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Abstract
Enzymatic metabolism of the 20C polyunsaturated 
fatty acid (PUFA) arachidonic acid (AA) occurs via 
the cyclooxygenase (COX) and lipoxygenase (LOX) 
pathways, and leads to the production of various 
bioactive lipids termed eicosanoids. These eicosanoids 
have a variety of functions, including stimulation of 

homeostatic responses in the cardiovascular system, 
induction and resolution of inflammation, and mo
dulation of immune responses against diseases 
associated with chronic inflammation, such as cancer. 
Because chronic inflammation is essential for the 
development of colorectal cancer (CRC), it is not sur
prising that many eicosanoids are implicated in CRC. 
Oftentimes, these autacoids work in an antagonistic 
and highly temporal manner in inflammation; therefore, 
inhibition of the pro-inflammatory COX-2 or 5-LOX 
enzymes may subsequently inhibit the formation of 
their essential products, or shunt substrates from one 
pathway to another, leading to undesirable side-effects. 
A better understanding of these different enzymes and 
their products is essential not only for understanding 
the importance of eicosanoids, but also for designing 
more effective drugs that solely target the inflammatory 
molecules found in both chronic inflammation and 
cancer. In this review, we have evaluated the cancer 
promoting and anti-cancer roles of different eicosanoids 
in CRC, and highlighted the most recent literature 
which describes how those molecules affect not only 
tumor tissue, but also the tumor microenvironment. 
Additionally, we have attempted to delineate the 
roles that eicosanoids with opposing functions play in 
neoplastic transformation in CRC through their effects 
on proliferation, apoptosis, motility, metastasis, and 
angiogenesis.  
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Core tip: Eicosanoids are bioactive lipids generated 
from polyunsaturated fatty acids (usually arachidonic 
acid) through highly regulated enzymatic pathways 
in many different cell types. These molecules are 
effective in small amounts, and may act in an 
autocrine or paracrine manner to regulate some of 
the most important steps in the development of acute 
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inflammation and its resolution. Aberrant expression of 
the enzymes that help synthesize these bioactive lipids 
is frequently seen in diseases associated with chronic 
inflammation, including cancer. 
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INFLAMMATION AND COLORECTAL 
CANCER
Tumors show characteristics of inflamed tissue, 
including the presence of immune cells within the 
tumor tissue[1]. Although the presence of leukocytes 
within tumors was initially thought to result from anti-
tumor immune responses, a role for inflammation 
in tumorigenesis is now generally accepted. Epide
miologic and clinical studies indicate that in response 
to chronic inflammatory conditions, epithelial cells 
(transformed and/or normal) and tissue-resident 
immune cells locally secrete cytokines, chemokines, 
growth factors, and pro-inflammatory mediators that 
recruit inflammatory cells from the circulation into the 
tumor site[2]. Furthermore, immune cells that invade 
the local tumor microenvironment are phenotypically 
different from normal immune cells, and can maintain 
the inflammatory milieu and promote invasion and 
migration of the transformed epithelial cells[3].

 Colorectal carcinoma (CRC) is one of the best 
examples of an inflammation-associated cancer[4]. 
During colorectal carcinogenesis, epithelial cells in 
the colon accumulate mutations, which lead to either 
inactivation or activation of certain target genes that 
provide a selective growth advantage. In turn, this 
results in the transformation of normal epithelium to 
an adenomatous polyp, and finally to invasive CRC. 
The transformed epithelial cells then acquire the 
ability to secrete inflammatory mediators that act on 
pro-inflammatory leukocytes, endothelial cells, and 
fibroblasts to establish a tumor-promoting reactive 
microenvironment. For example, when compared 
with the general population, epidemiological studies 
have shown a higher incidence of CRC in patients 
with a previous history of inflammatory bowel disease 
(IBD)[5]. It has also become evident that inflammation 
is a significant factor in the progression of tumors. The 
regular use of non-steroidal anti-inflammatory drugs 
(NSAIDs) lowers mortality from sporadic CRC and 
suppresses adenoma growth in patients with familial 
adenomatous polyposis (FAP) and who inherit a 
mutation in the tumor suppressor APC gene[6]. Similar 
to other solid malignancies, pathological examinations 
of CRC tissue reveal the presence of innate immune 

cells, including neutrophils, mast cells, natural killer 
cells, and dendritic cells that are recruited to the tumor 
and suppress tumor growth and angiogenesis[7]. This 
phenomenon is called immune-surveillance, and assists 
in the early detection and elimination of transformed 
cells and preneoplastic aberrant crypt foci (ACF), which 
may progress to adenomas and adenocarcinomas in 
CRC. On the contrary, colorectal and colitis-associated 
tumorigenesis are associated with the presence of 
an inflammatory microenvironment that favors the 
inhibition of immune-surveillance and promotes a 
tolerogenic environment with the release of growth 
factors, thereby supporting further tumor growth[8,9]. 
In addition to paracrine signaling by growth factors, 
cytokines, chemokines, and oxygen radicals[10], bioactive 
lipids derived from polyunsaturated fatty acids (PUFAs) 
are among the earliest signaling molecules released in 
response to an injury or inflammatory stimulus. The 
role played by these small mediators in inflammation 
and its resolution has garnered a great amount of 
recent interest[11,12]. 

POLYUNSATURATED FATTY ACIDS 
Polyunsaturated fatty acids (PUFAs) that can be 
metabolized to bioactive lipids include arachidonic 
acid (AA), linoleic acid (LA), linolenic acid (LNA), 
eicosapentaenoic acid (EPA), and docosahexaenoic 
acid (DHA). AA is a 20C polyunsaturated fatty acid 
(20:4n-6) that is usually esterified to the second 
carbon in membrane phospholipids, and gives rise to 
a wide variety of lipid products termed eicosanoids. 
AA is also known as an n-6 fatty acid, signifying the 
position of the carbon with the first double bond when 
considering the terminal methylene carbon group as 
the first carbon. AA is derived from linoleic acid (LA, 
18:2n-6), an 18C essential fatty acid, through the 
subsequent actions of desaturases and elongases 
located primarily in the liver. The release of AA from 
phospholipids in the outer nuclear membrane is 
achieved through the activity of phospholipases such 
as the calcium-dependent cytosolic phospholipase A2 

(cPLA2). After being released, the free fatty acid can 
be metabolized via enzymatic pathways including 
the cyclooxygenase (COX) and lipoxygenase (LOX) 
pathways to generate 2-series prostaglandins (PGs) 
and thromboxanes (Txs) (COX pathway) or 4-series 
leukotrienes (LTs) and hydroxyeicosatetraenoic 
acids (HETEs) (LOX pathway)[11,13] (Figure 1). The 
eicosanoids are highly potent, short-lived molecules 
that act locally, and have been strongly implicated in a 
variety of cancers, including CRC.

Long-chain PUFAs such as EPA and DHA, commonly 
known as n-3 fatty acids, are extensively found in fatty 
fish, but are not efficiently synthesized in humans[14]. 
As these fatty acids are primarily obtained through the 
diet, increased consumption of fish oil can alter the 
fatty acid profiles of the plasma and cell membranes in 
a time and dose-dependent manner[15], primarily at the 
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expense of AA. This implies a decreased production of 
inflammatory AA-derived eicosanoids, which has been 
verified in healthy human volunteers who showed 
decreased levels of PGs and LTs after consuming 
EPA and DHA supplements for varying lengths of 
time[16]. EPA, being a 20C highly unsaturated fatty 
acid and therefore classified as an eicosanoid, can 
also be metabolized by the COX and LOX pathways 
into 3-series PGs and 5-series LTs. However, these 
lipids are readily recognized by PG and LT receptors, 
and are therefore considerably less potent in inducing 
inflammation[17]. Both EPA and DHA are substrates for 
the production of newly identified autacoids that are 
essential for the resolution of inflammation[18].

