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Abstract
AIM: To investigate the effects of Recql5 deficiency on 
liver injury induced by lipopolysaccharide/D-galactosamine 
(LPS/D-Gal).

METHODS: Liver injury was induced in wild type (WT) 
or Recql5-deficient mice using LPS/D-Gal, and assessed 
by histological, serum transaminases, and mortality 
analyses. Hepatocellular apoptosis was quantified by 
transferase dUTP nick end labeling assay and Western 
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blot analysis of cleaved caspase-3. Liver inflammatory 
chemokine and cytochrome P450 expression was 
analyzed by quantitative reverse transcription-PCR. 
Neutrophil infiltration was evaluated by myeloperoxidase 
activity. Expression and phosphorylation of ERK, 
JNK, p65, and H2A.X was determined by Western 
blot. Oxidative stress was evaluated by measuring 
malondialdehyde production and nitric oxide synthase, 
superoxide dismutase, glutathione peroxidase, catalase, 
and glutathione reductase activity.

RESULTS: Following LPS/D-Gal exposure, Recql5-
deficient mice exhibited enhanced liver injury, as 
evidenced by more severe hepatic hemorrhage, 
higher serum aspartate transaminase and alanine 
transaminase levels, and lower survival rate. As 
compared to WT mice, Recql5-deficient mice showed 
an increased number of apoptotic hepatocytes and 
higher cleaved caspase-3 levels. Recql5-deficient 
mice exhibited increased DNA damage, as evidenced 
by increased γ-H2A.X levels. Inflammatory cytokine 
levels, neutrophil infiltration, and ERK phosphorylation 
were also significantly increased in the knockout mice. 
Additionally, Recql5-deficicent mice exhibited increased 
malondialdehyde production and elevated inducible 
nitric oxide synthase, superoxide dismutase, glutathione 
peroxidase, catalase, and glutathione reductase activity, 
indicative of enhanced oxidative stress. Moreover, 
CYP450 expression was significantly downregulated in 
Recql5-deficient mice after LPS/D-Gal treatment.

CONCLUSION: Recql5 protects the liver against LPS/
D-Gal-induced injury through suppression of hepatocyte 
apoptosis and oxidative stress and modulation of 
CYP450 expression.

Key words: Recql5; Liver injury; Apoptosis; Oxidative 
stress; CYP450
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Core tip: Wild type and Recql5-deficient mice were 
intraperitoneally injected with lipopolysaccharide and 
D-galactosamine (LPS/D-Gal). The aim of the study 
was to explore the effects of Recql5 deficiency on 
LPS/D-Gal-induced liver injury. Our findings reveal 
that Recql5 protects against liver injury via  inhibition 
of hepatocyte apoptosis and oxidative stress and 
regulation of hepatic CYP450 expression levels.

Liao WQ, Qi YL, Wang L, Dong XM, Xu T, Ding CD, Liu R, 
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INTRODUCTION
The RecQ family is a highly conserved group of DNA 
helicases that play a critical role in DNA replication, 
recombination, transcription, and repair[1]. Mammals 
express five RecQ homologues: RECQL1, BLM, WRN, 
RECQL4, and RECQL5[2], which share a conserved 
helicase domain, but differ in their C- and/or N-terminal 
domains[3]. Mutations in BLM, WRN, and RECQL4 
are linked to the human genetic disorders Bloom’
s syndrome (BS), Werner’s syndrome (WS), and 
Rothmund-Thomson’s syndrome (RTS), respectively. 
These disorders are characterized by increased 
genomic instability and cancer susceptibility[2]. RECQL5 
has not been directly linked to human genetic disease, 
but has been implicated in DNA double strand break 
(DSB) repair and DNA transcription[4-10]. 

