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Abstract
It is well established that hepatitis C virus (HCV) 
infection and replication relies on host lipid metabolism. 
HCV proteins interact and associate with lipid droplets 
to facilitate virion assembly and production. Besides, 
circulating infective particles are associated with very 
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low-density lipoprotein. On the other hand, higher 
serum lipid levels have been associated with sustained 
viral response to pegylated interferon and ribavirin 
therapy in chronic HCV infection, suggesting a relevant 
role in viral clearance for host proteins. Host and 
viral genetic factors play an essential role in chronic 
infection. Lipid metabolism is hijacked by viral infection 
and could determine the success of viral replication. 
Recently development of direct acting antiviral agents 
has shown a very high efficacy (> 90%) in sustained 
viral response rates even for cirrhotic patients and most 
of the viral genotypes. HCV RNA clearance induced 
by Sofosbuvir has been associated with an increased 
concentration and size of the low-density lipoprotein 
particles. In this review, host genetic factors, viral 
factors and the interaction between them will be 
depicted to clarify the major issues involved in viral 
infection and lipid metabolism.
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Core tip: Hepatitis C virus (HCV) is known to be closely 
related and associated with host lipid metabolism. 
Recently development of direct acting antiviral agents 
has shown a very high efficacy (> 90%) in sustained 
viral response rates even for cirrhotic patients and most 
of the viral genotypes. HCV RNA clearance induced 
by Sofosbuvir has been associated with an increased 
concentration and size of the low-density lipoprotein 
particles. Host and viral genetic factors play an essential 
role in chronic infection. Lipid metabolism is hijacked by 
viral infection and could determine the success of viral 
replication.
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INTRODUCTION
Hepatitis C virus (HCV) infection is a relevant public 
health problem, infecting approximately 170 million 
people worldwide[1]. About 70% of infected patients 
will develop chronic HCV infection. One third of 
them have a significant increased risk of advanced 
liver fibrosis, cirrhosis development and finally, 
hepatocellular carcinoma. With the recent emergence 
of first generation direct acting antivirals (DAAs), and 
the development of a second generation DAAs, They 
have been a near-final step towards the eradication of 
HCV infection[2-5].

HCV is known to be closely related and associated 
with host lipid metabolism. HCV proteins interact and 
associate with lipid droplets to facilitate virion assembly 
and production[6]. Besides, circulating infective particles 
are associated with very low-density lipoprotein 
(VLDL)-like particles, referred as lipoviral particles 
(LVP)[7]. A proposed mechanism to facilitate HCV entry 
has been postulated based on the incorporation of host 
apolipoproteins into the LVP[7-9]. It has been shown 
that several apolipoproteins are necessary for viral 
assembly and the production of infective particles[10-12]. 
Moreover, elevated serum lipid levels have been 
associated with the rate of sustained viral response 
to pegylated interferon and ribavirin (Peg-IFN + RBV) 
therapy for chronic HCV infected patients, suggesting 
a key role for host proteins in the eradication of viral 
infection[13,14]. In this review, host genetic factors, 
viral factors and the interaction between them will be 
depicted to clarify the major issues involved in viral 
infection and lipid metabolism.

Host genetic factors
All viruses, as obligate intracellular parasites, are 
implicitly dependent on host cell functions for their 
survival and propagation. There is an emerging 
understanding of the possible role played by lipid 
droplets (LDs) in the life cycle of a growing number 
of viruses, including HCV[15,16]. In the establishment 
of HCV infection, LDs occupy a central role in the 
generation of infectious virions and are specifically 
targeted by viral proteins for this purpose[17]. Diacyl
glycerol acyltransferase-1 (DGAT1) catalyses the final 
stage in triglyceride synthesis, and also plays a central 
role in formation of LDs. It has been shown that 
DGAT1 interacts with both core and NS5A to facilitate 
their recruitment to LDs[18]. DGAT1 also appears to 
facilitate interaction between core and NS5A, thereby 
functioning as a molecular bridge between the two 
proteins to ensure that they are targeted to the same 