EICOSANOID PATHWAYS AND 
COLORECTAL CANCER 
Bioactive lipids may modulate the incidence of cancer 
via several different mechanisms that include, but are 
not limited to, induction of inflammation, regulation 
of cellular oxidative stress, activation of receptors 
involved in cellular signaling pathways, and the alte
ration of membrane dynamics[19]. 

COX-2-derived lipid mediators
AA is metabolized to prostaglandins either by con
stitutively expressed COX-1 or by COX-2, which is 
expressed when induced by inflammatory stimuli[20]. 
COX-2 is an immediate-early response gene that is not 
expressed in most cells, but is highly induced at sites of 
inflammation and in the tumor microenvironment[21]. 
The primary prostaglandin produced from AA (PGH2) can 

be further metabolized to a several other prostaglandins; 
among which, PGE2 has been strongly implicated in 
the development of gastrointestinal tumors[22]. This 
prostanoid acts via four G-protein coupled receptors 
(EP1-4) and can enhance tumorigenesis through 
a variety of mechanisms, including enhanced cell 
proliferation, suppression of apoptosis, and induction of 
angiogenesis[23].

Elevated levels of COX-2 and an accompanying 
elevation of PGE2 are often seen in CRC, and COX-2 
expression is correlated with a lower survival rate 
among CRC patients[24]. It is well accepted that there 
are concerted interactions between carcinoma cells and 
other cells in the tumor microenvironment, and that 
these interactions contribute to cancer progression. 
PGE2 modulates cancer-associated immune suppre
ssion by recruiting T cells, CD8+ cytotoxic T cells, 
regulatory T cells, dendritic cells, and myeloid-derived 
suppressor cells (MDSCs)[20]. Additionally, secretion of 
PGE2 may enhance oxidative stress, leading to a state 
of low grade continuous inflammation characterized 
by the infiltration of neutrophils and macrophages, 
and eventually leading to mitogenic signaling[18]. PGE2 
has been shown to stimulate macrophages to produce 
pro-inflammatory chemokines and cytokines, such as 
macrophage chemoattractant protein-1 (MCP-1), which 
recruits leukocytes from the circulation to local sites 
of inflammation[25]. A previous study[26] showed that 
MCP-1 levels were higher in intestinal epithelial cells, 
and that MCP-1 could stimulate COX-2 expression as 
well as the release of PGE2 and vascular endothelial 
growth factor (VEGF) in human macrophages. 

In the adaptive response, PGE2 mediated signaling 
may affect cytokine production in antigen-presenting 
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Figure 1  Enzymatic metabolism of polyunsaturated fatty acid can generate bioactive lipids that induce inflammation, tumorigenesis, and thrombosis, 
while also generating mediators with anti-tumorigenic, pro-resolution properties. In the pro-tumorigenic arm, arachidonic acid (AA) is metabolized 
via the cyclooxygenase (COX) pathway to generate prostaglandins (PGE2, PGI2) and thromboxanes (TxA2). Lipoxygenase (LOX) enzymes convert AA to 
hydroxyeicosatetraenoic acids (HETEs), which are active on their own, or can be further converted to leukotrienes (LTs). In the anti-tumorigenic, pro-resolution arm, 
metabolism of AA through 15-LOX1/2 or acetyl salicylic acid (ASA) acetylated COX-2 generates intermediates that can be converted to lipoxins (Lxs) through the 
transcellular activity of other LOXs (5- or 12-LOX). Conversion of linoleic acid (LA) to 13(S)-HODE may produce anti-inflammatory effects mediated through activation 
of PPARγ. The fish oils eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be converted by acetylated COX-2 to pro-resolution mediators E- and D- 
series resolvins (Rvs), respectively. PUFA: Polyunsaturated fatty acid.
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suppressive functions[34,38].
Influx and efflux carriers such as the prosta

glandin transporter (PGT) and multidrug resistance-
associated protein 4 (MRP4), as well as the inac
tivation of prostaglandins (specifically PGE2) by 
hydroxyprostaglandin dehydrogenase 15-(NAD) 
(15-PGDH) can regulate the availability and efficacy 
of prostanoids[20]. In fact, 15-PGDH is frequently 
down-regulated in a variety of cancers, suggesting 
its tumor-suppressive role[11]. Overexpression of 
15-PGDH in colon cancer cells was shown to strongly 
inhibit tumor growth in immune-deficient mice. It was 
also demonstrated that colonic 15-PGDH expression 
was directly controlled and strongly induced by the 
activation of TGF-β, which has tumor-suppressive 
functions in colon cancer[39,40]. Therefore, the combined 
induction of COX-2 and inactivation of 15-PGDH in 
colon cancer can markedly increase PGE2 levels, which 
may allow cancer cells to escape immune surveillance.

Randomized clinical trials and observational studies 
have indicated that long-term use (≥ 5 years) of 
acetyl salicylic acid (ASA, Aspirin®), which inhibits both 
COX-1 and COX-2, leads to significant reductions in 
the risks for developing colorectal, esophageal, gastric, 
biliary, and breast cancer, as well as their distant 
metastases[41]. Furthermore, the daily use of ASA has 
been reported to specifically prevent the development 
of colorectal polyps and reduce the risk for developing 
sporadic CRC or CRC from Lynch syndrome[42-44]. 
Moreover, the use of ASA after a diagnosis of CRC can 
also improve survival, and especially in patients with 
COX-2-overexpressing tumors[24]. A recent prospective, 
observational study of ASA and COX-2 inhibitor use 
either during or after chemotherapy as an adjuvant 
in stage Ⅲ colon cancer patients reported reduced 
cancer recurrence and mortality[45]. Moreover, ASA use 
was associated with a greater reduction in the risk for 
developing colorectal tumors when the normal colonic 
mucosa showed a higher expression of 15-PGDH[45]. 

Other prostaglandins produced in the eicosanoid 
pathway, such as PGD2, have been shown to down-
regulate granulocyte infiltration into colonic mucosa at 
the early stages of TNBS induced inflammation[38,46]. 
More recently, it has been shown that mast cell-derived 
PGD2 can function as an inhibitor of colitis and colitis-
associated cancer (CAC) in mouse models[47]. Taken 
together, the findings suggest that different COX-2-
derived prostaglandins can have opposing effects on 
inflammation, and that selective modulation of these 
mediators may prevent tumor growth in CRC.

LOX-derived lipid mediators
PUFAs are oxygenated via the enzymatic action of 
LOXs to form LTs and hydroxyeicosatetraenoic acids 
(HETEs), which both exert significant effects on the 
development and progression of human cancers[48]. 
Several different isoforms of LOX exist, including 
5-LOX, 15-LOX-1, 15-LOX-2, and 12-LOX[13], and are 
named according to the position of the carbon atom in 

cells by influencing the functional phenotype of T cells 
[i.e., by switching the anti-tumor T helper 1 (Th1) 
responses to immunosuppressive Th2 responses)] 
during priming[27,28]. In trinitrobenzene sulfonic acid 
(TNBS)-induced colitis, a model of IBD, PGE2 was 
shown to worsen inflammation and disease severity 
by increasing neutrophil and Th17 cell infiltration into 
colonic tissue[29]. Furthermore, PGE2 was shown to 
amplify IL-23-mediated Th17 cell expansion by acting 
on its receptor (EP4) located on T cells and dendritic 
cells[30]. 

