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Abstract
AIM: To determine the role of NOB1, a regulator of cell 
survival in yeast, in human colorectal cancer cells.

METHODS: Lentivirus-mediated small interfering 
RNA (siRNA) was used to inhibit NOB1 expression 
in RKO human colorectal cancer cells in vitro  and in 
vivo  in a mouse xenograft model. The in vitro  and in 
vivo  knockdown efficacy was determined using both 
Western blot and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR). qRT-PCR was 
also used to analyze the downstream signals following 
NOB1 knockdown. Cell growth and colony formation 
assays were used to determine the effect of NOB1 
inhibition on RKO proliferation and their ability to 
form colonies. Endonuclease activity, as evaluated by 
terminal deoxytransferase-mediated dUTP nick end 
labeling (TUNEL), and annexin V staining were used to 
determine the presence of apoptotic cell death prior to 
and following NOB1 inhibition. Cell cycle analysis was 
used to determine the effect of NOB1 inhibition on RKO 
cell cycle. A cDNA microarray was used to determine 
global differential gene expression following NOB1 
knockdown. 

RESULTS: Virus-mediated siRNA inhibition of NOB1 
resulted in (1) the down-regulation of NOB1 expression 
in RKO cells for both the mRNA and protein; (2) 
inhibition of NOB1 expression both in vitro  and in vivo  
experimental systems; (3) cell growth inhibition via  
significant induction of cell apoptosis, without alteration 
of the cell cycle distribution; and (4) a significant 
decrease in the average weight and volume of 
xenograft tumors in the NOB1-siRNA group compared 
to the control scr-siRNA group (P  = 0.001, P  < 0.05). 
Significantly more apoptosis was detected within 
tumors in the NOB1-siRNA group than in the control 
group. Microarray analysis detected 2336 genes 
potentially regulated by NOB1. Most of these genes are 
associated with the WNT, cell proliferation, apoptosis, 
fibroblast growth factor, and angiogenesis signaling 
pathways, of which BAX and WNT were validated by 
qRT-PCR. Among them, 1451 probes, representing 963 
unique genes, were upregulated; however, 2308 probes, 
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representing 1373 unique genes, were downregulated.

CONCLUSION: NOB1  gene silencing by lentivirus-
mediated RNA interference can inhibit tumor growth by 
inducing apoptosis of cancerous human colorectal cells.

Key words: NOB1; Small RNA interference; Apoptosis; 
Colorectal cancer; BAX; WNT

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: NOB1, a critically important regulator in 
yeast, is also required for regulation of cell growth and 
survival in RKO human colorectal cancer cells. NOB1 
knockdown promotes cell apoptosis in both in vitro  and 
in vivo  model systems. The gene expression profile 
suggests the importance of the WNT pathway, cell 
proliferation, apoptosis, the fibroblast growth factor, 
and angiogenesis signaling pathways in the function of 
NOB1.
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INTRODUCTION
Colorectal cancer (CRC), one of  the most common 
malignancies worldwide, and is the result of  a multi-step 
and multi-mechanistic process. Abnormalities in apoptotic 
function have been shown to contribute to both CRC 
pathogenesis as well as its resistance to chemotherapeutic 
drugs and radiotherapy[1-3]. Understanding the molecular 
and cellular mechanisms which contribute to the 
carcinogenesis and CRC development could facilitate 
diagnosis and treatment of  the disease.

The proteasome, a highly selective proteinase 
complex, is considered a promising therapeutic target 
for CRC treatment[4,5]. The proteasome is required for 
the degradation of  many endogenous proteins, including 
transcriptional factors, cyclins, and tumor suppressors[6-9]. 
The proteasome 19S regulatory particle (RP) recognizes 
and degrades ubiquitin-marked proteins[10].  The 
ubiquitin-proteasome system, one of  the most important 
intracellular degradative pathways, plays a critical role 
in the regulation of  various cellular processes, such as 
cell cycle progression, differentiation, apoptosis, and 
angiogenesis[11].

Ribosome biogenesis, a high-energy and essential 
process, plays a crucial role in cell growth, proliferation, 
and differentiation[12,13]. The rate of  ribosomal processing 
is highly in tune with extracellular growth signals[14], and 
is, therefore, tightly coordinated with cell growth and 
proliferation. An emerging line of  evidence suggests 

that altered ribosome biogenesis may be associated with 
tumorigenesis[15-17].