LD[19].
The close relationship between serum LDL-

cholesterol (LDL-C) concentration and the chance of 
achieving sustained viral response has been reported 
largely in patients under Peg-IFN + RBV therapy[20] 
as well as with direct-acting antiviral-based triple 
therapy[21]. Lipid-conforming LVPs are released after 
HCV eradication, thus increasing concentration can 
be found in plasma and their concentrations increase 
in plasma. As previously pointed out, the higher the 
baseline LDL-C serum level, the greater the chance of 
curing hepatitis C. This finding is especially relevant 
in patients in patients bearing non-favourable IL28B 
genotype, together with previous non-responders 
patients to Peg-IFN + RBV when treated with triple 
therapy using telaprevir[22]. Some works have analyzed 
several genes implicated in lipid transport, such as 
APOB, APOC-Ⅲ , APO-L3, and lipid-signaling leptin 
receptor, MTTP together with liver X receptor/retinoid 
X receptor pathways. Several changes in these genes 
have corroborated the link between HCV infection and 
lipid metabolism and could also identify these genes 
as therapeutic targets for HCV infection, like FASN 
inhibition or DGAT activity blockage for inhibition of 
viral particles production, together with the prevention 
of the viral entry in the cell[23,24] (Figure 1).

The liver is the main organ for lipid homeostasis 
in the entire body, through production and uptake 
of lipoproteins. Lipid homeostasis is a complex 
mechanism that involves a large amount of genes. 
Several genetic analysis, including Genome-Wide 
analysis have been performed to shed some light 
on this process. This type of analysis has identified 
a strong association between single nucleotide 
polymorphisms (SNPs) near the IL28B locus and the 
chance of achieving sustained virologic response (SVR) 
to Peg-IFN + RBV therapy in HCV patients, as well 
as spontaneous viral clearance[25,26]. Moreover, higher 
plasma levels of ApoB have been associated with 
sustained virological response in HCV patients bearing 
the rs8099917 responder genotype (located proximal 
to rs12979860) in the IL28B gene[27]. Besides, Duggal 
et al[28] described the association of SNP rs4273729 
related to the HLA class Ⅱ genes on Chromosome 
6 with spontaneous HCV clearance independently of 
IL28B genotype. Nowadays, the role of the IL28B 
genotype on SVR is attenuated - non significant - in 
the setting new therapies with NS3 protease, NS5A or 
NS5B polymerase inhibitors.

Adiponutrin or patatin-like phospholipase domain 
containing 3 (PNPLA3) is a member of the patatin-like 
phospholipase family. It is expressed in several human 
tissues with highest expression in the liver[29]. PNPLA3 
acts as a transacylase, which synthesises intracellular 
triglycerides by transferring acyl groups from monogly
cerides to mono- and diglycerides[30]. A study by 
Trépo et al[31] found, in Caucasian chronic hepatitis C 
(CHC) patients, a strong and independent association 
between PNPLA3 and liver damage. Patients with 
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homozygosity of the risk allele had a 2.5-fold higher 
risk for hepatic steatosis and an over three-fold higher 
risk for fibrosis as well as for fibrosis progression. 

HCV interacts with several proteins of the VLDL 
secretion pathway for the production of infectious 
particles. Circulating LVP in an infected patient indicate 
that HCV virions are associated with hepatically 
derived triglyceride-rich lipoproteins (TRL) containing 
apoB-100. These lipo-viro-particles are also associated 
with gut related lipoproteins containing apoB[8,32]. 
HCV infection also leads to TRL accumulation through 
transcriptional activation of lipogenic genes, thus 
stimulating synthesis of lipids in patients[33]. Besides, 
several studies on HCV patients have indicated that 
the virus induced lipogenic genes over-expression. This 
process may exert a strong influence on inflammation 
and fibrosis progression in HCV patients, rather than 
causing the lipid accumulation observed in hepatic 
steatosis[34].

