
(Universidade Estadual de Feira de Santana), Brazil, 
who is biomedical statistician and co-author of this 
paper.

RESULTS
The results of the serological test performed before 
infection showed that all rats from the CG and IG 
were IgM and IgG negative for T. gondii. At the end 
of the experiment, the serological test confirmed that 
animals from the IG were infected with T. gondii, while 
animals from the CG remained susceptible to infection. 
In addition, animals from the IG had loose stools when 
compared to animals from the CG. 

At the end of the experiment, body mass of the 
animals in the IG was greater than that in the CG (P < 
0.05). With regard to the size of the jejunum (length, 
width and area), infection did not cause any alterations 
(P > 0.05). However, the morphometric analysis of the 
intestinal wall revealed hypertrophy affecting jejunal 
muscle thickness (P < 0.05) in the IG compared with 
the CG (Table 1). 

Infected animals showed death of neurons according 
to quantitative analyses of the myenteric population 
stained using the Giemsa technique. However, the 
number of NADHd-p neurons was unaltered. In 

mesenteric plexus of each animal from both groups 
were obtained, washed with PBS 0.1 mol/L + Triton 
0.3% for 5 min, and incubated in protein blocking 
solution for 2 h. The wholemount preparations were 
then incubated separately in different solutions 
containing the rabbit primary antibodies: anti-VIP, anti-
NOS1[26] and anti-S 100[27,28] in order to label VIPergic 
and nitrergic myenteric neurons and enteric glial cells, 
respectively. Wholemount preparations remained in a 
cold room (4 ℃) for 48 h and then washed three times 
in PBS 0.1 mol/L for 5 min. Then they were incubated 
in solution containing donkey anti-rabbit secondary 
antibody conjugated with fluorescein (1:500) at room 
temperature and protected from light for 2 h. The 
preparations were then washed three times in PBS 0.1 
mol/L for 5 min, mounted using PBS/glycerol (9:1) 
and stored in the fridge.

Quantitative analysis
We counted the total number of myenteric neurons 
from each rat in 120 400X-magnified fields under the 
microscope (for the GIEMSA and NADH-diaphorase 
techniques) or in 32 images captured by a high-
definition digital camera coupled to a fluorescence 
microscope (for the immunohistochemistry NOS+). 
The result of this count was projected to one square 
centimeters and to the total area of the jejunum. 
Neurons positioned on the limits of each microscope 
field/image were counted in alternate fields/images. 
A similar procedure was adopted for counting 
the enteric glial cells. In this case, we counted all 
enteric glial cells (S-100+) present in twenty × 200 
magnified images captured by a high-resolution 
camera coupled to a fluorescent microscope. The 
number found in the sample area was projected to 1 
mm2. 

Morphometric analysis 
The area of the cellular body, cytoplasm and nucleus 
of 300 jejunal myenteric neurons from each animal 
was measured using the captured images. 

Measurement of the VIP-IR varicosities of the 
myenteric plexus and of the cell body area of 
NOS-IR myenteric neurons was carried out using 
images captured by the AxioCam (Zeiss, Jena, 
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Table 1  Initial and final weight; length, width and area of 
the jejunum and thickness of the external muscle layer of the 
jejunum in rats from the control group and infected group 

Parameters CG IG

Initial body weight (g)   254.8 ± 15.90   262.4 ± 11.29
Final body weight (g)    394.1 ± 14.941    419.8 ± 31.531

Length (cm) 108.4 ± 5.07 110.4 ± 6.83
Width (cm)   0.96 ± 0.15   0.96 ± 0.15
Area (cm2) 104.35 ± 19.15 106.82 ± 23.53
Muscular fold thickness (µm)    51.40 ± 12.341     77.02 ± 42.711

1Significantly different (P < 0.05). IG: Infected group; CG: Control group.
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Figure 1  Photomicrograph of the myenteric ganglia in the jejunum of healthy (A, C and E) and infected rats (B, D and F); NADH-diaphorase (A and B); 
Giemsa (C and D). NOS-IR (E and F) showing the increase in the nitrergic myenteric neuron population in rats infected with oocysts of the ME-49 genotype Ⅱ (F) 
strain of Toxoplasma gondii.