The human NOB1 gene encodes a putative protein 
with a PIN (PilT amino terminus) domain and a zinc 
ribbon domain[18]. The yeast Nob1p (Nin one binding 
protein) is required for 26S proteasome function and 
ribosome biogenesis. Nob1p has an endonuclease-
containing PIN domain responsible for cleavage of  
the 20S pre-rRNA at site D generating the mature 
18S-rRNA[19-22]. Granneman et al[22] was able to show 
the importance of  RNA restructuring and protein 
remodeling in the 3’ region of  the 18S rRNA in the 
Nob1p-dependent cleavage at site D. In addition, using 
a two-hybrid screen, Nob1p was identified as a protein 
interacting with Nin1p/Rpn12p (a subunit of  the 19S 
RP of  the yeast 26S proteasome)[23,24]. The interaction 
between Nob1p and 19S RP subunit appears to be 
crucial for the maturation of  the 20S RP[24]. Thus, the 
human NOB1 might also be involved in ribosome 
biogenesis and 26S proteasome function in the 
nucleus[20], and play an important role in cell growth and 
proliferation.

A recent study indicated that NOB1 RNA interference 
inhibits human ovarian cancer cell growth through G0/G1 
arrest[25]. However, the NOB1 potential role in colorectal 
cancer has not been demonstrated. A recent study, using 
immunohistochemistry to determine the expression 
of  NOB1, found that NOB1 was up-regulated in 60 
colorectal cancer tissues[26]. RKO, a well-established 
poorly differentiated human colon carcinoma cell line 
with wild-type p53, is used as the model for studying 
NOB1 gene due to the relatively short doubling time and 
established genetic profile of  the cell line. Lentiviral- 
mediated small interfering RNA (siRNA) was used to 
inhibit NOB1 expression and investigate the effects 
of  NOB1 knockdown on cell proliferation, cell cycle 
progression, and apoptosis in RKO. Microarray and 
qPCR were used to detect and validate NOB1-targeted 
genes and pathways in colorectal cancer. Herein, a 
specific downregulation of  NOB1 inhibited RKO cell 
proliferation by inducing cell apoptosis, but not cell cycle 
arrest. Therefore, NOB1 may serve as a therapeutic 
target for CRC.

MATERIALS AND METHODS
Reagents and antibodies
RPMI 1640, fetal bovine serum (FBS), Trizol Reagent, 
and Lipofectamine 2000 were purchased from Invitrogen 
(Carlsbad, CA, United States). Propidium iodide (PI) 
was obtained from Sigma-Aldrich (St. Louis, MO, 
United States). RNase A was from MBI Fermentas (St. 
Leon-Rot, Germany). The Annexin V-APC Apoptosis 
Detection Kit was acquired from eBioscience (San Diego, 
CA, United States). The bicinchoninic acid (BCA) protein 
assay was purchased from HyClone-Pierce (South Logan, 
UT, United States). M-MLV Reverse Transcriptase was 
bought from Promega (Madison, WI, United States). 
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Oligo-dT was procured from Sangon Biotech (Shanghai, 
China). SYBR Green Master Mixture was purchased from 
Takara (Otsu, Japan). pGCSIL-green fluorescent protein 
(GFP), vector and virion-packaging elements (pHelper 
1.0 and pHelper 2.0) were obtained from Genechem 
(Shanghai, China). Rabbit anti-NOB1 polyclonal 
antibody was bought from either Abcam (Cambridge, 
MA, United States) or ProteinTech Group (Chicago, IL, 
United States). Mouse anti-glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), goat anti-rabbit IgG, and goat 
anti-mouse IgG were from Santa Cruz Biotechnology 
(Santa Cruz, CA, United States). All other chemicals were 
of  analytical grade.

siRNA construction and lentivirus production
Previously described methods, with minimal modifications, 
were used to construct siRNA and to produce lentivirus[27]. 
A 19-nucleotide (CCTGGAGCCAATCTTCAAGAA) 
siRNA was designed against the human NOB1 mRNA 
(GenBank accession number NM_014062). In the 
experiment, siRNA with a scrambled sequence (scr-siRNA; 
TTCTCCGAACGTGTCACGT) was used as a negative 
control. siRNAs were synthesized and inserted between 
the AgeI and EcoRI restriction sites of  the pGCSIL-GFP 
plasmid. The correct siRNA insertion was confirmed by 
restriction mapping and direct DNA sequencing.