Several lines of evidence suggest that RECQ 
helicases also play a role in hepatic cell proliferation 
and metabolism. For example, RECQL1 expression 
is significantly correlated with histological grade and 
MIB-1 indices of hepatocellular carcinoma (HCC) 
development. Silencing RECQL1 expression suppresses 
HCC cell proliferation both in vitro and in vivo[11]. BLM-
deficient cells from patients with BS show slower 
growth and increased irradiation-mediated apoptosis. 
Deletion of BLM in mice leads to a reduced number of 
fetal liver cells and increased cell death[12]. In addition, 
a recent report has shown that Wrn-mutant mice 
exhibit accelerated typical age-related liver changes, 
including pseudocapillarization that directly affects 
hepatic metabolism[13]. Moreover, WRN regulates the 
transcription of hepatic cytochrome P450 2B (CYP2B) 
genes, which are involved in the metabolism of various 
active substances[14], suggesting that WRN may function 
in liver metabolism. Hepatocyte cell death and impaired 
hepatic metabolism are associated with many liver 
diseases, including chronic and acute liver injury and 
liver cancer[15-17]. Previously, we reported that Recql5 
deficiency in mice resulted in increased susceptibility to 
cancers, including liver cancer[4,6]; however, it remains 
unknown whether Recql5 also has a role in liver injury. 

Lipopolysaccharide/D-galactosamine (LPS/D-Gal) 
treated mice are a known model of acute liver injury. 
D-Gal is an amino sugar that blocks RNA synthesis 
and greatly increases the sensitivity of mice to LPS-
induced hepatotoxicity[18,19]. Using this model, we 
examined the function of Recql5 in liver injury. We 
demonstrated that Recql5 protects against LPS/D-Gal-
induced liver injury and found that the enhanced liver 
injury in Recql5-deficient mice occurs due to increased 
hepatic apoptosis, elevated oxidative stress, and 
downregulation of CYP450 expression.

MATERIALS AND METHODS
Animals
Male, 6-8-wk-old Recql5-deficient and wild type 
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(WT) C57BL/6 mice were used in this study. The 
Recql5-deficient mice used in this study have been 
characterized previously[4-7]. Mice were fed a commercial 
diet and maintained in a controlled environment at 
20-25 ℃ and 50% ± 5% relative humidity with a 12:12 
h dark-light cycle. All animal studies were approved by 
the Wenzhou Medical University Institutional Animal 
Care and Use Committee.

Reagents and antibodies
LPS (E. coli, 0111:B4) and D-Gal were purchased from 
Sigma (St Louis, MO, United States). Caspase-3 (rabbit 
polyclonal, 1:1000), ERK (rabbit polyclonal, 1:2000), 
phospho-ERK (rabbit polyclonal, 1:2000), JNK (rabbit 
polyclonal, 1:1000), phospho-JNK (mouse monoclonal, 
1:2000), phospho-p65 (mouse monoclonal, 1:1000), 
phospho-H2A.X (γ-H2A.X, rabbit polyclonal, 1:1000), 
β-actin (rabbit polyclonal, 1:2000), and GAPDH (rabbit 
polyclonal, 1:3000) antibodies were obtained from Cell 
Signaling Technology (Waltham, MA, United States). 
Peroxidase-conjugated secondary antibodies were 
from Santa Cruz Biotechnology (Santa Cruz, CA, 
United States).

Liver injury induction
Liver injury was induced in 6-8-wk-old male mice via 
an intraperitoneal injection of LPS/D-Gal. For mortality 
assay, mice were intraperitoneally injected with 20 
μg/kg LPS and 400 mg/kg D-Gal and mortality was 
recorded for 72 h. To induce acute liver injury, mice 
were intraperitoneally injected with 10 μg/kg LPS 
and 300 mg/kg D-Gal. Mice were scarified at 1 and 
6 h after LPS/D-Gal administration. Blood and liver 
samples were collected for further experiments.

Serum analysis
The serum activity of aspartate aminotransferase (AST) 
and alanine aminotransferase (ALT) was measured 
with a commercial assay kit (Nanjing Jiancheng 
Biological Technology, Inc., Nanjing, China). The 
enzyme activity was expressed as international units 
per liter (U/L). Serum tumor necrosis factor (TNF)-α 
and interleukin (IL)-6 levels were measured using 
commercial assay kits (Nanjing Jiancheng Biological 
Technology).

Histopathological analysis
Formalin-fixed specimens were embedded in paraffin 

and stained with hematoxylin-eosin for conventional 
morphological evaluation under a light microscope.

Myeloperoxidase activity analysis
Myeloperoxidase (MPO) activity was determined using 
an MPO detection kit according to the manufacturer’s 
instructions (Nanjing Jiancheng Biological Technology, 
Inc.).

