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Abstract
AIM: To investigate a possible association between 
losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic 
liver transplantation (ROLT) in rats. 

METHODS: Livers of male Sprague-Dawley rats 
(200-250 g) were preserved in University of Wisconsin 
preservation solution for 1 h at 4 ℃ prior to ROLT. In an 
additional group, an antagonist of angiotensin Ⅱ type 
1 receptor (AT1R), losartan, was orally administered 
(5 mg/kg) 24 h and 1 h before the surgical procedure 
to both the donors and the recipients. Transaminase 
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INTRODUCTION
Ischemia-reperfusion injury (IRI) is an important 
obstacle during liver transplantation, contributing to 
a significant loss of graft function. It is characterized 
by a cascade of deleterious cellular responses that 
lead to inflammation, cell death, and ultimately, organ 
failure[1]. These complications are increased in case of 
reduced-size liver grafts compared with standard liver 
transplant operations[2,3]. Thus, further investigation 
is required to explore new therapeutic strategies to 
counteract IRI. 

Various reports have associated the renin-an
giotensin system (RAS) with liver IRI[4,5]. The main 
efector of RAS is angiotensin Ⅱ, which is produced 
via angiotensin converting enzyme (ACE) from angio
tensin Ⅰ. It exerts its biological actions through two 
receptor subtypes: angiotensin Ⅱ type Ⅰ receptor 
(AT1R) and angiotensin Ⅱ type Ⅱ receptor[6]. 
Angiotensin Ⅱ has been associated with increased 
inflammation and oxidative stress in liver IRI, and 
various studies have evidenced that AT1R antagonists, 
such as losartan, efficiently protected livers against IRI 
in both warm ischemia and transplantation models[7-10].

Sirtuins are deacetylases dependent on nicotina
mide adenine dinucleotide (NAD)+ that either activate 
or suppress various proteins. Thus, they are implicated 
in various cellular pathways, including metabolic 
processes, apoptosis and oxidative stress[11]. Sirtuin 1 
(SIRT1) and the mitochondrial sirtuin 3 (SIRT3) are the 
most studied sirtuins and represent interesting targets 
for counteracting IRI in various organs[12,13]. SIRT1 has 
been shown to be involved in a wide range of cellular 
processes related to cell cycle and the cellular response 
to stresses, including the endoplasmic reticulum stress 
(ERS)[14-17]. 

IRI is known to promote ERS which finally induces 
cellular death[18]. In addition, we have previously 
shown that inhibiting ERS can be a useful strategy 
against IRI[19]. In a model of partial hepatectomy with 
ischemia-reperfusion in steatotic and non-steatotic rat 
livers, ERS inhibition ameliorated hepatic damage by 
reducing inflammation and apoptosis[19]. Therefore, we 
may hypothesize that preventing ERS might be useful 
for ameliorating the negative outcomes of reduced-size 
orthotopic liver transplantation (ROLT).

There is little evidence about a potential relationship 
between SIRT1 and angiotensin Ⅱ antagonists. 
Miyazaki et al[20] have reported that SIRT1 overex
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(as an indicator of liver injury), SIRT1 activity, and 
nicotinamide adenine dinucleotide (NAD+, a co-factor 
necessary for SIRT1 activity) levels were determined 
by biochemical methods. Protein expression of SIRT1, 
acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of 
NAD+), heat shock proteins (HSP70, HO-1) expression, 
endoplasmic reticulum stress (GRP78, IRE1a, p-eIF2) 
and apoptosis (caspase 12 and caspase 3) parameters 
were determined by Western blot. Possible alterations 
in protein expression of mitogen activated protein 
kinases (MAPK), such as p-p38 and p-ERK, were also 
evaluated. Furthermore, the SIRT3 protein expression 
and mRNA levels were examined.

RESULTS: The present study demonstrated that 
losartan administration led to diminished liver injury 
when compared to ROLT group, as evidenced by the 
significant decreases in alanine aminotransferase (358.3 
± 133.44 vs  206 ± 33.61, P  < 0.05) and aspartate 
aminotransferase levels (893.57 ± 397.69 vs  500.85 ± 
118.07, P  < 0.05). The lessened hepatic injury in case 
of losartan was associated with enhanced SIRT1 protein 
expression and activity (5.27 ± 0.32 vs  6.08 ± 0.30, 
P  < 0.05). This was concomitant with increased levels 
of NAD+ (0.87 ± 0.22 vs  1.195 ± 0.144, P  < 0.05) the 
co-factor necessary for SIRT1 activity, as well as with 
decreases in ac-FoxO1 expression. Losartan treatment 
also provoked significant attenuation of endoplasmic 
reticulum stress parameters (GRP78, IRE1a, p-eIF2) 
which was consistent with reduced levels of both 
caspase 12 and caspase 3. Furthermore, losartan 
administration stimulated HSP70 protein expression 
and attenuated HO-1 expression. However, no changes 
were observed in protein or mRNA expression of SIRT3. 
Finally, the protein expression pattern of p-ERK and 
p-p38 were not altered upon losartan administration. 