Using Lipofectamine 2000, a recombinant lentiviral 
vector, pGCSIL-GFP, with pHelper 1.0 [encoding 
human immunodeficiency virus (HIV) gag, pol, and rev] 
and pHelper 2.0 (encoding for the VSV-G envelope) 
was used to co-transfect 293T cells, according to the 
manufacturer’s instructions. Infectious lentivirus was 
harvested at 48 h post-transfection, centrifuged to 
remove cell debris, and then filtered through a 0.45 µm 
cellulose acetate filter.

Cell culture and infection
The RKO (human colorectal cancer) cell line, purchased 
from the American Type Culture Collection (ATCC, 
Manassas, VA, United States), was maintained in RPMI 
1640 medium supplemented with 10% FBS, 100 U/mL 
penicillin, and 100 μg/mL streptomycin, at 37 ℃ in a 5% 
CO2 humidified incubator. RKO cells were subcultured 
in 6-well tissue culture plates at a density of  5 × 104 
cells/well. Lentivirus infection was conducted at 30% cell 
confluency. Lentivirus was added at different MOIs in 
serum-free medium at 37 ℃ in 5% humidified CO2. After 
24 h, complete medium was added to the cells. More than 
90% of  the cells were infected at 4 d post-infection as 
indicated by the expression of  GFP.

Quantitative reverse transcription polymerase chain 
reaction analysis
The total RNA from scr-siRNA and NOB1-siRNA 
infected cells was extracted with Trizol reagent according 
to the manufacturer’s protocol. The RNA quantity and 
purity were determined by UV absorbance spectroscopy. 
cDNA was generated by reverse transcription with 

oligo-dT primer using M-MLV. The quantitative reverse 
transcription polymerase chain reaction (qRT-PCR) 
was performed using SYBR Green Master Mixture 
and analyzed on the TAKARA TP800-Thermal Cycler 
Dice™ Real-Time System. The qRT-PCR primers of  
each gene are listed in Table 1. The thermal cycling 
conditions were 15 s at 95 ℃, 45 cycles of  5 s at 95 ℃, 
and 30 s at 60 ℃. Data were analyzed with TAKARA 
Thermal Dice Real Time System software Ver3.0. Each 
reaction was performed with triplicate samples in each 
group and analyzed individually relative to GAPDH (a 
normalization control), and differential gene expression 
was calculated using the 2-ΔΔCt method[28]. Thereafter, 
data for mRNA expression levels were expressed as a 
fold difference relative to that of  negative control cells.

Western blot analysis
The infected cells were washed twice with PBS, suspended 
in a lysis buffer (2% mercaptoethanol, 20% glycerol, 
4% SDS in 100 mmol/L Tris-HCl buffer, pH 6.8), and 
placed on ice for 15 min. The suspension was collected 
after centrifugation at 12000 g for 15 min at 4 ℃. Protein 
concentration was determined by the BCA Protein assay. 
From each sample, 30 μg of  protein was subjected to 
electrophoresis on 10% SDS-polyacrylamide gel and 
transferred to a PVDF membrane. TBST (Tris-buffered 
saline, 0.1% Tween-20) buffer containing 5% non-fat dry 
milk was used to block non-specific binding for 1 h at 
room temperature. Membranes were then incubated with 
the indicated antibodies overnight at 4 ℃, and washed 
three times with TBST. Membranes were incubated 
with secondary antibodies conjugated to horseradish 
peroxidase for 2 h at room temperature, and washed 
three times with TBST. The detected protein signals were 
visualized by the ECL Plus Western Blotting Detection 
System (Amersham). GAPDH protein levels were used 
as a control to verify equal protein loading.