The pro-tumorigenic effects of PGE2 may also be 
mediated by Treg cells, which contribute to immune 
evasion by tumor cells in a variety of cancers. Increased 
COX-2 expression and elevated PGE2 production in 
adaptive FoxP3-positive Treg cells found within tumors 
and mesenteric lymph nodes have been shown to 
contribute to an immunosuppressive microenvironment 
in CRC. This type of microenvironment facilitates 
tumor growth by suppressing effector T cells and 
inducing resistance to antigen-specific cancer 
immunotherapy[31,32]. A role for COX-2 in tumor im
munity was also exhibited in COX-2 expressing colon 
cancer cell lines, where expression of FasL and TRAIL 
was shown to cause a counter-attack against cytotoxic 
T cells[33]. 

COX-2 overexpression is frequently associated 
with the concomitant expression of microsomal PGE 
synthase-1 (mPGES-1), the terminal synthase that 
leads to the preferential production of PGE2

[20,34]. 
Accordingly, in Apc-mutant mice, genetic deletion 
of mPGES-1 was reported to suppress intestinal 
cancer growth by reducing the size and number of 
aberrant crypt foci (ACF) in a carcinogen-induced 
colon cancer model[35]. Together, these findings 
suggest that mPGES-1 plays crucial roles during 
colon cancer progression, and that these roles are 
relevant to the promotion of inflammation. Thus 
targeting mPGES-1 may be a feasible option for cancer 
chemoprevention[36].

Interestingly, prostaglandins are also essential for 
the health of gastrointestinal mucosa by maintaining 
mucosal integrity, promoting wound healing, and 
limiting inflammation[36]. The absence of cPLA2 in mice 
was recently shown to globally reduce the formation of 
AA-derived bioactive lipids, increase mucosal ulceration, 
and increase the expression of pro-inflammatory 
cytokines[34]. Mice with a targeted deletion of COX-2 
in their endothelial cells and myeloid cells and treated 
with dextran sulfate sodium (DSS) displayed greater 
weight loss and had worse clinical scores compared to 
their WT littermates. However, mice with a targeted 
deletion of COX-2 in their colonic epithelial cells were 
not susceptible to DSS[37]. Additionally, mPGES-1-/- 

mice were recently reported to show more extensive 
inflammation in the GI tract when compared with WT 
mice[34]. This could have resulted from a shift in the 
metabolism of prostaglandins; e.g., a loss of PGE2 
was associated with a gain in PGD2, which has tumor 
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AA that these enzymes oxygenate. Except for ALOX5, 
which is located on chromosome 10, most of the other 
LOX genes are located within a few megabases of 
each other on the short arm of chromosome 17[13]. 
Although AA is the preferred substrate for oxygenation 
for most LOXs, some LOX isoforms are capable of 
oxygenating fatty acids esterified to phospholipids or 
cholesterol[49,50].

In humans, 5-LOX is highly expressed in cells 
of myeloid origin, and especially in leukocytes[51]. 
This enzyme catalyzes the conversion of AA to 
5S-hydroperoxyeicosatetraenoic acid (5-HpETE), 
and its subsequent conversion to LTA4. LTA4 can be 
converted to LTB4 and then to cysteinyl leukotrienes 
by the actions of LTA4 hydrolase and LTC4, synthase, 
respectively[52] (Figure 1). 5-LOX activity is exquisitely 
sensitive to various stimuli, including the second 
messenger Ca2+. Ca2+ can bind to the N-terminus 
of 5-LOX, which contains a hydrophobic domain 
and facilitates the binding of 5-LOX to membrane 
phospholipids[53]. The 5-LOX enzyme is usually located 
in the cytoplasm as a soluble protein; however, in the 
presence of Ca2+, it may become phosphorylated and 
translocate to the nuclear or endoplasmic reticulum 
(ER) membrane, where with the help of 5-LOX 
activating protein (FLAP), it catalyzes the oxygenation 
of AA[53]. Therefore, many stimuli that increase the 
levels of intracellular calcium ions (e.g., antigens, 
microbes, cytokines, and toxins) can induce the 
production of LTs[53,54]. 

LTs are classified into two general categories: LTB4 
and cysteinyl LTs (LTC4, LTD4, and LTE4)[55]. LTs play key 
roles in the pathogenesis of inflammatory disorders, 
including IBD, and typically stimulate quick and short-
lasting events (e.g., smooth muscle contraction, 
phagocyte infiltration, increased vascular permeability), 
which are important in the pro-inflammatory context. 
These responses are mediated by G-protein coupled 
receptors: BLT1/2 for LTB4, and CysLT1/2 and GPR17 
for the Cys-LTs[52,56]. 

5-LOX is overexpressed in tissues with chronic 
inflammation and also in transformed cells. 5-LOX was 
shown to be up-regulated in patients with polyps and 
colon cancer[57], whereas in the APCΔ468 mouse model 
of polyposis, the loss of 5-LOX was protective[58]. In 
the same model, 5-LOX metabolic products produced 
by hematopoietic cells were shown to promote 
tumorigenesis by enhancing both the proliferation of 
intestinal epithelial cells and recruitment of MDSCs 
to the spleen, mesenteric lymph nodes, and primary 
tumor[59]. Dietary administration of a 5-LOX inhibitor 
(Zileuton) to APCΔ468 mice resulted in overall reductions 
in systemic inflammation, polyp number, and inflam
matory infiltration into lesions[59].

Overproduction of LTB4 in human colon cancer 
tissue is implicated in the pathogenesis of IBD. 
Additionally, high expression of the LTB4 receptor BLT1 
has been detected in human colon tissues[60]. These 
findings indicate the importance of an inflammatory 

autocrine loop during the promotion and progression 
phases of colon tumors. The inflammatory mediators 
can cause intestinal epithelial cells to up-regulate their 
expression of enzymes needed for the biosynthesis 
of eicosanoids, including the CysLTs, and signal 
transducing CysLT receptors, to provide a self-sufficient 
signaling mechanism needed to maintain both 
inflammation and tumor progression[58]. Taken together, 
these studies show that pro-inflammatory LTs might 
facilitate tumor growth by establishing an inflammatory 
microenvironment.

Metabolism of AA by 12-lipoxygenase (12-LOX) 
leads to the production of 12-HETE, which has been 
shown to stimulate the growth of various cancers[61]. 
Additionally, a Gln261Arg polymorphism in the ALOX12 
gene was shown to be associated with an enhanced 
susceptibility to several malignancies, which also 
indicates a potential oncogenic role for 12-LOX[62,63]. 
Although a recent meta-analysis of studies with 8379 
subjects revealed that this specific polymorphism 
was not associated with an increased risk of colon 
cancer[64], other studies have reported that 12-LOX 
expression was associated with an oncogenic 
phenotype in CRC[62]. 12-LOX was also shown to be 
up-regulated in colon cancer specimens associated 
with inflammation[61]. Moreover, 12-LOX expressing 
colon cancer cell lines have demonstrated increased 
migration as a result of decreased E-cadherin and 
integrin-β1 expression[61], or enhanced production 
of reactive oxygen species (ROS) and activation of 
the catalytic subunit of the NADPH oxidase complex, 
Nox1[65].