CONCLUSION: The present study reports that losartan 
induces SIRT1 expression and activity, and that it 
reduces hepatic injury in a ROLT model.

Key words: Losartan; Sirtuin 1; Endoplasmic reticulum 
stress; Liver ischemia reperfusion injury; Angiotensin Ⅱ

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Losartan is an angiotensin Ⅱ type 1 receptor 
(AT1R) antagonist known to protect livers against 
ischemia-reperfusion injury (IRI). However, the 
mechanisms underlying this hepatoprotective effect 
are not fully understood, especially in case of reduced-
size orthotopic liver transplantation (ROLT). SIRT1 has 
recently emerged as an important target to modulate 
for alleviating IRI. In our study, we describe that AT1R 
antagonism enhances SIRT1 activity and prevents 
endoplasmic reticulum stress and liver apoptosis in a 
rat model of ROLT. Consequently, losartan increases the 
resistance of ROLT grafts against IRI.



pression suppresses AT1R in cultured vascular smooth 
muscle cells. In addition, a recent study in primary 
cultures of adipocytes evidenced a mutual interaction 
between RAS and SIRT1, with an association with 
metabolic homeostasis[21]. Conversely, there are no 
reports concerning a relationship between SIRT1 and 
angiotensin Ⅱ antagonists in liver transplantation. Given 
that both are involved in common processes related 
to IRI, ERS, and apoptosis[22,23], we hypothesized that 
SIRT1 may be implicated in the protective effects of an 
AT1R antagonist against hepatic IRI following ROLT.

The present study therefore aimed to assess 
whether an AT1R antagonist, losartan, could be 
effective in protecting reduced-size liver grafts from IRI 
and to examine the possible underlying mechanisms 
involved. Furthermore, a potential relationship 
between losartan and SIRT1 was explored. 

MATERIALS AND METHODS
Experimental animals
Male Sprague-Dawley rats (200-250 g) were used 
as donors and recipients. Animals were housed in 
conventional temperature- and humidity-controlled 
facilities with a 12-h light/dark cycle. All animals had 
free access to water and a standard laboratory diet. All 
procedures were performed under isoflurane inhalation 
anesthesia. Animal experiments were approved by the 
Ethics Committees for Animal Experimentation (CEEA, 
Directive 400/12), University of Barcelona and all 
procedures complied with European Union regulations 
for animal experiments (EU guideline 86/609/EEC). 
Rats were randomly distributed into groups as descri
bed below.

Experimental design
The following three experimental groups were 
created: (1) Sham (n = 6): Animals were subjected to 
transverse laparotomy and silk ligatures were located 
in the right suprarenal vein, diaphragmatic vein, and 
hepatic artery. After 24 h, animals were sacrificed and 
blood and liver samples were collected and stored at 
-20 ℃ and -80 ℃ respectively, for further investigation; 
(2) ROLT (n = 12, 6 transplants): ROLT was performed 
according to the Kamada’s cuff technique, without 
hepatic artery reconstruction[24]. During the donor 
surgery, the right suprarenal vein, diaphragmatic vein, 
and hepatic artery were ligated and the bile duct was 
cannulated. Then, the reduction of the liver was carried 
out. Liver reduction was achieved by removing the 
left lateral lobe and the two caudate lobes just before 
harvesting the liver, resulting in a 40% reduction 
of the liver mass. The pedicle of the left lateral lobe 
was ligated with 5.0 silk ligature, and the lobe was 
removed. The two caudate lobes were removed 
separately with the ligation[25]. Then, the donor livers 
were flushed and preserved with cold (4 ℃) University 
of Wisconsin (UW) solution for 1 h and then implanted 

to the receptor. Receptors were killed 24 h after 
transplantation and blood and liver samples were 
collected and stored at -20 ℃ and -80 ℃ respectively 
for further investigation; and (3) Losartan + ROLT (n 
= 12, 6 transplants): We used the same protocol as 
for group 2, but an AT1R antagonist (losartan) was 
orally administered (5 mg/kg) at 24 h and 1 h before 
the donor and the recipient surgery[9].