Cell growth
Cell growth was assessed using the Cellomics ArrayScan 
High Content Screening (HCS) system (Thermo Fisher 
Scientific, Pittsburgh, PA, United States). Briefly, RKO 
cells infected with lentivirus-mediated NOB1-siRNA 
or scr-siRNA were seeded in 96-well plates at a density 
of  2 × 103 cells/well and cultured at 37 ℃ in a 5% CO2 
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Table 1  Primers used in this study

Genes Sequence Length (bp)

GAPDH-F TGACTTCAACAGCGACACCCA 121 
GAPDH-R CACCCTGTTGCTGTAGCCAAA
NOB1-F ATCTGCCCTACAAGCCTAAAC 184 
NOB1-R TCCTCCTCCTCCTCCTCAC
BAX-F TGCTTCAGGGTTTCATCCA 296 
BAX-R GGCCTTGAGCACCAGTTT
WNT7B-F TCCACTGGTGCTGCTTCG 300 
WNT7B-R GTCACGGGTGCTGTTCTGC

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.
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in 0.1 mL of  serum-free RPMI 1640 were injected 
subcutaneously into the right flank of  each nude mouse. 
The mice were randomized into three groups (n = 5 
each group). After 2 wk, the first group of  nude mice 
was injected intratumorally with PBS, the second group 
with lentivirus-mediated scr-siRNA, and the third group 
with lentivirus-NOB1-siRNA. All of  the mice were 
injected weekly until the completion of  experiments. 
Tumor growth was monitored weekly and measured in 
two dimensions. Tumor volume was calculated using the 
V = W2 × L/2 formula, where W and L are the shortest 
and longest diameters, respectively. After 5 wk, mice were 
killed and the tumors were immediately fixed in formalin 
for terminal deoxynucleotidyl transferase mediated dUTP 
nick end labeling (TUNEL) analysis.

Terminal deoxytransferase-mediated dUTP nick end 
labeling procedure
Apoptosis was detected using the TUNEL in situ apoptosis 
detection kit (Roche, Basel, Switzerland) according to 
the manufacturer’s instructions. After deparaffinization, 
dehydration, and inactivation of  intrinsic peroxidase 
activity, 20 paraffin sections of  each tumor specimen were 
incubated with 2 μg/mL proteinase K at 37 ℃ for 15 
min. Afterward, the sections were treated with terminal 
deoxynucleotidyl transferase and biotinylated dUTP. 
The reaction was stopped with TB buffer (30 mmol/L 
sodium chloride, 30 mmol/L sodium citrate), followed by 
microscopic observation of  the samples. The controls for 
the TUNEL procedure were treated in the same manner 
as the test samples except dH2O was used instead of  
using TdT enzyme in both kits. No labeling was found in 
the controls.

Microarray analysis
The scr-siRNA and NOB1-siRNA infected RKO cell 
gene expression profiles were obtained and compared 
using the Agilent Human Gene Expression 4 × 44K 
v2 Microarray kit (Agilent Technologies, Santa Clara, 
CA, United States). The microarrays were performed 
following the manufacturer’s protocol. Briefly, the total 
RNA was extracted using Trizol and further purified with 
the Qiagen RNeasy kit (Valencia, CA, United States). 
RNA quantity, quality, and size distribution were checked 
by the Nanodrop 2000C (A260/A280) and Agilent 2100 
Bioanalyzer system (Agilent Technologies, Santa Clara, 
CA, United States). cDNA was generated by reverse 
transcription using 0.2 µg of  the total RNA. Cy3-CTP-
labeled cRNA was synthesized by in vitro transcription 
(IVT), which was purified by Qiagen RNeasy kit and 
hybridized to the Agilent Whole Human Genome Oligo 
Microarrays 4 × 44K. After hybridization, the array was 
washed and processed using an Agilent DNA microarray 
scanner (Agilent Technologies). Agilent Feature 
Extraction Software (FES) was used to read and process 
the microarray image files. Genespring was employed 
to determine feature intensities and ratios (including 
background subtraction and normalization). Genes 

humidified incubator. The infected GFP-expressing cells 
were imaged and counted on the Cellomics ArrayScan 
HCS Reader once a day for 5 d. The experiment was 
performed at least three times, independently. The 
growth curves of  the infected cells were constructed.