Unlike 5-LOX and 12-LOX, 15-lipoxygenase-1 
(15-LOX-1), which can oxygenate AA and LA as well 
as complex substrates such as biomembranes[66], may 
have an anti-inflammatory, tumor suppressive role 
in CRC. This enzyme can oxygenate AA to 15-HETE, 
or LA to 13(S)-hydroxyoctadecadienoic acid [13(S)-
HODE]. Profiling of LOX metabolic products in CRC 
has shown that 13(S)-HODE was the only metabolite 
that significantly increased in the Caco-2 model of 
cellular differentiation[67,68]. Additionally, an assay 
of > 120 cancer cell lines from 20 different cancer 
types indicated an almost universal loss of 15-LOX-1 
expression in de-differentiated cell lines when 
compared with well-differentiated cancer cells or non-
transformed cells[68]. Moreover, levels of 13(S)-HODE 
were shown to be reduced in colorectal polyp samples 
obtained from patients suffering from FAP when 
compared to their levels in paired normal tissues[67]. 
A loss of 15-LOX-1 expression is primarily due to 
epigenetic factors, such as nucleosomal remodeling 
and the histone deacetylase (NuRD) complex[69]. 
Re-expression of 15-LOX-1 has been achieved via 
routes including histone methylation/demethylation, 
acetylation[70,71] or the activation of transcription 
factors such as STAT-6[72]. In a mouse model with gut 
targeted expression of human 15-LOX-1 exposed to 
azoxymethane, the number of tumors was lower in 
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the animals with transgene expression, and 15-LOX-1 
expression was lower in samples of tumor tissue 
compared to normal tissue[73]. 

An inverse link between 15-LOX-1 expression and 
secretion of pro-inflammatory cytokines has been 
indicated in recent years. Gut-targeted expression 
of 15-LOX-1 has resulted in lower levels of TNFα and 
inducible nitric oxide synthase (iNOS) in epithelial 
cells[73]. In human CRC, down-regulation of 15-LOX-1 
was associated with increased IL-1β expression[74]. 
This was further substantiated by a loss of NF-κB 
(a key inflammatory transcription factor) signaling 
both in colon cancer cell lines and mouse models 
when 15-LOX-1 was re-expressed in the gut[73,75,76]. 
Additionally, there is evidence indicating that 15-LOX-1 
expression can inhibit CAC. Chemical inhibition of 
15-LOX-1 by PD146176 was shown to cause sig
nificant deterioration of intestinal functions in a murine 
model of experimental colitis[77]. While LA is efficiently 
oxygenated by 15-LOX-1 to produce 13(S)-HODE, 
AA can also be metabolized by both 15-LOX-1 and 
15-LOX-2 to produce 15(S)-HETE[78]. 15(S)-HETE 
levels were reported to be significantly lower in the 
serum of colorectal cancer patients when compared to 
their levels in control subjects[78]. 

Thus, activation of acute inflammatory responses, 
anti-inflammatory and anti-tumorigenic pathways or 
a neoplastic transformation may occur as a result of 
the opposing effects of various metabolites formed 
downstream of the enzymatic action of different LOXs 
De-regulation of any of these pathways may lead to a 
loss of homeostasis. 

EICOSANOIDS AND THE HALLMARKS 
OF CANCER
Various types of cancer cells and surrounding stromal 
cells produce high amounts of pro-inflammatory 
eicosanoids. These bioactive lipid metabolites can 
modulate tumor progression through several mecha
nisms, including directly activating receptors on tumor 
epithelial cells that help regulate cell proliferation, 
apoptosis, migration, and invasion, and inducing epi
thelial cells to secrete growth factors, pro-inflammatory 
mediators, and angiogenic factors. All of these 
molecules can facilitate tumor growth, and also support 
tumor-associated angiogenesis and evasion of the 
immune system[20].

Proliferation and apoptosis
It is already well documented that tumor growth relies 
on a deregulated balance between cellular prolifera
tion and cell death. It is not surprising that various 
eicosanoids that activate/inhibit important signaling 
pathways in cells can also regulate cellular proliferation 
and apoptosis in colon cancer cells.

COX-2 pathway in cell proliferation and apoptosis 
COX-2 is overexpressed in 50%-80% of all colorectal 
cancers[79]. At the cellular level, COX-2 overexpression 
was shown to increase cell-to-matrix adhesion and 
inhibit apoptosis in human CRC cells[80-82]. Furthermore, 
in the APCΔ716 mouse model, the number and size 
of the polyps were shown to be reduced dramati
cally when the COX-2 gene was knocked out[83]. 
In accordance with this finding, ASA and sulindac 
have been shown to reduce the number and size of 
adenomatous colonic polyps in patients with FAP[84]. 
Additionally, conventional NSAIDs are known to inhibit 
chemically-induced colon cancer in rodent models by 
inhibiting COX-2 activity[85]. In the human colon cancer 
cell line HCT-116, COX-2 was induced through wild-
type p53-mediated activation of the Ras/Raf/ERK 
cascade, which subsequently blocked p53 or genotoxic 
stress-mediated apoptosis. This anti-apoptotic effect 
may represent a mechanism for diminishing cellular 
stress associated with p53 induction[86]. On the 
other hand, NSAIDs inhibited expression of the anti-
apoptotic protein Bcl-XL, resulting in an altered BAX 
to Bcl-XL ratio and enhanced apoptosis[87]. Increased 
expression of the anti-apoptotic protein Bcl-2 and 
reduced expression of the pro-apoptotic protein Bim 
caused by the COX-2-derived eicosanoid PGE2 have 
also been reported[21,88]. 

A considerable amount of crosstalk has been 
reported between the COX-2 and EGFR pathways. For 
instance, PGE2 treatment was shown to significantly 
increase cellular proliferation and reduce apoptosis 
in a rodent CAC model[89], and also induce COX-2 
expression in intestinal adenomas by activating the 
MAPK signaling pathway[90]. PGE2 was shown to induce 
ERK2 signaling in colon cancer cell lines by stimulating 
the rapid phosphorylation of EGFR[91]. Inhibition of 
both EGFR and COX-2 achieved by using a targeted 
liposome carrying the COX-2 inhibitor celecoxib and 
a monoclonal antibody against EGFR (Cetuximab) 
has been shown to additively inhibit the proliferation 
of colon cancer cell lines expressing both EGFR and 
COX-2[92]. 

Roberts et al[93] reported that during glucose 
deprivation, PGE2 can promote tumor cell survival 
in the colon by activating the PI3K/AKT pathway, 
which in turn may up-regulate COX-2 and down-
regulate 15-PGDH. Moreover, glucose deprivation was 
also demonstrated to activate the unfolded protein 
response (UPR), resulting in elevated expression of 
the C/EBP-homologous protein (CHOP), which was 
positively correlated with 15-PGDH expression. These 
data suggest that stress conditions can regulate PGE2 
as a common and crucial mediator of cell survival 
during adaptation to the tumor microenvironment. 

In the colorectal adenocarcinoma cell line DLD-1, 
PGE2 was shown to bind to EP2, which stimulated 
tumor growth by activating PI-3K/AKT signaling, 
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followed by activation of the β-catenin signaling 
pathway[94]. PGE2 can also induce cell proliferation in 
colorectal tumors through the EP4 receptor by inducing 
phosphorylation of ERK[95]. Additionally, Park et al[96] 
have proposed that COX-2 inhibition may produce 
significant anti-tumorigenic effects by blocking stroma-
derived PGs. These authors used a co-culture model 
to evaluate cancer cell-stromal cell relationships and 
reported that use of an EP4 antagonist resulted in 
decreased proliferation in the COX-2 non-expressing 
LS174T colon adenocarcinoma cell line. 