Transaminase assay
Hepatic injury was assessed in terms of transaminase 
levels with commercial kits from RAL (Barcelona, 
Spain). Briefly, plasma extracts were collected before 
liver extraction and centrifuged at 4 ℃ for 10 min 
at 3000 rpm. Then, 200 μL of the supernatant were 
added to the substrate provided by the commercial 
kit. Alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) levels were determined at 365 
nm with an ultraviolet spectrometer and calculated 
according to the manufacturer’s instructions[26].

NAD+/NADH determination
Liver NAD+/NADH levels were quantified with a 
commercially available kit (MAK037, Sigma Chemical, 
St. Louis, MO, United States) according to the manu
facturer’s instructions.

Western blot analysis 
Liver tissue was homogenized in a HEPES ((N-2-
hydroxyethylpiperazine-N′-2-ethanesulfonic acid) buffer 
as previously described[27]. Then, 50 μg of proteins 
were separated on 8%-15% SDS-PAGE (sodium 
dodecyl sulfate polyacrylamide gel electrophoresis) gels 
and trans-blotted on PVDF (polyvinylidene difluoride) 
membranes (Bio-rad Laboratories). Membranes were 
then blocked for one hour with 5% (w/v) non-fat milk 
in T-TBS (tween-tris-buffered saline) and incubated 
overnight at 4 ℃ with the corresponding primary 
antibody: SIRT1 (07-131), purchased from Merck 
Millipore, Billerica, MA; ac-FoxO1 (D-19, sc-49437) and 
GRP78 (GRP78, H-129, sc-13968), both purchased 
from Santa Cruz Biotechnology Inc, CA, United 
States); SIRT3 (2627), cleaved caspase-3 (Asp175, 
9664), phosphorylated-eukaryotic translation initiation 
factor 2 (p-eIF2a) (Ser51, 9721), inositol-requiring 
enzyme 1α (IRE1α) (3294), caspase-12 (2202), p-p38 
Thr180/Tyr182, 9211), p-p44/42 (Erk1/2, Thr202/
Tyr204, 9101) purchased from Cell Signaling, Danvers, 
MA; HSP70 (610607, Transduction Laboratories, 
Lexington, KY); Heme Oxygenase-1 (H4535), NAMPT 
(AP22021SU, Acris Antibodies GmbH, Germany); and 
b-actin (A5316, Sigma Chemical, St. Louis, MO, United 
States). Membranes were then incubated for 1 h at 
room temperature with the corresponding secondary 
antibody linked to horseradish peroxidase. Bound 
complexes were detected using WesternBright ECL-HRP 
substrate (Advansta, Barcelona, Spain) and quantified 
via the Quantity One software for image analysis. 
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Losartan-induced SIRT1 expression and activity 
To investigate the possible interaction of SIRT1 with 
angiotensin Ⅱ, we investigated the activity and the 
protein expression pattern of SIRT1. Animals subjected 
to ROLT showed augmented SIRT1 protein expression 
levels, which were further enhanced when losartan 
was administered (Figure 1A). In addition, losartan 
administration prior to the ROLT procedure significantly 
increased SIRT1 activity compared with both the ROLT 
and sham groups (Figure 1B). However, no significant 
differences were observed between the sham and 
ROLT groups.

In addition, we examined the levels of NAD+, 
the co-factor necessary for SIRT1 activity and 
nicotinamide phosphoribosyltransferase (NAMPT) 
protein expression, which is the major precursor for 
NAD+ biosynthesis. Figure 1C demonstrates that NAD+ 
levels were high in the sham group, but decreased 
in the ROLT and losartan + ROLT groups; however, 
losartan pre-treatment contributed to elevated NAD+ 
levels compared with ROLT alone. NAMPT protein was 
significantly augmented in both the ROLT and losartan 
+ ROLT group in comparison to sham (Figure 1D).

Further, the forkheadbox (FoxO) transcription 
factors subfamily have been shown to mediate some 
of the effects of sirtuins. Given that FoxO1 is a direct 
substrate of SIRT1, we therefore determined its 
acetylation (Figure 1E). Animals subjected to ROLT 
showed elevated ac-FoxO1 protein levels compared 
with the sham group. By contrast, the augmented 
SIRT1 activity found when losartan was administered 
was consistent with a decrease in the ac-FoxO1 protein 
levels.