Oxidation stress analysis
Lipid peroxidation was determined by measuring 
malondialdehyde (MDA) levels using an assay kit 
(Beyotime Institute of Biotechnology, Inc., Shanghai, 
China). The activity of inducible nitric oxide synthase 
(iNOS), superoxide dismutase (SOD), glutathione 
peroxidase (GPX), catalase (CAT), and glutathione 
reductase (GR) was tested using commercial assay 
kits (Nanjing Jiancheng Biological Technology, Inc.).

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling assay
Hepatocellular apoptosis was evaluated by transferase 
dUTP nick end labeling (TUNEL) assay using the 
DeadEndTM Colorimetric TUNEL System (Promega, 
Madison, WI, United States). The terminal transferase 
reactions produced a dark-brown precipitate. For each 
mouse liver section, the number of TUNEL-positive 
cells in five randomly selected fields was counted.

Quantitative real-time PCR
Total RNA was isolated from liver tissue using TRIZOL 
reagent (Invitrogen) and was treated with DNase to 
remove contaminating DNA before cDNA synthesis. RNA 
(2 µg) was reverse-transcribed to cDNA with murine 
leukemia virus (MLV)-reverse transcriptase (Invitrogen). 
Each cDNA sample was analyzed in triplicate on 
an ABI 7300 Real-Time Detection system (Applied 
Biosystems, Foster City, CA, United States) using 
SYBR Green (Tiangen, Beijing, China). An endogenous 
housekeeping gene (GAPDH) was used as an internal 
standard. The primer sequences are shown in Table 1. 
The primer concentration used in the PCR assay was 
0.5 µmol/L. Cycle conditions were as follows: 95 ℃ for 
2 min followed by 40 cycles of 95 ℃ for 15 s, 60 ℃ for 
30 s, and 68 ℃ for 30 s. Relative mRNA quantification 
was calculated using the comparative threshold cycle 
(Ct) method. ∆∆Ct was converted to a fold change of 
expression using the formula 2-∆∆Ct. 
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Table 1  Primers used in this study

Gene Forward primer (5'→3') Reverse primer (5'→3') Length of product

TNF-a GAACTGGCAGAAGAGGCACT AGGGTCTGGGCCATAGAACT 203 bp
IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATAC 141 bp
Cyp2A4 CGGAAGACGAACGGTGCTTTC GAGGCTTCCCAGCATCATTCTAAGA 123 bp
Cyp2A5 TCGGAAGACGAACGGTGCTTTT GCTTCCCAGCATCATTCGAAGC 124 bp
Cyp2B9 TGAAGCTTTTCTGCCCTTCT GTGTGAGCAGCTACCAATG 147 bp
Cyp2B10 GACTTTGGGATGGGAAAGAG CCAAACACAATGGAGCAGAT   68 bp
GAPDH ACGGATTTGGTCGTATTGGGC CTCGCTCCTGGAAGATGGTGAT 216 bp
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first examined the effect of Recql5 deficiency on 
mouse mortality after LPS shock. Following injection 
of 20 µg/kg LPS and 400 mg/kg D-Gal, the mortality 
was significantly increased in Recql5-deficient mice 
as compared to WT mice (Figure 1A). Lethal shock 
in D-Gal/LPS-treated mice is characterized by acute 
liver injury[20]. To further elucidate the direct effects 
of Recql5 on liver injury, we used a low-dose LPS/
D-Gal model (10 µg/kg LPS and 300 mg/kg D-Gal). 
Liver morphology analysis[21] showed that the liver 
of Recql5-deficient mice was swollen and exhibited 
more bleeding on the surface, as compared to the liver 
of WT mice, indicating that there was more severe 
liver hemorrhage in knockout mice after treatment 
(Figure 1B). These data were further confirmed by 
HE staining (Figure 1C). Moreover, the serum ALT and 
AST levels, two well-established biochemical markers 
of hepatocellular damage, were significantly increased 
in Recql5-deficient mice 6 h after injection (Figure 1D 
and E). Together, these results indicate that Recql5 has 
a protective role in liver injury induced by LPS/D-Gal. 