ApoE plays a relevant role in the assembly and 
production of viral particles during HCV infection. 
ApoE depletion has a significant effect in HCV particles 
production compared to apoB or apoA1 in the same 
model. This effect may be related to the role of apoE in 
HCV assembly and interaction with the viral protease 
NS5A, as previously described[11,12,35]. The interplay 
NS5A-apoE is a key factor for the building of the viral 
assembly machinery.

Viral factors
A previous work performed by our group demonstrated 
a relationship between IL28B polymorphism and lipid 
profile in patients with hepatitis C genotype 1[20]. This 
association was not present in patients with hepatitis 
C genotype 3 or 4 and in the non-infected control 
group. LDL and total cholesterol levels were higher 
in patients infected with HCV genotypes 1 and 4 
harbouring the favourable (CC) genotype for IL28B 
gene. HCV directly causes the appearance of large lipid 
droplets in hepatocytes. Remarkably, HCV replication 
rates are higher in patients infected with genotype 3, 
concomitant with more frequent and severe hepatic 
steatosis[36]. In addition, HCV-induced steatosis related 
to genotype 3 infections is abolished when antiviral 
therapy is achieved. Moreover, studies performed in 
vitro, where cells are transfected with HCV core protein 
from different genotypes show that core protein is 
sufficient for lipid droplets induction in the hepatocytes, 
which is especially relevant - more efficient - in the case 
of genotype 3a core protein[37]. Lack of understanding 
for these mechanisms still hamper the characterizarion 
of these processes, including the appearance of very 
large lipid droplets in genotype 3. The reasons to 
explain why genotype 3 is more efficient in steatosis 
development are still unknown, since very limited 
studies have been performed using different genotypes 
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Lipid metabolism is hijacked by HCV
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Figure 1  Schematic representation of hepatitis C virus and host interplay during hepatitis C virus infection. Viral infection has a direct effect on lipid 
metabolism through two main mechanisms: first, by deregulating gene expression (FASN, DGAT, MTTP, SREBP). This effect can be modulated by certain SNPs in 
PNPLA3, among others. Secondly, VLDL synthesis is affected, since HCV replication takes place on lipid droplets. SNPs: Single nucleotide polymorphisms; VLDL: 
Very low-density lipoprotein; HCV: Hepatitis C virus; DGAT: Diacylglycerol acyltransferase; LD: Lipid droplet; PNPLA3: patatin-like phospholipase domain containing 3.
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in selecting a HCV genotype and influencing disease 
progression[52].

Role of new HCV therapies in lipid 
metabolism
Sofosbuvir is one of the most relevant drugs for 
hepatitis C therapy. It is a nucleotide analogue inhibitor 
of the NS5B polymerase which has been recently 
approved by the Food and Drug Administration and 
European Medicines Agency for HCV treatment and 
is currently used in combination with other antivirals 
like daclatasvir and ledipasvir (NS5A inhibitors). 
Other combinations include a protease inhibitor such 
as simeprevir or even with the formerly defined as 
Standard of Care for hepatitis C (peg-IFN + RBV). 
Sofosbuvir has demonstrated a consistently potent 
antiviral activity across several HCV genotypes, and has 
been found to be safe and well tolerated, showing a 
very high efficacy (> 90%) in sustained viral response 
rates even for cirrhotic patients. HCV RNA clearance 
induced by Sofosbuvir has been associated with an 
increased concentration and size of the LDL particles. 
Recently, Meissner et al[53] have demonstrated rapid 
changes in serum lipoprotein particle concentration 
during treatment of chronic HCV, genotype 1-infected 
patients with an IFN-free regimen of SOF and RBV. 
This likely reflects an altered balance of lipogenesis 
subsequent to removal of host lipid metabolism 
perturbation induced by HCV. This fact could be due 
to differential regulation of genes associated with lipid 
transport (APOC3 and APOL3) and lipid assembly and 
signaling (LEPR and MTTP) that has been observed 
in patients with paired liver biopsies available for 
analysis[54,55]. 