A B

25 µm 25 µm

25 µm 25 µm

C D

100 µm 100 µm

E F

Table 2  Population density and morphometric analysis of the cell body of myenteric neurons labeled with Giemsa, NADHd-p and 
NOS immunohistochemistry in healthy and infected rats with the ME-49 strain of Toxoplasma gondii  during 36 d

Measures GIEMSA NADHd-p NOS

CG IG CG IG CG IG

Number of 
neurons/cm2

39839.3 ± 5362.31 26766.6 ± 2177.61 11484.5 ± 2211.8 13155.9 ± 1319.3 7959.0 ± 1290.41 10893 ± 1156.31

Projection of 
number of 
neurons for the 
organ

4157229.4 ± 559555.11 2859215.3 ± 232611.31 1198410.1 ± 230807.1 1405318.8 ± 157570.2 735729.9 ± 125754.71 939630.1 ± 156871.21

Cell body (µm2)    232.5 (187.2-286.0)1    248.2 (204.4-293.0)1 146.7 (96.8-202.0)1 155.8 (108.0-14.8)1   328.1 ± 2.431 344.1 ± 2.21

Nucleus (µm2)    99.9 (82.5-115.3)1  102.6 (88.5-119.2)1 64.9 (43.7-88.5)1 76.9 (54.1-99.2)1     97.5 ± 0.701   100.9 ± 0.671

Cytoplasm (µm2)  130.8 (99.4-175.1)1    141.6 (112.1-182.4)1   79.2 (48.0-115.9)1   74.2 (48.2-117.4)1 230.6 ± 2.11 243.8 ± 1.91

Ratio 0.42 (0.37-0.48) 0.41 (0.37-0.47) 0.44 (0.37-0.51)1 0.48 (0.40-0.57)1     0.30 ± 0.002      0.31 ± 0.003 

1For the same neuronal marker, are significantly different (t, P < 0.05). IG: Infected group; CG: Control group.
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addition, an increase in nitrergic myenteric neurons in 
the IG was observed (Table 2 and Figure 1). 

The morphometric analysis of the myenteric 
neurons showed that cellular bodies demonstrated 
slight hypertrophy in the total population as well as 
in the nitrergic and NADHd-p subpopulations (P < 
0.05). For the total population, hypertrophy was due 
to an increase in the area of cytoplasm and nucleus; 
however, the proportion occupied by the nucleus 
inside the cell body was not compromised (P < 0.05). 
This same phenomenon was observed in nitrergic 
neurons (P < 0.05). Conversely, neurons from the 
subpopulation with more mitochondria inside the cell 
body (NADHd-p) showed an increase in the nucleus 
area and a reduction in the cytoplasm area, causing 
discrete atrophy of the cell body as well as an increase 
in the proportion occupied by the nucleus inside the 
cell body (P < 0.05) (Table 2).

The smallest areas of the VIPergic varicosities in the 
IG increased by 73.9% compared to the CG (P < 0.05); 
however, the larger and medium varicosities remained 
unaltered in animals from the IG (P < 0.05). In this 
study, enteric glial cell S-100 IR showed a quantitative 
alteration (P < 0.05) after infection. The total number 
of enteric glial cells was 1537 ± 38.7 in the CG and 
1227 ± 60.8 in the IG in 1.52 mm² (P < 0.05). Thus, 
there was a 25.3% reduction in the animals from 
the IG (P < 0.05). The area of the VIP-IR varicosities 
found in the myenteric plexus and the enteric glial cell 
distribution are shown in Table 3.