Colony formation assay
To analyze cell growth, the colony formation analysis was 
performed using the Cellomics ArrayScan HCS system. 
Briefly, RKO cells infected with lentivirus-mediated 
NOB1-siRNA or scr-siRNA were seeded in 96-well 
plates at a density of  500 cells/well. Cells were cultured 
for 14 d at 37 ℃ in a 5% CO2 humidified incubator. 
Culture medium was changed every 3 d. Cell colonies 
were imaged and counted using the Cellomics HCS 
Reader. The experiment was performed in triplicate.

Cell cycle distribution analysis
The cell cycle distribution was determined by DNA 
staining with propidium iodide (PI) and flow cytometric 
analysis[29]. In summary, RKO cells seeded in 6 cm culture 
dishes were infected with lentivirus-mediated NOB1-
siRNA or scr-siRNA for 6 d. After infection, the cells 
were trypsinized, washed with PBS, and fixed in 70% 
ethanol for at least 1 h at 4 ℃. After two washing steps 
in cold PBS, the cells were resuspended in 1 mL of  PBS 
containing 100 μg/mL RNase A and 50 μg/mL PI, and 
incubated for 30 min in the dark at room temperature. 
The percentages of  cells in different phases of  cell cycle 
were measured with the Becton Dickinson FACSCalibur 
flow cytometer using dedicated software. The experiment 
was repeated three times.

Annexin V apoptosis assay
Annexin V-APC (apoptosis detection kit) was used 
to detect apoptosis as described by the manufacturer. 
Briefly, RKO cells seeded in 6-well culture plates were 
infected with lentivirus-mediated NOB1-siRNA or 
scr-siRNA for 7 d. After infection, attached cells were 
trypsinized, washed with PBS, and centrifuged. The cells 
were washed with 1 × binding buffer, centrifuged, and 
resuspended in 1 mL 1 × staining buffer. To 100 μL 
of  cell suspension, prepared as described above, 5 μL 
Annexin V-APC was added, followed by a gentle vortex, 
and 10 min incubation at room temperature in the dark. 
Data acquisition and analysis were performed by the 
Becton Dickinson FACSCalibur flow cytometer using 
dedicated software. The experiment was repeated three 
times.

In vivo xenograft tumor model
This animal experiment was approved by the Shanghai 
Laboratory Animal Ethics Committee. Four to five 
week old female nude mice were purchased from the 
Shanghai Laboratory Animal Center of  the Chinese 
Academy of  Science and were treated according to 
the ethics guidelines for animal research. To produce 
tumors, using a 24-gauge needle, 1 × 106 RKO cells 
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with ratios > 2 or < 0.5 were considered differentially 
expressed. The KEGG pathway and Gene Ontology 
(GO) enrichment analyses, for differentially expressed 
genes, were performed using the NIH gene annotation 
software, DAVID[30]. Heat maps were presented using 
Cluster 3.0 and the Tree View software[31].

Statistical analysis
Statistical analysis was performed using SPSS software 
version 10.0 (SPSS Inc, Chicago, IL, United States). 
Data were expressed as the mean of  at least three 
different experiments ± SD. The statistical difference was 
evaluated using the χ 2 test and Student’s t test. Statistically 
significant differences were defined as P < 0.05.

RESULTS
Downregulation of NOB1 expression by lentivirus-
mediated NOB1-siRNA in RKO cells
The efficiency of  lentiviral infection of  RKO cells was 
determined through microscopic examination of  GFP 
expression at an MOI of  10 on day 4 after infection 
(Figure 1A). More than 90% of  RKO cells were infected.

qRT-PCR and Western blot examination of  the 
effect of  lentivirus-mediated NOB1-siRNA infection 
on the silencing of  NOB1 expression showed a 60.9% 
reduction in NOB1 mRNA expression after 5 d of  
infection compared to scr-siRNA infection (P < 0.05, 

Figure 1B). Western blot analysis, performed 7 d after 
infection, showed a significant decrease in NOB1 protein 
expression in NOB1-siRNA infected RKO cells, as 
compared to the scr-siRNA infected cells (Figure 1C).