Losartan acted independently of SIRT3 expression 
Because SIRT1 appeared to be modulated, we 
explored the role of SIRT3. We observed that SIRT3 
mRNA levels were significantly downregulated in both 
ROLT and losartan + ROLT groups when compared 
with the sham group (Figure 2A). The same pattern 
was observed for SIRT3 protein levels, with significant 
decreases in animals subjected to ROLT and losartan + 
ROLT (Figure 2B).

Angiotensin Ⅱ inhibition attenuated ERS 
To identify other potential molecular mechanisms 
involved in the hepatoprotective effect of losartan against 
IRI, we examined different ERS parameters, including 
GRP78, IRE1α, and p-eIF2. As indicated in Figure 3, 
important increases of all ERS parameters occurred 
following ROLT but not the sham operation. Losartan 
pre-treatment also restored the ERS parameters.

Losartan affected heat shock protein expression
Because heat shock proteins are implicated in liver IRI, 
we determined the protein expression pattern of heme 
oxygenase 1 (HO-1) and of the heat shock protein 70 

Results were expressed as the densitometric ratio 
between the protein of interest and the loading control 
(b-actin).

Real-time quantitative reverse-transcription polymerase 
chain reaction
Real-time quantitative reverse-transcription poly
merase chain reaction (qRT-PCR) was performed. 
Total liver RNA was isolated using a TRIzol reagent 
(Invitrogen). Reverse transcription was realized on 
a 1 μg RNA sample using the iScript cDNA Synthesis 
Kit (Bio-Rad Laboratories). The reaction included 
incubation at 25 ℃ (5 min), at 42 ℃ (30 min) and 
85 ℃ (5 min) and then cDNA was stored at -80 ℃. 
Subsequent PCR amplification was conducted in an 
iCycler iQ Multi-Color Real-Time PCR device (Bio-
Rad Laboratories) using SsoAdvancedTM Universal 
SYBR Green Supermix (Bio-rad Laboratories) 
and the following rat primers for SIRT3: forward, 
5′-TAGTCCAGGGTGTGGAAAGG-3′ and reverse, 
3′-CCGCAGGTGAAGAAGTAAGC-5′. Reactions were 
performed in duplicate and threshold cycle values were 
normalized to GAPDH gene expression. The ratio of 
SIRT3 relative expression to GAPDH was calculated by 
the ΔCt formula.

Statistical analysis
Data are expressed as mean ± SE. Statistical com
parison was performed by variance analysis, followed 
by the Student-Newman-Keuls test, using the Graph
Pad Prism software. P value < 0.05 was considered 
statistically significant.

RESULTS
Hepatic injury
We first examined whether treatment with losartan 
affected hepatic injury in our experimental model. 
As shown in Table 1, increased ALT and AST levels 
were observed when rats were submitted to ROLT in 
comparison with the sham group. However, treatment 
with losartan significantly reduced the transaminase 
levels in the ROLT group.
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Table 1  Effect of losartan administration in liver injury after 
orthotopic liver transplantation

Sham ROLT Losartan + ROLT

ALT (U/L) 48.8 ± 2.58   358.3 ± 133.44a 206.00 ± 33.61a,b

AST (U/L) 88.2 ± 4.65 893.57 ± 397.69a   500.85 ± 118.07a,b

Alanine aminotransferase (ALT) levels and aspartate aminotransferase 
(AST) in plasma after 24 h of reperfusion. aP < 0.05 vs Sham, bP < 0.05 
vs ROLT. Sham: liver harvested without transplantation; ROLT: Liver 
subjected to reduced-size orthotopic liver transplantation after 1 h of 
cold storage in University of Wisconsin solution; losartan + ROLT: Same 
as ROLT group, but with further administration of losartan 24 h and 1 h 
before the surgical procedure to both the donor and the recipient. 
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(HSP70). As it is shown in Figure 4, enhanced HO-1 and 
HSP70 protein levels were found in animals subjected 
to ROLT. However, Losartan treatment decreased HO-1 
protein levels and increased HSP70 protein levels.

Angiotensin Ⅱ inhibition reduced liver apoptosis
Liver IRI is characterized by increased hepatic apoptosis, 
so we determined the protein levels of caspase-12 and 
caspase-3, which are known to promote apoptosis. 
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Figure 1  Effect of losartan treatment in sirtuin 1 protein expression and SIRT1 activity parameters. A: Sirtuin 1 (SIRT1) protein expression; B: SIRT1 activity; 
C: NAD+/NADH levels; D and E: NAMPT and ac-FoxO1 protein expression in livers after 24 h of reperfusion. aP < 0.05 vs Sham, bP < 0.05 vs ROLT. Sham: Liver 
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losartan + ROLT: same as ROLT group, but with further administration of losartan 24 h and 1 h before the surgical procedure to both the donor and the recipient. 
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Figure 5 shows that increased levels of both proteins in 
animals undergoing ROLT were diminished by losartan 
pre-treatment.