In contrast to PGE2, 15d-PGJ2 was shown to induce 
apoptosis[97] and cell cycle arrest in CRC cells[98] by 
inhibiting activity of the inflammatory transcription 
factor NF-κB, reducing the levels of anti-apoptotic 
genes[97], down-regulating c-Myc expression, and 
upregulating c-Jun and GADD153[99]. When 15d-PGJ2 
and histone deacetylase (HDAC) inhibitors were added 
in combination to colon cancer cell lines, they exerted 
a synergistic effect on caspase-dependent apoptosis, 
leading to ROS generation, ER stress, decreased 
expression of anti-apoptotic proteins Bcl-XL and XIAP, 
and increased expression of CHOP and DR5 (Death 
receptor 5, TRAIL-R2). Furthermore, the same effects 
of this co-treatment were also seen in vivo, with an 
inhibition in tumor growth in a nude mouse xenograft 
model inoculated with DLD-1 cells[100]. Shin et al[101] 
suggested that the growth inhibition and 15d-PGJ2-
induced apoptosis seen in human and murine CRC cell 
lines were caused by ROS dependent down-regulation 
of AKT and p-AKT. 

LOX pathways in proliferation and apoptosis 
The 5-LOX protein is overexpressed in the early stages 
of colon cancer, where its expression is significantly 
correlated with patient age, polyp size, and the 
presence of intraepithelial neoplasia and villous and 
tubulovillous adenoma, all of which are considered 
to be typical markers of transformed adenomatous 
polyps[102]. Inhibition of 5-LOX with Zileuton was shown 
to significantly decrease proliferation in a colon cancer 
cell line and reduce the size of xenografted tumors[57]. 
LTB4 demonstrated pro-carcinogenic effects in CRC 
by activating the ERK pathway[103]. Induction and/or 
accumulation of COX-2, β-catenin, and Bcl-2, as well 
as PGE2 production in non-transformed epithelial 
linings in the colon have also been reported in the 
presence of LTB4

[104]. Furthermore, LTD4, a cysteinyl 
leukotriene, was reported to inhibit caspase 3, and 
thereby increase resistance to NSAID-induced cell 
death[105].

In several different cancer types, COX-2 and 5-LOX 
signaling can converge to enhance cell proliferation[106]. 
For example, knock-out of 5-LOX or FLAP was shown 
to increase the amount of COX-2 metabolites produced 
by inflammatory cells, indicating that inhibition of 
one pathway could shunt metabolism of AA towards 

the other pathway[107-109]. Dual inhibition of 5-LOX 
and COX-2 may produce additive or synergistic 
effects on reducing cellular proliferation in colon 
cancer, as shown by the combination of AA861 
(5-LOX inhibitor) and celecoxib[110], the dual COX/5-
LOX inhibitor licofelone[111], and the combination of 
celecoxib and MK886 (5-LOX inhibitor)[112]. Gaining 
a better understanding of these pathways will have 
important implications for cancer chemoprevention 
and treatment[18].

The role of 15-LOX-1 in proliferation and apopto
sis of colon cancer was initially considered to be 
controversial, although well-controlled in vitro and in 
vivo studies conducted in the past several years have 
revealed an unequivocal tumor suppressive role for 
15-LOX-1 in CRC[113]. While initial studies indicated an 
anti-apoptotic role for the enzyme, those investigations 
were primarily conducted using inhibitors such as 
NDGA (nordihydroguaiaretic acid), which may have 
pleiotropic effects in cells[114]. Yoshinaga et al[115] 
reported that 15-LOX-1 over-expression in colon cancer 
cell lines increased cell proliferation via activation of 
ERK, followed by a decrease in p21(Cip/WAF1) expression. 
However, numerous subsequent studies have shown 
that the main product of 15-LOX-1, 13(S)-HODE, 
can inhibit cell proliferation and induce apoptosis in 
CRC[116,117]. Moreover, both 15-LOX-1 expression and 
levels of 13(S)-HODE were reduced in the polyps 
when compared to paired normal tissues obtained 
from patients with FAP[67]. Mice express 12/15-LOX, 
an enzyme that can simultaneously metabolize AA to 
12-HETE and LA to 13(S)-HODE, which have opposing 
effects on tumorigenesis. Therefore a transgenic 
mouse model was established that can express human 
15-LOX-1 specifically in gut epithelial cells[74]. These 
mice showed a decreased incidence of tumors[73]. 
Interestingly, an inverse correlation between 15-LOX-1 
and COX-2 expression has been proposed to occur 
during the adenoma to carcinoma sequelae[118], leading 
to the accumulation of pro-tumorigenic PGs and the 
loss of apoptotic 13(S)-HODE. It has been suggested 
that 15-LOX-1-mediated inhibition of NF-κB, which 
can transcriptionally up-regulate COX-2, leads to a 
loss of expression of the latter. Epigenetic silencing of 
15-LOX-1 in the later stages of progressive CRC may 
lead to an increase in COX-2 expression, and thus 
exacerbate the inflammatory milieu[119]. 

However, focusing on the effects of 15-LOX-1 
expression only in epithelial intestinal cells may not 
provide sufficient information about how its expression 
contributes to CRC development. Additional knowledge 
concerning the effects of 15-LOX-1 and its metabolites 
on tumor-associated stromal cells and endothelial 
cells is also required to understand the underlying 
mechanisms of CRC development that lie beyond 
15-LOX-1 signaling.
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NF-κB and PPAR signaling pathways driven by 
eicosanoids in CRC 
In colon cancer, the activity of NF-κB in intestinal epithelial 
cells and myeloid cells in the tumor environment plays 
an essential role in tumor formation[76]. Therefore, one 
may suggest that specific inactivation of the NF-κB 
pathway in cancer cells and surrounding myeloid cells 
may attenuate formation of inflammation-associated 
tumors[120].

Peroxisome proliferator-activated receptors (PPARs) 
are ligand-activated transcription factors of a nuclear 
hormone receptor superfamily that includes PPARα, 
PPARγ, and PPARβ/δ. Each of these receptors can 
mediate the physiological actions of numerous fatty 
acids and fatty acid-derived molecules that serve 
as ligands for these transcription factors (Figure 2). 
Activated PPARs can also function as transcriptional 
repressors of NF-κB, STAT-1, and AP-1 signaling[121]. 
PPARγ is known to be expressed in normal colon tissue, 
and show reduced expression in colon tumors[122]; 
however, mutations of PPARγ in CRC are rare[123]. 
Agonists of PPARα and PPARγ were shown to inhibit 
DSS-induced colitis and formation of ACF in rats[124]. 
On the other hand, PPARβ/δ is associated with pro-

inflammatory pathways and progression of CRC[121].
15d-PGJ2, a natural agonist of PPARγ, was shown to 

inhibit the proliferation of HT-29 human colon cancer 
cells by up-regulating tumor suppressive transcription 
factor, Kruppel-like factor 4 (Klf-4)[125]. 15d-PGJ2 
and rosiglitazone, a synthetic ligand of PPARγ, were 
found to suppress proliferation of Caco-2 CRC cells by 
repressing telomerase activity and telomerase reverse 
transcriptase (hTERT) expression by down-regulating 
c-Myc and up-regulating Mad1[126]. 