Effects of NOB1 knockdown on cell growth in RKO cells
The effects of  NOB1 knockdown on cell function, cell 
growth, and colony formation were assessed using the 
Cellomics ArrayScan™ HCS system. As shown in Figure 
2A, the GFP-expressing infected cells were counted once 
a day for 5 d. NOB1-siRNA inhibited cell proliferation 
in a time-dependent manner. After 5 d of  infection, 
the number of  NOB1-siRNA-infected RKO cells was 
reduced by 92.8% as compared with scr-siRNA infected 
cells (P < 0.05). Furthermore, NOB1-siRNA infected 
cells exhibited significant attenuation in the ability to 
form colonies. After 14 d of  infection, the number of  
cell colonies in NOB1-siRNA infected RKO cells was 
reduced by 89.7%, as compared with scr-siRNA infected 
cells (P < 0.05, Figure 2B).

Effects of NOB1 knockdown on cell cycle progression 
and apoptosis in RKO cells
The effects of  NOB1 knockdown on cell cycle progression 
and apoptosis in RKO cells were examined in an effort to 
further explore the reason for cell growth reduction. As 
shown in Figure 3A, there were no significant differences 
in cell cycle progression, including G0/G1, S, and G2/M 
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phases, between the cells infected with NOB1-siRNA or 
scr-siRNA.

NOB1 knockdown resulted in a marked increase in 
cell apoptosis (Figure 3B). The percentage of  apoptotic 
cells was 63.2% ± 4.2% in NOB1-siRNA infected 
RKO cells, and 10.9% ± 0.2% in scr-siRNA infected 
RKO cells (P < 0.05). To validate the current finding in 
another colon cancer cell line, HCT116 cells were also 
infected with NOB1-siRNA and resulted in efficient 
NOB1 knockdown (Figure 1A). Flow cytometry analysis 
of  cell death revealed that NOB1 knockdown induced 
significant apoptosis in HCT116 cells (Figure 1B).

Effects of NOB1 knockdown on tumor growth and cell 
survival in the xenograft mouse model
The effect of  lentivirus-mediated Nob1-siRNA on tumor 
growth in the xenograft mouse model was examined. 
Western blot showed a reduction in NOB1 expression 
in xenograft tissue (Figure 4A). Furthermore, NOB1-

siRNA also induced extensive cell death as detected by 
TUNEL assay (Figure 4B, C). After 2 wk the xenograft 
tumor began to grow; and at week 5 after injection, the 
xenograft tumor size was as follows (means ± SE): 910 ± 
180 mm3 in the PBS control group, 870 ± 1650 mm3 in 
the scr-siRNA group, and 405 ± 102 mm3 in the NOB1-
siRNA group (Figures 4D, E, and F). ANOVA analysis 
revealed that the inhibitory effect of  NOB1-siRNA 
infection was significant compared with scr-siRNA or 
PBS injections (P < 0.05). Compared with the starting 
volume, there was a significant retardation of  tumor 
growth in xenograft mice treated with NOB1-siRNA.

Microarray analysis identified genes and pathways 
potentially targeted by NOB1
To determine the NOB1-targeted genes and -pathways in 
colorectal cancer, the total RNA was extracted from scr-
siRNA and NOB1-siRNA infected RKO cells, and was 
hybridized on the Human Gene Expression 4 × 44K v2 
Microarray chip containing 41093 probes, representing 
27958 Entrez genes. Among them, 2336 genes with ratio 
> 2 or < 0.5 were defined as differentially expressed 
genes and potential NOB1 targets. In an indirect way, 
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Figure 3  Effects of NOB1 downregulation on cell cycle progression and 
apoptosis in RKO cells. A: Cell cycle distribution was determined by flow 
cytometric analysis at day 6 of infection; B: Flow cytometric analysis of cell 
apoptosis was performed on day 7 of infection. Data are presented as mean ± 
SD of three independent experiments. aP < 0.05 vs scr-siRNA. scr-siRNA: Cells 
infected with lentivirus-mediated scramble small interfering RNA; NOB1-siRNA: 
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NOB1 potentially upregulated 1451 probes representing 
963 unique genes. There were also 2308 downregulated 
probes, representing 1373 unique genes, which may 
possibly be regulated by NOB1 directly.