MAPK regulation
The mitogen activated protein kinases (MAPKs) 
are serine/threonine protein kinases that mediate 
intracellular signal transduction events associated 
with IRI. Therefore, we determined the activation 
of extracellular signal-regulated kinase (ERK) and 
p38. Figure 6A shows that animals undergoing ROLT 
had increased levels of p-ERK, but that losartan pre-
treatment did not enhance ERK activation compared 
with ROLT alone. Moreover, the content of p-p38 was 
decreased in both the ROLT and losartan + ROLT 
groups. Losartan pre-treatment did not alter p-p38 
content when compared to ROLT alone (Figure 6B).

DISCUSSION
This study demonstrated that inhibition of AT1R lessens 
hepatic injury in ROLT. Specifically, we provide new 

insights into losartan-mediated hepatoprotection in 
rats undergoing ROLT, including the induction of SIRT1 
and the attenuation of ERS.

The protective effects of losartan against IRI were 
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associated with increased SIRT1 activity and protein 
expression. SIRT1 up-regulation and angiotensin Ⅱ 
blockade have been separately reported as therapeutic 
strategies against IRI in various organs[5,12,28,29]. 
Enhancement of SIRT1 has also been associated with 
decreased hepatic injury in rat orthotopic liver tran
splantation[30]. In our experimental rat ROLT model, 
SIRT1 protein expression was upregulated, but we 
observed no differences in its activity. Furthermore, 
FoxO1 deacetylation was inhibited in the ROLT group. 
SIRT1 overexpression and failure to augment its activity 
during IRI has also been reported in a recent work by 
our group[27]. In addition, losartan administration not 
only enhanced SIRT1 expression but also significantly 
increased both SIRT1 activity and FoxO1 deacetylation 
in comparison with the ROLT group. Further, losartan-
induced increases in SIRT1 activity can be attributed 

to the enhanced NAD+ levels, which are indispensable 
for sirtuin activity. In turn, the NAD+ levels may be 
attributed to the NAMPT levels, which were slightly, but 
not significantly, increased after losartan treatment. 
Moreover, enhanced deacetylation of FoxO1 was related 
with NAMPT and NAD+ increases in rat orthotopic liver 
transplantation[30]. The present data demonstrate 
the existence of an angiotensin Ⅱ/SIRT1 axis in liver 
transplantation, and that the benefits of angiotensin 
Ⅱ inhibition against liver IRI are mediated, at least in 
part, through SIRT1 activation. This is consistent with a 
recent study in rat skeletal muscle, in which angiotensin 
Ⅱ administration decreased SIRT1 expression[31].

Next, we speculated that SIRT3 might be affected 
by ROLT and losartan treatment. Real-time qRT-PCR 
and Western blot analysis revealed that SIRT3 mRNA 
and protein levels were significantly decreased in 
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both the ROLT and losartan + ROLT groups compared 
with the sham group. This may be attributed to the 
mitochondrial disturbances that commonly take 
place during IRI[32]. SIRT3 is the major mitochondrial 
deacetylase implicated in metabolism, oxidative stress 
responses, and cardiac IRI[13,33-35]. The fact that SIRT3 
mRNA and protein levels were comparable between 
the ROLT and losartan + ROLT groups suggests that 
the protective effect of losartan was independent of 
the SIRT3 pathway. 

The endoplasmic reticulum is an organelle re
sponsible for protein folding. Under stress conditions, 
the homeostasis of the endoplasmic reticulum is 
disturbed, leading to accumulation of unfolded 
proteins. In this case, an adaptive unfolded protein 
response (UPR) is activated to lessen the effects of 
ERS; however, when the insult is exaggerated in 
IRI, the ERS response can lead to cell death[36]. The 
UPR has three core branches: an IRE1α that induces 
the cleavage of the mRNA encoding X-box-binding 
protein 1 (XBP-1); a PKR-like endoplasmic reticulum 
kinase (PERK) that phosphorylates the eIF2a; and an 
activating transcription factor (ATF6). Under stress 
conditions, IRE1α, PERK, and ATF6 are released 
from their binding with the 78-kD glucose-regulated/
binding immunoglobulin protein (GRP78) and become 
activated[37]. In a liver transplantation model, we have 
previously seen that activation of these UPR branches 
is associated with cell death and is a determinant 
factor of liver injury[18]. In this study, we observed 
that ROLT triggered the activation of GRP78 and 
the subsequent activation of the IRE1α and p-eIF2 
pathways. Moreover, losartan pre-treatment abolished 
the activation of all ERS parameters. This is consistent 
with a recent study in human islets, which revealed 
that losartan exerted its protective effects against 
glucotoxicity by reducing ERS[38]. 