DISCUSSION
Experimental infection induced by T. gondii (ME-49 
strain, genotype Ⅱ) oocysts was the cause of the 
alterations observed in the jejunal wall structure 
assessed in this study, mainly within the myenteric 
plexus. This finding is supported by the fact that 
animals from the CG remained healthy throughout the 
experiment, while animals from the IG showed anti-T. 
gondii serum IgG antibodies, indicating true infection 
by the parasite.

In general, animals are infected by ingesting 
tissue cysts of T. gondii present in raw or rare meat 
or oocysts found in contaminated food or water. 

When T. gondii crosses the gastrointestinal tract wall 
it can cause multifunctional alterations[31-33]. These 
alterations seem to be related to several factors such 
as genotype strain, life form and inoculation route 
(oral or intraperitoneal) of the parasite in addition to 
the infection phase (acute or chronic), digestive tract 
region and the type of cells assessed[5-15].

For the organ and host species assessed in this 
study, rat jejunum previously studied by our research 
group using oocysts of another strain (M7741 - 
genotype Ⅲ), showed that T. gondii was capable of 
promoting plastic alterations in the enteric neurons 
without leading to neuronal death during the acute[10] 
or chronic[12] phases. This finding was different from 
that observed in the present study which demonstrated 
that strain ME-49 caused the death of 31.2% of total 
myenteric neurons. Myenteric neuronal death caused 
by toxoplasmic infection is not a common finding. Until 
now this phenomenon had only been observed in the 
duodenum of poultry[33] and the stomach of rats[11] 
infected by the T. gondii genotype Ⅲ strain. 

In addition, the proportion of nitrergic myenteric 
neurons increased from 17.7% in the CG to 32.8% 
in the IG. The number of nitrergic enteric neurons 
found in CG animals corresponds to 18% of the total 
myenteric neurons described in the literature[34]. 
An increase in the proportion of nitrergic myenteric 
neurons was also observed in the jejunum of pigs 
infected with the M7741 (genotype Ⅲ) strain of T. 
gondii[35], but not in the jejunum of rats infected with 
the same strain[12]. This shows that the ME-49 strain of 
T. gondii used in the present study was a determinant 
of the death of myenteric neurons in rat jejunum.

The NADHd-p jejunal myenteric neurons analyzed 
in this study showed no alterations due to infection; 
however, there was a reduction of 50% in these 
cells in the jejunum of pigs infected with the M7741 
(genotype Ⅲ) strain of T. gondii[35]. Rats infected 
with the M7741 (genotype Ⅲ) strain of T. gondii also 
showed no alteration in the population density of 
NADHd-p myenteric neurons[10]. These results reinforce 
the fact that observable alterations in the myenteric 
plexus of animals infected with T. gondii depend on 
genotype strain, life form and inoculation route (oral 
or intraperitoneal) of the parasite in addition to the 
infection phase (acute or chronic), digestive tract 
region and the type of neurons assessed. This explains 
the diarrhea seen in some species when infected 
with T. gondii, while in others this clinical sign is not 
observed. However, some infected animals which do 
not exhibit diarrhea may develop constipation. In 
addition, some of the cases considered “asymptomatic” 
could represent a misunderstanding caused by lack 
of attention given to possible intestinal constipation. 
Further studies are necessary to assess the intestinal 
motility of animals infected by T. gondii.

The modifications in the myenteric neuronal 
density observed in rats from the IG may be related 
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Table 3  Smaller, medium and larger areas (µm²) of VIPergic 
varicosities and number of enteric glial cells/mm² from the 
jejunal myenteric plexus of rats from the Control Group and 
from the Group infected with oocysts of Toxoplasma gondii  
ME-49 strain

Parameters CG IG

Smaller areas (µm2)     0.46 ± 0.101    0.80 ± 0.161

Larger areas (µm2)  21.68 ± 5.13 24.50 ± 0.90 
Medium areas (µm2)    9.28 ± 5.84   9.51 ± 5.99 
Enteric glial cells/mm² 1011.18 ± 25.481  807.24 ± 39.981

1Significantly different (t, P < 0.05). IG: Infected group; CG: Control group.