Increased hepatocellular apoptosis and DNA damage in 
Recql5-deficient mice
Hepatocyte apoptosis is considered a main cause 
of liver injury in the LPS/D-Gal model[22]. Thus 
we evaluated whether Recql5 deficiency affected 
hepatocyte apoptosis. The TUNEL assay showed that 
the number of apoptotic hepatocytes was significantly 

Western blotting
Liver tissue was lysed in lysis buffer [50 mmol/L Tris-
HCl pH 7.6, 150 mmol/L NaCl, 1% NP-40 and 0.1% 
(w/v) SDS] supplemented with a protease/phosphatase 
inhibitor cocktail (Cell Signaling Technology). After 
sonication, the lysate was centrifuged at 12000 rpm 
for 15 min at 4 ℃, and the supernatant was collected. 
Proteins were separated using SDS-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred to 
polyvinylidene difluoride (PVDF) membranes (Bio-Rad, 
Hercules, CA, United States). After blocking with 5% 
(w/v) milk in TTBS (TBS plus 0.1% Tween-20), the 
membranes were incubated with primary antibodies 
followed by horseradish peroxidase (HRP)-conjugated 
secondary antibodies. Protein bands were visualized with 
the Immun-Star HRP chemiluminescence kit (Bio-Rad). 
For densitometric analysis, Image J software was used. 

Statistical analysis
Statistical comparisons were performed using Student’s 
t-test or analysis of variance (ANOVA) where appropriate. 
Data are expressed as the mean ± SD. Kaplan-Meier 
survival analysis was performed using the log-rank test. 
P-values less than 0.05 were considered significant.

RESULTS
Enhanced liver injury in Recql5-deficient mice
To investigate the role of Recql5 in liver injury, we 

Figure 1  Enhanced lipopolysaccharide/D-Gal-induced liver injury in Recql5-deficient mice. A: Survival curves after lipopolysaccharide (LPS)/D-Gal injection. Wild 
type (WT) and Recql5-deficient (Recql5-/-) mice were treated with 20 μg/kg LPS and 400 mg/kg D-Gal (WT, n = 14; KO, n = 16). Survival curves were created using 
the Kaplan-Meier method and compared by log-rank (Mantel-Cox) test; B: Images of the whole livers demonstrate the different degree of hemorrhage. WT and Recql5-
deficient mice were treated with 300 mg/kg D-Gal and 10 μg/kg LPS (n = 4-7 per group). Livers were removed 6 h after injection; C: HE staining of liver sections 6 h after 
injection; D: Serum alanine transaminase (ALT) activity 6 h after injection; E: Serum aspartate transaminase (AST) activity 6 h after treatment. bP < 0.01, WT vs Recql5-/-.
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increased in Recql5-deicient mice, as compared to WT 
mice after LPS/D-Gal administration (Figure 2A). In 
agreement with this observation, Western blot analysis 
showed that the cleaved caspase-3 levels were 
significantly elevated in Recql5-deicient mice (Figure 
2B). Given the important role of Recql5 in genomic 
stability, we assumed that LPS/D-Gal treatment would 
result in elevated DNA damage in Recql5-deficient 
mice, which, in turn, would trigger apoptosis. Indeed, 
Western blot showed that the level of γ-H2A.X, a 
biomarker of DNA damage, was significantly increased 
in Recql5-deficient mice (Figure 2C). Together, these 
results suggest that Recql5 deficiency results in increa
sed LPS/D-Gal-induced DNA damage and hepatocyte 
apoptosis, thereby inducing liver injury.

Increased inflammatory response in Recql5-deficient 
mice
The release of pro-inflammatory cytokines is involved 
in liver injury stimulated by LPS/D-Gal[18,22]. Among 
these, cytokines TNF-α and IL-6 are key mediators 
of hepatocyte apoptosis. To examine whether Recql5 
deficiency could alter TNF-α and IL-6 expression, we 
measured their hepatic mRNA levels. As compared 
with WT mice, the mRNA levels of TNF-α and IL-6 were 
significantly elevated in Recql5-deficient mice at 1 and 
6 h, respectively. Similar results were found for serum 
TNF-α and IL-6 levels (Figure 3C and D). Consistent 
with these data, the neutrophil infiltration, which can 
be triggered by TNF-α signaling[21], was significantly 
increased in knockout mice, as evaluated by MPO 
activity (Figure 3E). LPS/D-Gal-induced secretion of 

inflammatory cytokines is primarily dependent on 
the activation of the mitogen activated protein kinase 
(MAPK) and nuclear factor (NF)-κB pathways[18,23]. 
We then tested whether deletion of Recql5 affected 
these pathways. Our results showed that the phos
phorylation of extracellular signal-related kinase (ERK) 
was significantly increased in Recql5-deficient mice, 
whereas there was no significant difference in c-Jun 
N-terminal kinase (JNK) and p65 phosphorylation 
between Recql5-deficient mice and control mice (Figure 
3F), suggesting that Recql5 deficiency results in ERK 
activation.