13(S)-HODE produced in the 15-LOX-1 pathway 
can act as a ligand for PPARγ[127]. Re-expression of 
15-LOX-1 in colon cancer cells was shown to down-
regulate PPARδ, and thereby promote induction of 
endogenous PPARγ target genes related to induction 
of apoptosis[128]. In support of this finding, over-
expression of 15-LOX-1 was associated with decreased 
proliferation and increased apoptosis, as well as 
reduced cellular motility, anchorage-independent 
growth, migration, and cell invasion in colon cancer 
cells[118]. Moreover, increased 13(S)-HODE-mediated 
PPARγ activation has been suggested to inhibit 
activation of NF-κB, which is associated with decreased 
cell viability[75]. In colitis and CAC[124], 15-LOX-1 
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Figure 2  Activation of PPARγ by bioactive lipids can modulate signaling in progressive colorectal cancer. 15-deoxy-delta(12,14)-prostaglandin J2 (15-PGJ2), 
generated from arachidonic acid (AA) by the enzymatic action of COX-2, acts as a ligand for PPARγ. Co-activators such as RXR activation of tumor suppressive 
signaling through Kruppel-like factor 4 (KLF4) in colorectal cancer (CRC) have also been reported. Binding to co-repressors may lead to repression of various 
transcription factors such as nuclear factor kappa B (NF-κB), AP1 (Activator Protein-1, c-Jun and c-Fos), c-Myc or STAT. 13(S)-hydroxyoctadecadienoic acid [13(S)-
HODE], generated by oxygenation of linoleic acid (LA) by 15-LOX-1, can act as a ligand for PPARγ and lead to inhibition of NF-κB activity. 13(S)-HODE may also 
inhibit the transcriptional activities of PPARβ/δ and STAT3, and thereby reduce inflammation and angiogenesis in CRC.
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activity was also shown to activate PPAR-γ[128,129], which 
suppressed the expression of key inflammatory genes; 
most likely by inhibiting NF-κB[130,131]. 

13-(S)HODE has been shown to suppress PPAR-δ; 
a receptor that can transcriptionally upregulate 
IL-6 expression, and thereby promote colitis and 
CAC[128,132,133]. Very recently, 15-LOX-1-induced inhibition 
of PPARδ during promotion of CAC was shown to be 
mediated by suppression of IL-6 expression, STAT3 
phosphorylation, and Notch3 expression[134]. Moreover, 
elevated expression of PPARδ has been implicated in the 
pathogenesis of CRC[135,136], and a positive correlation 
between PPARδ expression and the late stages of CRC 
has also been observed[137]. PGI2 was shown to activate 
PPARδ, which may lead to a loss of apoptosis through 
sequestering of the pro-apoptotic protein BAD by 
14-3-3 epsilon and reduced mitochondrial damage[138]. 
Similarly, stromal PGI2 generation was claimed to 
promote cell survival in colonocytes by activating 
PPARδ[139]. More recently, PPARδ activation was also 
associated with an increased expression of VEGF and 
IL-18 in colon cancer cells, through p300 and the 
PI3K/AKT pathway. Furthermore, hypoxia stimulated 
PPARδ activation enhanced angiogenesis, macrophage 
recruitment, and macrophage proliferation in the tumor 
microenvironment[140].

Metastasis
Although surgery is the most curative approach for CRC, 
approximately 40% of treated patients eventually show 
either local recurrence or distant metastases[141,142], 
primarily to the liver and lungs[143]. Both experimental 
and clinical studies have shown that daily use of ASA 
was associated with a reduced risk of metastasis[144], 
and inhibited the spread of primary tumor cells to other 
organs post-diagnosis[145]. These findings suggest a role 
for eicosanoids and eicosanoid-mediated signaling in 
CRC metastasis.

COX pathway and metastasis 
Metastasis is a well-regulated cascade of events that 
requires the coordinated activation of several factors 
expressed/released not only by tumor cells, but also 
by stromal cells. PGE2 is claimed to promote a more 
metastatic CRC phenotype[146]. An analysis of sporadic 
colorectal adenocarcinoma tissue samples revealed 
a significant relationship between COX-2-derived 
PGE2 levels and tumor stage: higher PGE2 levels 
were reported in metastatic tumor specimens when 
compared to tumor specimens without metastases. 
Thus, it can be concluded that PGE2 levels may be 
correlated with tumor aggressiveness, its ability to 
metastasize, and patient prognosis[147]. 

Epidemiological, clinical, and animal studies have 
demonstrated that COX-2 and epidermal growth 
factor (EGF) signaling pathways coordinate their 
activities to play key roles in promoting CRC growth 

and metastasis[148]. For example, EGFR expression 
was directly correlated with the potential of human 
CRC cells to metastasize to the liver[149]. Moreover, 
Buchanan et al[150] suggested that in early stage CRC, 
the initial effects of PGE2 were mediated by EGFR 
transactivation and subsequent phosphorylation, 
which was also responsible for down-stream effects, 
including cell migration and invasion. In their following 
reports, the same group showed that PGE2 activated 
an EP4/β-arrestin1/c-Src signaling complex, resulting 
in EGFR transactivation and downstream Akt signaling, 
which subsequently stimulated migration of CRC 
cells in vitro as well as their metastatic spread to 
the liver in vivo[151]. Additionally, in the presence of 
functional EGFR, PGE2 was shown to transactivate 
hepatocyte growth factor receptor (c-Met-R), and 
thereby increase phosphorylation and accumulation 
of the oncogene β-catenin. This sequence of events 
induced expression of urokinase-type plasminogen 
activator receptor (uPAR), resulting in increased CRC 
cell invasiveness[152]. A significant decrease in liver 
metastasis with the use of selective EP4 receptor 
antagonists has also been reported[153]. In another 
report, PGE2 treatment was shown to activate JNK1/2 
kinase. This activation was followed by an increase in 
the levels of migration-related factors uPA and MMP-9, 
which further promoted cellular motility in the human 
colon cancer cell line LoVo. However, pretreatment 
with 17β-estradiol down-regulated uPA and MMP-9 
expression via deactivation of JNK1/2, and inhibited 
PGE2-induced LoVo cell motility. Based on these 
findings, the authors suggested that the incidence 
and mortality rates of CRC in women were lower than 
those in men because estrogen helps protect against 
development of fatal colon cancer, and thus reduces 
mortality from this disease[154]. 

In contrast to PGE2, PGI2 is known for its anti-
metastatic effects in CRC. PGI2 analogues have been 
suggested to protect against metastasis by inhibiting 
CAM (Cell Adhesion Molecule) -mediated adherence 
of colon carcinoma to endothelial cells in metastatic 
target organs[155]. 

LOX pathway and metastasis 
Data concerning the roles of LOX enzymes in colon 
cancer migration and invasion have recently been 
reported[156]. In one study, decreased levels of the 
selective LOX inhibitor, NDGA, were found in mobile 
human colon cancer cells; this was partly explained 
by inhibition of MMP-2 and MMP-9[157]. Loss of 
15-LOX-1 expression was found in the lymph node 
and liver metastases of pancreatic cancer[158], and 
15-LOX-1 re-expression in CRC cell lines inhibited their 
invasiveness, motility and migration[117]. More recently, 
Wu et al[159] showed that 15-LOX-1 re-expression in 
HCT116, HT29, and LoVo colon cancer cells inhibited 
cell survival, as well as angiogenesis, cancer cell 
migration, and invasion. 
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Angiogenesis 
For tumors to grow and metastasize, they must 
generate their own blood supply; a process defined 
as neo-angiogenesis. Many cells in the tumor 
microenvironment, including tumor epithelial cells, 
stromal cells, and immune cells, secrete various pro-
angiogenic factors needed for proliferation, migration, 
capillary tube formation, and recruitment of endothelial 
cells[160]. Numerous in vitro and in vivo studies have 
shown that eicosanoids can modulate angiogenesis at 
different levels[20].