Losartan treatment was also accompanied by 

significant regulation of HSP70 and HO-1. The 
chaperone activity of HSP70 has been associated with 
cellular attempts to maintain proteins in an accurately 
folded state[36]. In our study, losartan pre-treatment 
induced HSP70 overexpression, which could have 
contributed to a decreased accumulation of unfolded 
proteins and therefore less ERS. Furthermore, because 
a direct relationship has previously been reported 
between SIRT1 and HSP70 in hepatic IRI, SIRT1 might 
contribute to HSP70 enhancement[27]. The increased 
ERS levels observed in the ROLT group were consistent 
with enhanced HO-1 protein expression that probably 
occurred due to an adaptive cell mechanism to prevent 
stress, as previously proposed by Liu et al[39]. In this 
sense, HO-1 expression was decreased when losartan 
pre-treatment diminished ERS.

Apoptosis is one of the most significant events in 
the pathophysiology of liver IRI. Aiming to mitigate 
the effects of ERS-mediated apoptosis could be an 
effective strategy for minimize IRI. It is known that 
IRE1α provokes caspase 12 cleavage, which in turn 
activates caspase 9 and then caspase 3 to stimulate 
apoptosis[40,41]. In our study, the induction of ERS in the 
ROLT group led to increased cell death, as reflected by 
the enhanced caspase 12 and caspase 3 protein levels. 
Further, the decrease in ERS in the losartan + ROLT 
group coincided with decreases in the levels of these 
caspases.

MAPKs are linked with cell cycle, liver regeneration, 
apoptosis, and oxidative stress pathways. The ERK 
cascade is closely connected with the regulation of cell 
growth and differentiation, whereas p38 is involved 
in cellular responses to environmental stress[42]. It 
has been reported that active p38 MAPK is present 
in the quiescent liver, and that it is dephosphorylated 
in the regenerating liver[43,44]. ERK phosphorylation 
is also involved in the signaling pathways of liver 
regeneration[45]. Therefore, the lowered p-p38 and 
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increased p-ERK levels observed in the ROLT and 
losartan + ROLT groups could be associated with 
enhanced liver regeneration. In a previous study, our 
group reported that losartan pre-treatment did not 
enhance liver regeneration after ROLT[46]. Thus, losartan 
pre-treatment did not provide an additional increase 
in liver regeneration, resulting in no differences in 
p-p38/ERK activation between the two ROLT groups. 
Consequently, we can assume that SIRT1 activation 
by losartan treatment is not associated with liver 
regeneration in a ROLT model. Losartan administration 
decreased significantly hepatic injury and affected 
signaling processes related to IRI, such ERS and 
apoptosis. However, it could not further enhance liver 
regeneration, an essential processes for the success of 
transplantation with reduced-size liver grafts. Further 
studies will be required to elucidate the mechanisms by 
which losartan improves hepatic injury after ROLT.

Furthermore, angiotensin Ⅱ is known to exert 
vasoconstrictor effects[47-49] and angiotensin Ⅱ blockers, 
such as losartan, have been reported to decrease 
arterial pressure and act as effective antihypertensive 
agents[50,51]. A potential hypotensive effect of losartan 
was out of the scope of the present study, whereas 
prolonged time treatments with losartan are usually 
applied in order to evaluate blood pressure changes[52]. 

In conclusion, the present results indicate that 
SIRT1 is implicated in the protective effects of AT1R 
inhibition by losartan against IRI following ROLT. 
Losartan pre-treatment markedly attenuates liver injury 
by regulating signaling pathways that are involved 
in the pathophysiology of IRI, including heat shock 
protein, ERS, and liver apoptosis pathways. Moreover, 
it is evidenced that SIRT1 is a downstream target of 
angiotensin Ⅱ in a rat ROLT model. Further studies are 
required to identify whether other angiotensin peptides 
(i.e., 1-7) can also modulate SIRT1.
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