Araújo EJA et al . T. gondii  alters the jejunal myenteric plexus



to the hypertrophy observed in 49.80% of the 
external muscle layer (Figure 2), as these neurons 
innervate this muscle. The death of myenteric neurons 
may trigger several functional disorders directly or 
indirectly[36-39]. Our data suggest that hypertrophy 
of the external muscle layer was a compensation 
mechanism due to neuronal loss in order to maintain 
the jejunum of the infected animals in an adequate 
condition for the digestion and absorption of nutrients. 
It is interesting to observe that despite morphological 
alterations in the intestine after 36 d of infection, 
our results show that the rats continued developing 
including gaining body mass. In the jejunum of pigs, 
M7741 (genotype Ⅲ) of the T. gondii caused atrophy 
of the external muscle layer after 30 d of infection and 
then hypertrophy 60 d after infection[40]. Hypertrophy 
of the external muscle layer was also found in the 
jejunum and ileum of chicken infected with ME-49 
tissue cysts of T. gondii and in the jejunum of these 
same animals when infected with oocysts of the 
M7741 strain[32,41]. There are no previous studies in the 
literature assessing the effects of T. gondii infection on 
the external muscle layer of the intestine in rats. 

The morphometric analysis of myenteric neurons 
revealed that, even after 36 d of infection, these 
cells showed hypertrophied cell bodies in both the 
total population as well as in the subpopulations 
assessed in this study. It should be emphasized that 
the hypertrophy observed in the cell body of the total 
population and nitrergic subpopulation was the result 
of an increase both in the nucleus area as well as in 
the area of the cytoplasm. On the other hand, an 
increase in the nuclear area (18.5%) and a reduction 
in the cytoplasmic area (5.3%) were observed in the 
NADHd-p population, leading to slight hypertrophy of 
their cell body. 

Considering that the results from the present 
study showed different plasticity between NADHd-p 
and nitrergic myenteric neurons and that the 
myenteric plexus carries subpopulations of inhibitory 
(nitrergic/VIPergic) and excitatory (cholinergic) motor 
neurons[42], it is possible to infer that a considerable 

portion of NADHd-p neurons assessed in this study 
belongs to the subpopulation of cholinergic myenteric 
neurons. This same rationale can be applied to the 
population density assessment, as the increase in the 
proportion of nitrergic myenteric neurons (from 17.7% 
to 32.8% of the total) observed in animals infected 
by T. gondii suggests a reduction in the number of 
cholinergic neurons from 82.3% to 62.3% of the 
total. In this context, it is possible that the increase 
(18.5%) in the nuclear area of the NADHd-p myenteric 
neurons (possibly cholinergic, as discussed above) 
may be related to an increase in metabolic activity of 
cholinergic myenteric neurons seen as a compensatory 
effect in relation to the reduction in population density 
of these cells. 

 The increase in population density of nitrergic 
myenteric neurons along with their hypertrophy 
shows that infection caused by ME-49 strain T. gondii 
provoked a plastic alteration in a large part of the 
jejunal myenteric plexus of infected rats. Within this 
context we can also include the increase observed 
in the smaller varicosities with VIP of nerve fibers of 
the myenteric plexus of infected animals. As these 
fibers with VIP belong, mainly, to inhibitory motor 
neurons which also produce nitric oxide (NO)[43,44], it is 
suggested that the increase in the varicosities is related 
to an increase in NO production, thus potentializing 
the effects of the inhibitory motor route to recover the 
homeostasis of intestinal motility when looser stools 
were detected in infected animals. On the other hand, 
a parallel study with the same animals in this study 
showed a reduction of 28.4% in VIP-IR submucous 
neurons in the submucous plexus and atrophy of their 
cell bodies[5]. 