NIH DAVID enrichment analysis of  2336 differentially 
expressed genes demonstrated NOB1 targeting KEGG 
pathways in cancer [P = 0.001, false discovery rate (FDR) 
= 1.23%]. With a total of  328 genes in cancer pathways, 
56 genes are potentially targeted by NOB1 (Figure 5). 
Gene Ontology analysis indicated that these 56 genes are 
found in the WNT, cell proliferation, apoptosis, fibroblast 

growth factor (FGF), and angiogenesis signaling pathways 
(Table 2). The expressions of  WNT7B and BAX were 
validated by qRT-PCR (Figure 6), which was consistent 
with microarray data.

DISCUSSION
There has been little research conducted in order to 
understand the role of  human NOB1 gene in colorectal 
cancer development and treatment. In an effort to 
expand our understanding, we employed lentiviral-
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mediated siRNA to inhibit NOB1 expression in RKO 
human colorectal cancer cells. The efficiency of  lentiviral 
infection in RKO cells was more than 90% at an MOI of  
10 on day 4 after infection. The NOB1-siRNA infection 
effectively reduced the expression of  NOB1 in RKO 
cells, which was confirmed by qRT-PCR and Western 
blot analysis.

Carcinogenesis upsets the normal balance between 
cell proliferation and cell death[32]. Our results showed a 
significant inhibition of  RKO cell growth as a result of  
NOB1 knockdown (Figure 2). The inhibition seemed 
to be due to induction of  cell apoptosis, but not cell 
cycle arrest, in RKO cells (Figure 3). Furthermore, this 
phenomenon was validated in HCT116 cells, a p53 
null cell line, suggesting that NOB1 is required for the 
survival of  various colon cancer cells and its function is 
independent of  p53. Given that RKO is a p53-positive cell 
line, our results suggest that apoptosis induced by NOB1-
knockdown is p53 independent. The greatest apoptosis-
inducing effect occurred 7 d after NOB1-siRNA infection. 
At 4 d after infection, the cell morphology looked largely 

normal, which could be explained by the relatively long 
half-life of  NOB1 protein. Although, the most efficient 
NOB1 knockdown occurred on day 7, mRNA was 
markedly reduced on day 5 after infection. To explore the 
underlying mechanisms, microarray analysis was used to 
identify 2336 genes potentially targeted by NOB1. Further 
bioinformatic analysis suggested that NOB1 inhibited 
colorectal cancer through the oncogenic pathways, such 
as the WNT, cell proliferation, apoptosis, FGF, and 
angiogenesis signaling pathways. qRT-PCR confirmed that 
the expression of  WNT7B and BAX were altered when 
NOB1 was knocked down.

Nob1p is required for 26S proteasome function, 
ribosome biogenesis, and cell viability in yeast[19-24]. 
Depletion of  Nob1p leads to a defect in the processing 
of  40S ribosome subunits or small subunits[19]. Specifically, 
it results in the accumulation of  20S rRNA, the precursor 
of  18S rRNA, which is the primary rRNA component of  
the small subunit in yeast. Because Nob1p contains a PIN 
domain, it is believed to be the endonuclease responsible 
for the site D cleavage producing the mature 18S rRNA[20]. 
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Table 2  Gene Ontology enrichment analysis showing NOB1-targeted pathways and genes involved in cancer development

Gene ontology Genes P  value Fold enrichment FDR

WNT pathway WNT4, WNT7B, WNT5B, MITF, LEF1, WNT9A, TCF7L1, WNT8B, APC 4.32 × 10-8 16.9523 7.00 × 10-5

Proliferation PRKCA, CEBPA, FGFR3, IL-8, FGF9, MITF, TGFBR2, EGLN3, NFKBIA, CDKN1A, CASP3, BAX, 
VEGFA, FGF1, EGF, APC

2.03 × 10-7   5.0931 3.28 × 10-4

Apoptosis PRKCA, TRAF1, MITF, MLH1, NFKBIA, FADD, BIRC3, DAPK3, CDKN1A, CASP3, NTRK1, BAX, 
VEGFA, FAS, TRAF4, APC

2.67 × 10-7   4.9854 4.33 × 10-4

FGF pathway FGF5, FGFR3, FGF9, FGF16, FGF1 4.64 × 10-6 43.1928 0.007516
Angiogenesis IL-8, EPAS1, FGF9, VEGFA, TGFBR2, EGF, FGF1 2.33 × 10-5 11.8488 0.037727