Several studies have suggested that statins 
[3-hydroxy-3-methylglutaryl CoA reductase (HMG Co-A) 
inhibitors] that inhibit de novo cholesterol synthesis, can 
block HCV replication[56]. Statins appear to inhibit HCV 
replication via inhibition of geranylgeranylation of a host 
protein FBL2 which is required for HCV replication[57]. 
Rao et al[58] have demonstrated that statin use was 
associated with an improved SVR among both diabetic 
patients and non-diabetic patients receiving combination 
antiviral therapy. Hence, poor diabetes control leads to 
a lower SVR rate.

CONCLUSION
Host and viral genetic factors play an essential role 
in chronic infection. Lipid metabolism is hijacked by 
viral infection and could determine the success of viral 
replication. Mechanisms of treatment relapse with 
DAA therapy are nuclear and differential regulation of 
host lipid metabolic pathways may be associated with 
treatment relapse and support further investigation of 
lipid metabolites as predictors of treatment response 

in the same model[38].
HCV (including genotype 3a) has been reported to 

activate in vitro the sterol regulatory element binding 
proteins 1c and 2, two transcription factors involved in 
the control of neolipogenesis[39]. However, the evidence 
obtained in patients with different viral genotypes 
is inconclusive[34,40] and thus it is unclear whether 
steatosis in genotype 3 is favoured by an increased 
fatty acid and/or cholesterol synthesis.

Host-viral interactions and lipids
HCV belongs to the Flaviviridae family. These viruses 
use the secretory pathway of the cell for their way 
out. Lipoprotein metabolism is tightly associated to 
the secretory pathway. For this reason, it has been 
suggested that in HCV infection, the virus uses for its 
own benefit the VLDL synthesis mechanism of the host 
cell. Based on an extensive siRNA analysis, it has been 
shown that most of the host proteins involved in HCV 
secretion belongs to the classical trafficking pathway, 
including microtubules, Golgi recycling endosomes, 
VAMP1 secretory vesicles and the lipoprotein apoE, 
which is linked to the core protein in the trafficking 
pathway[41].

High frequency of chronic infection reflects the 
fact that HCV has evolved several mechanisms to 
evade and suppress innate immunity, resulting in 
HCV progression to chronicity[42]. The viral NS3/4A 
protease is a central component of the HCV innate 
immune evasion strategy. The multifunctional NS3/4A 
protease is required for HCV replication, during which 
it processes the HCV polyprotein at several sites to 
liberate the viral NS proteins[43]. NS3/4A also targets 
and cleaves mitochondrial antiviral signaling protein 
(MAVS) from intracellular membranes to prevent signal 
transduction[44,45] thus, MAVS cleavage by the HCV 
NS3/4A protease disrupts RIG-I signaling of innate 
antiviral immunity and attenuates IFN production[46].

The interaction host-virus resulted on clone 
selection, immune response modulation and induction/
inhibition of proteins involved in the viral entry into the 
hepatocyte. Recent insights into how HCV regulates 
innate immune signaling within the liver reveal a 
complex interaction of patient genetic background with 
viral and host factors of innate immune triggering and 
control that imparts the outcome of HCV infection and 
immunity[47]. Host immune responses, both innate[48] 
and adaptive[49] together with factors regulating HCV 
entry into the cell and viral quasispecies, have been 
explored[50]. In a previous analysis, we identified 
BTN3A2 (rs9104) to be associated with the selection 
of viral genotype[51]. Our group is currently exploring 
HCV susceptibility and to determine the influence 
of butyrophilin (BTN) family on the selection of HCV 
genotype. An association between BTN3A2 SNP rs9104 
and HCV infection by genotype 1 has been recently 
described, where genetic variants play a relevant role 
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to DAA-therapy. 
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