Elevated oxidative stress in Recql5-deficient mice
Oxidative stress is a known contributor to LPS/D-Gal-
induced liver injury[24]. To investigate the effects of 
Recql5 deficiency on oxidative stress, we measured 
several parameters involved in this process, including 
MDA production and iNOS, SOD, GPX, CAT and GR 
activity. Our data showed that the levels of MDA, an 
end product of lipid peroxidation, were significantly 
increased in Recql5-deficient mice, as compared to WT 
mice (Figure 4A). Furthermore, there was a significant 
increase in iNOS activity in Recql5-deficient mice, 
indicative of enhanced NO production (Figure 4B). 
Additionally, SOD, GPX, CAT, and GR activity in Recql5-
deficient mice was significantly reduced (Figure 4C-F). 
These results suggest that Recql5 deficiency leads to 
increased LPS/D-Gal-mediated oxidative stress.

Decreased CYP450 expression in Recql5-deficient mice
CYP450s are important for the metabolism of a variety 

Figure 2  Enhanced hepatocellular apoptosis in Recql5-deficient mice after lipopolysaccharide/D-Gal treatment. A: TUNEL assay for apoptotic hepatocytes in 
wild type (WT) and Recql5-deficient (Recql5-/-) mice after lipopolysaccharide (LPS)/D-Gal injection; B: Western blot analysis of cleaved caspase-3 protein levels in the 
livers of WT and Recql5-deficient mice in response to LPS/D-Gal; C: Western blot analysis of γ-H2A.X levels in the livers of WT and Recql5-deficient mice in response 
to LPS/D-Gal. aP < 0.05, WT vs Recql5-/-.
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of endogenous and exogenous substrates[25,26]. It has 
been reported that reduced CYP450 gene expression 
is associated with enhanced liver injury[27]. Therefore, 
we examined whether Recql5 deficiency could alter 
CYP450 expression. The mRNA levels of four CYP450 
members were detected, including CYP2A4, CYP2A5, 
CYP2B9 and CYP2B10, which are regulated by LPS 
as reported previously[28-30]. Our results showed that, 
following LPS/D-Gal exposure, mRNA levels of CYP2A4, 
CYP2A5, CYP2B9, and CYP2B10 were significantly 
reduced in Recql5-deficient mice, as compared to 
WT mice (Figure 5). These data indicate that Recql5 
deficiency results in the downregulation of CYP450 
expression, which may impair LPS and/or D-Gal 
disposition. 

DISCUSSION
In the present study, we demonstrated that Recql5 
has a protective role against LPS/D-Gal-induced liver 
injury, as Recql5-deficient mice exhibited increased 
hepatic hemorrhage, elevated serum aminotransferase 
levels, and decreased survival rate. LPS/D-Gal-induced 
liver injury is a well-established experimental animal 
model of acute hepatic failure. The outcomes of this 
model are associated with increased hepatocyte 
apoptosis, inflammation, and oxidation[18,31,32]. First, 
we speculated that Recql5 deficiency might increase 
hepatocyte apoptosis, which could lead to enhanced 
liver damage. Indeed, TUNEL assays and Western 
blot confirmed an increase in hepatocyte apoptosis 
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Figure 3  Enhanced inflammatory responses in Recql5-deficient mice following lipopolysaccharide/D-Gal exposure. TNF-a (A) and IL-6 (B) mRNA expression 
in WT and Recql5-deficient (Recql5-/-) mice 1 and 6 h after LPS/D-Gal exposure (n = 4-7 per group). Serum TNF-a (C) and IL-6 (D) levels in WT and Recql5-deficient 
mice 1 and 6 h after LPS/D-Gal administration; E: Hepatic MPO activity in WT and Recql5-deficient mice following LPS/D-Gal challenge; F: Western blot analysis of 
ERK1/2, JNK, and p65 expression and phosphorylation in the livers of WT and Recql5-deficient mice after LPS/D-Gal treatment. aP < 0.05, WT vs Recql5-/-.
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in Recql5-deficient mice. Moreover, consistent with 
the role of Recql5 in genomic stability, we found 
that Recql5-deficient liver exhibited increased DNA 
damage, which has been recognized as an inducer 
of apoptosis[33]. Our data suggest that Recql5 is a 
regulator of cell apoptosis. In agreement with these 
findings, a previous study suggested that BLM also 
regulates cell apoptosis, and that BLM deficiency 
results in increased cell death and apoptosis, which is 
associated with p53 dysfunction[12]. 