FDR: False discovery rate; APC: Adenomatous polyposis coli; IL: Interleukin; VEGFA: Vascular endothelial growth factor A; FGF: Fibroblast growth factor; 
TGF: Transforming growth factor.
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Figure 6  Quantitative reverse transcription polymerase chain reaction demonstrated NOB1-siRNA up-regulating BAX and down-regulating WNT7B mRNA 
in RKO cells. GAPDH expression was used as a loading control. Data are presented by the mean ± SD of three independent experiments. aP < 0.05 vs scr-siRNA; 
scr-siRNA: Cells infected with lentivirus-mediated scramble small interfering RNA; NOB1-siRNA: Cells infected with lentivirus-mediated NOB1-siRNA.
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In addition to the PIN domain, Nob1p also contains a 
zinc ribbon domain, a well-known RNA binding domain. 
Thus, Nob1p-like proteins may potentially be required for 
ribosome biogenesis in other eukaryotes. A report showed 
that Nob1p assists in joining of  the 20S core particle with 
the 19S RP in the nucleus as well as facilitating the 20S 
core particle maturation. Furthermore, 26S proteasome 
biogenesis is completed upon Nob1p internalization 
and degradation by the 26S proteasome[24]. Thus, Nob1p 
may also be required for ribosome biogenesis and 26S 
proteasome function in other eukaryotes.

The ubiquitin-proteasome pathway is responsible 
for most of  the intracellular protein degradation[33]. 
The ribosome is a large protein-RNA complex essential 
for protein synthesis, a characteristic of  cell viability[34]. 
Because protein synthesis malfunction and protein 
degradation cause cell apoptosis in tumor cells[35-37], the 
ubiquitin-proteasome pathway and ribosome biogenesis 
have become attractive targets in anticancer drug 
development. Due to the potentially important role of  the 
human NOB1 in 26S proteasome function and ribosome 
biogenesis, we presumed that NOB1 knockdown might 
induce cell apoptosis. Considering that genes involved 
with WNT, apoptosis, FGF and angiogenesis signaling 
were altered in microarray profiling, further investigations 
should be focused on deciphering the connection 
between the role of  NOB1 in the ubiquitin-proteasome 
pathway and ribosome biogenesis with these signaling/
pathways.

In conclusion, NOB1 expression can be downregulated 
specifically and effectively by lentivirus-mediated siRNA. 
NOB1 knockdown significantly inhibited RKO cell 
growth by inducing cell apoptosis, but not cell cycle 
arrest. Furthermore, NOB1 knockdown led to the altered 
expression of  genes involved in multiple pathways or 
cellular functions, such as the WNT, cell proliferation, 
apoptosis, FGF, and angiogenesis signaling cascades. 
Thus, NOB1 should be considered a potential therapeutic 
target for the treatment of  CRC.

COMMENTS
Background
Human NOB1 encodes a protein with a PIN (PilT amino terminus) domain and a 
zinc ribbon domain. The yeast homolog Nob1p is required for 26S proteasome 
function and ribosome biogenesis; hence, Nob1p is essential for cell growth. 
However, the role of NOB1 in human cells remains largely unknown.
Research frontiers
Colorectal cancer (CRC) is one of the most common malignancies worldwide. 
The molecular events that trigger CRC development remain largely unexplored. 
Identification of novel therapeutic targets is urgently needed to improve the 
outcomes of patients suffering from CRC.
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The role of NOB1 in CRC is unknown. The results of this study show that NOB1 
is required for the survival of CRC cells. siRNA knockdown of NOB1 induced 
significant cell apoptosis in both in vitro and in vivo model systems. Microarray 
analysis showed that the WNT, cell proliferation, apoptosis, fibroblast growth 
factor, and angiogenesis signaling cascades contribute to NOB1 function.
Applications
Given the critical role of NOB1 in CRC, NOB1 may be a novel therapeutic 
target in the treatment of CRC patients.
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cancer cells. Inhibition of the NOB1 function by siRNA greatly induces cell 
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