Another approach adopted by this study included 
the quantification of enteric glial cells which showed 
a reduction in these cells (P < 0.05) in the myenteric 
plexus of the jejunum of rats infected with T. gondii. It 
can be inferred that the loss of the neuronal population 
by 32% occurred due to a reduction in enteric glial 
cells. These cells play an important neurotrophic, 
anti-apoptotic[45-47] and neuromuscular transmitter 
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Figure 2  External muscle layer thickness of the jejunal wall of healthy (A) and infected rats (B) with the ME-49 genotype Ⅱ strain of Toxoplasma gondii, 
colored by the HE histological technique.
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role[42,43,36]. As a reduction of a little more than 25% 
of glial S-100 IR cells in the myenteric plexus of the 
jejunum in rats was demonstrated in this study, it is 
suggested that the alterations observed occurred due 
to the death of glial cells. 

Therefore, we believe that the death of enteric glial 
cells was a determining factor in the changes in the 
metabolic profile and chemical code of the remaining 
neurons. This finding is supported by the fact that 
there were changes in the phenotypic profile in the 
subpopulations that predominate in the myenteric 
plexus and that these changes in expression would 
have caused an increase in the proportion of inhibitory 
motor neurons (nitrergic) (from 17.7% to 32.8% of 
the total). However, with the increase in the number 
of nitrergic neurons, there was an increment in NO 
production which may induce the release of NO by 
the neurons[48]. This study describes an increase of 
73% in the smallest areas of the VIPergic varicosities 
in the myenteric plexus of animals from the IG and 
we question whether the increase in the smallest 
varicosities of the VIPergic fibers and consequently 
their greater expression in the myenteric plexus 
occurred through this mechanism (Figure 3). 

VIP is an anti-inflammatory neuropeptide[49,50], 
therefore its increase may be related to modulation of 
the inflammatory reaction and recruitment of cells that 
will act upon tissue repair. It is believed that through 
this mechanism the enteric glial cells play a central 
role as mediators of multidirectional interactions 

among neurons and the immune system[18,51], which 
in a dynamic way contributes to the homeostasis of 
the whole gastrointestinal tract[52]. However, as there 
are no other studies assessing enteric glial cells during 
infection by T. gondii[5], we are unable to compare our 
results.

It is possible that all these modifications in the 
myenteric plexus were established after the death 
of 32% of the total neurons and 25% of the total 
enteric glial cells in this region of the digestive 
tract. It may be that there was effectivity in all the 
observed plastic alterations, as the infected animals 
continued developing with body mass gains, indicating 
that digestion and absorption of nutrients were not 
affected.

However, it is important to highlight that atrophy 
of the cell body in nitrergic myenteric neurons in 
the jejunum has been observed in rats infected 
with oocysts of the T. gondii: strain M7741[12]. A 
comparison between these findings and the results 
from our present study suggest that the ME-49 strain 
is more virulent to the myenteric plexus neurons of 
rat jejunum. For the population of nitrergic myenteric 
neurons, the T. gondii M7741 strain was capable of 
causing, in the jejunum of pigs[35], reactions similar to 
those observed in our study with the ME-49 strain, in 
rats. However, with regard to the NADHd population, 
pigs infected by strain M7741 showed the opposite 
result when compared to rats infected by the ME-49 
strain. 
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Figure 3  Photomicrographs of the VIPergic fibers (A and B) and enteric glial cells (C and D) in the jejunal myenteric plexus of healthy (A and C) and 
infected (B and D) rats with the ME-49 genotype Ⅱ strain of Toxoplasma gondii. 
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This is the first study to assess enteric glial cell 
reaction to this protozoal infection. New studies are 
necessary to compare results and understand the 
questions raised here. Future studies on the assessment 
of the intestinal transit of animals infected by T. gondii 
strains need to be carried out to understand the impact 
of plastic alterations and population density in the 
myenteric plexus on the motility of different regions of 
the digestive tract.

COMMENTS
Background
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are due to a number of influences linked to the parasite (genotype, inoculum 
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reports ENS changes caused by oocysts of the genotype Ⅱ strain of T. gondii 
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