TNF-α and IL-6 are two proximal mediators of 
hepatotoxicity in several models of liver damage, 
including LPS/D-Gal[34,35]. TNF-α-induced hepatocyte 
apoptosis may be an early causal event during LPS/
D-Gal-induced liver injury[32]. We found that LPS/D-Gal 
upregulated TNF-α and IL-6 in Recql5-deficient mice. 
Moreover, it has been reported that LPS activates 
various signaling pathways, including MAPK and NF-
κB, thereby inducing the production of inflammatory 
cytokines[18]. In line with these data, we observed 
an upregulation in ERK phosphorylation in knockout 
mice following LPS/D-Gal challenge. Together, our 
data suggest that, in the LPS/D-Gal model, Recql5 
deficiency activates ERK signaling, resulting in 
inflammatory cytokine production and subsequently, 
hepatocyte apoptosis and damage. 

Oxidative stress is associated with damage to a 
wide range of molecules, including lipids, proteins, and 
nucleic acids, and may play a crucial role in LPS/D-Gal-
stimulated liver injury. For example, treatment with 

antioxidants significantly reduces LPS/D-Gal-induced 
liver injury in mice, whereas inhibition of antioxidant 
enzyme activity enhances liver damage[24,36]. Oxidative 
stress can be triggered by increased free radical 
production and/or decreased antioxidant activity[37]. 
We found that MDA and NO production, indicative 
of free radicals, were significantly increased in 
Recql5-deficient mice. In contrast, the activity of 
the antioxidant enzymes SOD, GPX, CAT and GR 
was significantly reduced in mice deficient in Recql5. 
These data suggest that Recql5 deficiency results in 
an imbalance between free radical generation and 
antioxidant defenses, thereby enhancing oxidative 
stress-induced liver injury.

CYP450 oxidases are the predominant enzymes 
involved in Phase Ⅰ detoxification. Downregulation 
of CYP450 increases the risk of liver damage after 
hepatoxin exposure[27,38]. We found that Recql5 
deficiency resulted in reduced expression of CYP2A4, 
CYP2A5, CYP2B9, and CYP2B10, indicative of impaired 
LPS and/or D-Gal disposition, which might further 
aggravate liver injury. The mechanism by which Recql5 
regulates CYP450 expression remains unknown. It has 
been shown that WRN regulates CYP2B transcription 
by forming complex with the Wrn binding site within 
the CYP2B promoter[14]. Further investigations are 
required to figure out whether Recql5 regulates 
CYP450 expression in the same manner as WRN. 

In summary, the current study showed for the first 
time that Recql5 protects against liver injury induced 
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Figure 4  Enhanced oxidative stress in Recql5-deficient mice after lipopolysaccharide/D-Gal treatment. A: Serum MDA contents in WT and Recql5-deficient 
(Recql5-/-) mice 6 h after lipopolysaccharide (LPS)/D-Gal injection. Liver iNOS (B), SOD (C), GPX (D), CAT (E), and GR (F) activity in WT and Recql5-deficient mice 6 
h after LPS/D-Gal administration. n = 4-7 per group. aP < 0.05, WT vs Recql5-/-.
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by LPS/D-Gal. The protective effect of Recql5 is 
attributed to the inhibition of hepatocyte apoptosis and 
oxidative stress, as well as the regulation of CYP450 
expression. Our findings indicate a hepatoprotective 
role for Recql5 in liver injury.
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