VEGF is a major regulator of angiogenesis, and 
its expression is up-regulated in response to multiple 
micro-environmental “stress” factors such as hypoxia, 
acidosis, and starvation; which are all related to 
poor blood supply. In tumors, hypoxia can lead to 
stabilization of transcription factor HIF-1α, which 
activates genes which have the hypoxia-responsive 
element (HRE) in their promoter region, such as VEGF. 
VEGF exerts its effects on target cells through tyrosine 
kinase receptors, including VEGF receptors 1 (VEGFR1, 
Flt1) and 2 (VEGFR-2, Flk-1/KDR)[161]. Ligand binding 
induces receptor dimerization and activation of 
downstream signaling pathways including the MAPK 
family, PI3K/AKT and protein kinase C (PKC)[161]. 
Besides hypoxia, other factors that have been shown 
to stimulate VEGF expression include ROS[162], growth 
factors[163], cytokines[164], and various lipid mediators 
such as PGE2

[165-168]. 

COX pathway in angiogenesis 
PGE2 stimulation has been shown to induce HIF-
1α stabilization[163] and VEGF expression in vitro[169]. 
Additionally, VEGF and COX-2 expression and tumor 
angiogenesis were shown to be highly correlated in 
samples of colon cancer tissue[147,170]. Through its 
receptor EP2, PGE2 was shown to stimulate the nuclear 
translocation of β-catenin[94], whereby it activated T 
cell factor 4 (TCF-4) and HIF-1α to trigger cell survival, 
proliferation, and angiogenesis in colon cancer[171,172]. 
Homozygous knock-out of EP2 completely abrogated 
induction of VEGF in the intestinal polyp stroma of 
APCΔ716 mice. It also decreased the number and size of 
intestinal polyps, showing that PGE2-directed induction 
of VEGF was an important factor for tumor growth[173]. 
Moreover, PGE2 was shown to induce expression and 
release of the pro-angiogenic chemokine CXCL1 
in CRC, which in turn stimulated microvascular 
endothelial cell migration and tube formation both in 
vitro and in vivo[174]. Hypoxia was shown to induce EP1 
expression in colon cancer cells, while inactivation of 
EP1 inhibited PGE2-dependent and hypoxia-inducible 
expression of angiopoietin-like protein 4 (ANGPTL4), 
whose lipid metabolizing functions are exerted via 
inhibition of lipoprotein lipase (LPL)[175].

In addition to inducing several angiogenic factors 
in epithelial cells, PG signaling in surrounding stromal 
cells also supports angiogenesis in colon cancer. For 

example, PGE2 and TXA2 were reported to regulate 
the adhesion and spreading of human umbilical vein 
endothelial cells (HUVEC) through cAMP-dependent 
activation of protein kinase A (PKA) and cAMP- and 
PKA-dependent activation of Rac, respectively[176]. 
Besides VEGF, PGE2 may also mediate the angiogenic 
effects of basic fibroblast growth factor (bFGF) by up-
regulating expression of C-X-C chemokine receptor 
type 4 (CXCR4) in human microvascular endothelial 
cells (HMECs), and enhancing cellular response to 
stromal-derived factor 1 (SDF-1), a unique ligand 
for CXCR4[177]. TXA2 has been shown to enhance 
endothelial cell migration and angiogenesis[178]. An 
increase in TXA2 levels, as a result of overexpression 
of TXA2 synthase in C-26 colon adenocarcinoma cells 
allografted to BALB/c mice, was reported to stimulate 
accelerated tumor growth and tumor-associated 
angiogenesis[179]. 

The process of angiogenesis may require not only 
crosstalk between tumor epithelial and endothelial 
cells, but also the involvement of immune cells that 
produce pro-angiogenic factors. PGE2 has been 
shown to induce mast cells to release VEGF and the 
chemokine CCL2[180,181], which can induce tumor-
associated angiogenesis by directly recruiting CCR2 
expressing endothelial cells and inducing VEGF release 
from macrophages[26]. Contrary to the pro-angiogenic 
roles described above, PGE2, through its receptor 
EP2, was shown to inhibit secretion of VEGF in Caco-2 
colon cancer cells exposed to hyperosmotic stress[182]. 
Additionally, 15d-PGJ2 was shown to down-regulate 
COX-2 and VEGF expression in colon carcinoma cells 
by inhibiting the transcription factor AP-1[183]. In an 
in vivo study in which PGI2 synthase was retrovirally 
transduced into C-26 colon adenocarcinoma cells and 
subsequently grafted to syngeneic BALB/c mice, the 
increased production of PGI2 resulted in slower tumor 
growth and a decreased amount of vasculature[179]. 

When viewed in total, these findings suggest that 
relative levels of pro- and anti-angiogenic prostanoids 
in the tumor microenvironment might be strong deter
minants of the degree of angiogenesis that occurs in 
colorectal tumors.

LOX pathway in angiogenesis 
A growing body of evidence indicates that LOX-
catalyzed products (LTs and HETEs) also exhibit im
portant biological effects on the angiogenic process 
in colon tumors. Ye et al[184] implicated 5-LOX in the 
promotion of colon cancer growth by nicotine through 
up-regulation of VEGF, MMP-2, and MMP-9, resulting 
in stimulation of angiogenesis in the colon. The same 
group also reported that cigarette smoke extract 
indirectly stimulated endothelial cell proliferation, 
a biological phenomenon that may enhance neo-
angiogenesis[185,186]. CysLT1R antagonists were shown 
to impair angiogenesis in colon cancer xenografts[187], 
while LTB4 was reported to induce neutrophil-mediated 

11757 November 7, 2015|Volume 21|Issue 41|WJG|www.wjgnet.com

Tuncer S et al . Eicosanoids and colorectal cancer



vascular permeability[188]. Additionally, LTB4 was shown 
to enhance hypoxia-induced microvascular alterations 
in vivo[189]. Expression of the LTB4 receptor BLT2 was 
found to be highly inducible by VEGF, suggesting 
interplay among VEGF, BLT2, and BLT2 ligands 
during vascular angiogenesis[190]. Similarly, LTC4 
and LTD4 also promoted angiogenesis via receptor-
mediated interactions[191]. Moreover, reduced vascular 
permeability was observed in LTC4 synthase knock-out 
mice which had impaired synthesis of cysteinyl LTs[192]. 

Very few reports have addressed the role of 
15-LOX-1 in neo-angiogenesis in colorectal cancer. 
Recently, our group and others have shown that re-
expression of 15-LOX-1 in colon cancer cell lines could 
reduce the expression and secretion of VEGF-A, and 
that treatment of HUVECs with conditioned medium 
from colon cancer cell lines ectopically expressing 
15-LOX-1 resulted in reduced tube formation[159,193]. 
However, the signaling mechanism that medicates this 
angiostatic effect has not yet been reported. 

Therefore, as with the prostanoids, it is likely that 
different bioactive lipids produced by the LOX pathway 
may have contrasting effects on angiogenesis, and 
their ultimate functional effects may be decided by the 
balance between pro- and anti-angiogenic products.

EICOSANOIDS IN THE RESOLUTION OF 
INFLAMMATION 
The resolution of acute inflammation, rather than being 
a passive process of diluting out pro-inflammatory 
mediators, was shown to be actively conducted by 
several different bioactive lipid mediators[194]. The timely 
resolution of inflammation prevents the development 
of chronic inflammation and fibrosis, and enables an 
organism regain a state of homeostasis[194]. 

The primary drivers of resolution include cessation 
of neutrophil infiltration and the nonphlogistic recruit
ment of macrophages to clear debris at the site of 
inflammation[194]. Lipoxins (Lx) were the first bioactive 
lipids to be identified as mediators of these processes. 
Lx’s can be synthesized from AA in neutrophils through 
the enzymatic action of 5-LOX, and LTA4 can be 
converted to LXA4 and LXB4 by 12-LOX in platelets 
upon the latter’s adherence to neutrophils[195] (Figure 
1). Additionally, AA can be metabolized by 15-LOX-1; 
after which, the oxygenated product can be converted 
to an epoxytetraene, and then to LXA4 or LXB4 by 
the action of hydrolases. ASA stimulates acetylation 
of COX-2, and thus shifts the activity of that enzyme 
from production of pro-inflammatory prostanoids 
to production 15(R)-HETE, which is subsequently 
metabolized by 5-LOX to 15-epi-Lx or aspirin triggered 
lipoxins (ATLs)[18]. Many of these bioactive lipids act 
through G-protein coupled receptors such as the 
lipoxin receptor/formyl peptide receptor (ALX/FPR2), 
which binds to LXA4 and ATLs[18]. Although most 
autacoids involved in resolution are known to be 

synthesized in a transcellular manner involving at least 
two cell types, a recent study indicates that lipoxins 
may also be generated from a single immune cell[196]. 

LXA4 expression or administration of LXA4 analogs 
has been shown to reduce DSS-induced colitis[197]. 
Inflammatory stimuli in intestinal epithelial cells have 
been shown to initiate a feedback reaction which up-
regulates expression of the LXA4 receptor in intestinal 
epithelial cells[198]. Additionally, co-culture of Caco-2 
cells with macrophages, where the cells were also 
treated with LXA4, resulted in decreased secretion 
of pro-inflammatory cytokines[199], most likely due 
to inhibition of NF-κB. In a recent study which used 
colonic biopsies obtained from patients experiencing 
a remission of ulcerative colitis, significantly increased 
levels of LXA4, along with enhanced expression of 
FPR2/ALX receptor mRNA and increased levels of 
macrophage infiltration were observed, suggesting that 
LXA4 levels may play an important role in restoring 
mucosal homeostasis[200]. FPR2 expression was also 
shown to be increased in the colons of patients with 
Crohn’s disease; again indicating that signaling through 
lipoxin was enhanced in the same inflammatory 
environments that were most likely to have enhanced 
clearance of debris or bacteria by macrophages[201]. 

Resolvins (Rvs) are derived from the n-3 fatty 
acids EPA (E-series Rvs) and DHA (D-series Rvs), 
and formed by the concerted actions of acetylated 
COX-2, 5-LOX or 15-LOX[18] (Figure 1). Rvs have 
demonstrated potency at very low concentrations 
when administered orally or intravenously[18], and are 
known to signal through ChemR23 and chemokine-like 
receptor 1 (CMKLR)[18]. RvD1 and RvD2 in the CACs 
of mice are known to be chemopreventive, and help 
reduce tumor growth[202]. RvE1 was reported to induce 
the clearance of neutrophils into the lumen of the 
gastrointestinal tract[203]. Moreover, RvE1 was shown 
to inhibit phosphorylation and activation of p65 NF-
κB in the distal colons of mice in a DSS-colitis mouse 
model[199], suggesting its roles in both pro-resolution 
and anti-inflammatory pathways. Interestingly, the 
enzyme intestinal alkaline phosphatase (ALP1), a 
marker of differentiation, was shown to be induced in 
epithelial cells in the presence of RvE1, and also have 
a role in protecting against colitis[204]. Many of these 
potent bioactive molecules are currently being studied 
in large-scale clinical trials[205].

Mareisins (MaR) are generated in macrophages from 
DHA through the action of macrophage 12-LOX[202]. 
Intermediates formed during the conversion of DHA 
to MaR1 were shown to inhibit formation of LTB4 
and oxygenation of AA by 12-LOX, but enhance 
conversion of M1 inflammatory macrophages to 
the M2 phenotype[202]. Another recently identified 
intermediate is 13,14-dihydroxydocosahexaenoic 
acid (13,14-diHDHA or MaR2), which is synthesized 
when macrophages are co-incubated with 12-LOX 
and soluble epoxide hydrolase (sEH). This compound 
has been shown to reduce neutrophil migration and 
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enhance macrophage phagocytosis at nanogram 
concentrations[202]. MaR1 was recently used in a DSS 
and TNBS-induced mouse model of colitis. In that 
model, the disease activity index, amount of body 
weight loss, and tissue damage in the colon were all 
reduced. Additionally, there were significant decreases 
in the levels of inflammatory cytokines; most likely 
resulting from inhibition of the NF-κB pathway[206]. 
Moreover, in the same study, reduced migration of 
neutrophils, reduced ROS production, and reduced 
levels of inflammatory cytokines in LPS-stimulated 
bone marrow-derived macrophage cultures incubated 
with MaR1 were also reported[206].

CONCLUSION
There is no doubt that eicosanoids are an important 
family of immunoregulatory bioactive lipids with 
involvement in both the promotion and prevention 
of colon cancer. During inflammation, many of these 
autacoids act antagonistically or synergistically, and 
often in a temporal manner with the aid of different 
cell types in order to induce homeostasis. Many of 
these bioactive lipids are also essential for various 
cellular functions. Despite its importance, very few 
therapeutic agents are available that can modulate 
the aberrant production of these molecules specifically 
in the context of colorectal or other cancers. ASA 
is undoubtedly one of the best known drugs that 
interferes with the COX pathway; however, ASA needs 
to be consumed long term (at least 5 years) to provide 
any protective effect against cancer. Furthermore, use 
of ASA is associated with significant bleeding events, 
and is therefore not suitable for all patients. COX-2 
inhibitors that specifically target the inflammatory arm 
of the COX metabolic pathway are approved primarily 
for pain relief rather than for cancer chemotherapy, 
and are also associated with significant cardiovascular 
side effects. On the other hand, CysLTR antagonists 
that were originally designed for asthma have also 
not demonstrated high levels of efficacy[207]. Because 
inhibition of one pathway leads to activation of another 
due to the shunting of substrates, combined COX/LOX 
inhibitors have proved to be more effective than signal 
pathway inhibitors, and should be further studied in 
the context of CRC. 

The scientific community needs to develop drugs 
that are specifically effective in cancer, and per
haps the most promising candidates include newly 
discovered resolution mediators such as lipoxins, 
resolvins, and mareisins. The results of early studies 
have indicated that these mediators are effective 
at very low concentrations, and therefore may be 
viable chemopreventive/therapeutic agents for use 
in CRC. It is also interesting to note that COX-2 and 
5-LOX, that are associated with pro-carcinogenic 
events, and 15LOX-1, which is associated with 
anti-carcinogenic events in CRC, rarely show any 
mutations. Deregulation in their activity results from 

their overexpression, enhanced enzymatic activity 
or epigenetic silencing. Therefore, one may envisage 
the design and development of chromatin modifiers 
capable of reducing the expression of pro-inflammatory 
enzymes such as COX-2 and 5-LOX, while enhancing 
the expression of the anti-inflammatory enzymes such 
as 15-LOX-1.

There is no dearth of information in the literature 
highlighting the importance of eicosanoids in cancer. 
Delving into the details of how eicosanoids function 
in both tumor and stromal cells will be essential for 
understanding the pathways involved. Such knowledge 
will aid in the design of novel cancer therapies.
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