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Abstract
Liver cancer is one of the world’s most common 
cancers and the second leading cause of cancer 
deaths. Hepatocellular carcinoma (HCC), a primary 
hepatic cancer, accounts for 90%-95% of liver cancer 
cases. The pathogenesis of HCC consists of a stepwise 
process of liver damage that extends over decades, 
due to hepatitis, fatty liver, fibrosis, and cirrhosis 
before developing fully into HCC. Multiple risk factors 
are highly correlated with HCC, including infection 
with the hepatitis B or C viruses, alcohol abuse, 
aflatoxin exposure, and metabolic diseases. Over the 
last decade, genetic alterations, which include the 
regulation of multiple oncogenes or tumor suppressor 
genes and the activation of tumorigenesis-related 
pathways, have also been identified as important 
factors in HCC. Recently, zebrafish have become an 
important living vertebrate model organism, especially 
for translational medical research. In studies focusing 
on the biology of cancer, carcinogen induced tumors 
in zebrafish were found to have many similarities to 
human tumors. Several zebrafish models have therefore 
been developed to provide insight into the pathogenesis 
of liver cancer and the related drug discovery and 
toxicology, and to enable the evaluation of novel small-
molecule inhibitors. This review will focus on illustrative 



Persistent viral infections are the critical cause 
of HCC formation. Statistically, 57% of cirrhosis 
cases and 78% of HCC cases result from HBV and 
HCV infection[8]. HBV infection causes chromosome 
instability or insertional mutagenesis[9]. In particular, 
the HBV X protein (HBx), a small peptide with a 
molecular mass of approximately 17 kDa, is vital in 
the pathogenesis of HCC and becomes a prognostic 
marker of HBV infection and HCC. HBV infection 
plays an important role in the development of the 
tumor microenvironment in HCC by regulating 
the accumulation and activation of both cellular 
components, such as immune cells and fibroblasts, 
and non-cellular components of the microenvironment, 
such as cytokines and growth factors. HBV thus 
significantly affects the progress of the disease and 
prognosis[10]. HBx is able to enhance HBV replication, 
interfere with host gene transcription, interrupt 
protein degradation, regulate signaling pathways, and 
deregulate the cell cycle to manipulate cell death[11]. 
Numerous studies[12,13] have confirmed that the 
overexpression of HBx causes HCC. 

HCV infection is the main risk factor for HCC in 
developed countries, accounting for approximately 
one-third to half of all cases. HCV infection leads to 
activation of Notch and Toll-like receptor pathways in 
cirrhosis, deregulation of the Janus kinase (JAK)/signal 
transducer and activator of transcription (STAT) 
pathway in early carcinogenesis, and upregulation of 
DNA replication/repair genes and the cell cycle in the 
late cancerous stages[14]. HCV proteins such as the 
core protein and nonstructural protein 5A interact with 
host cells to regulate processes such as cell signaling, 
transcriptional modulation, apoptosis, and endoplasmic 
reticulum stress[15]. A large number of HCV-infected 
persons develop chronic HCV infection, which can lead 
to liver fibrosis, cirrhosis, and HCC[16].

Alcohol is a co-carcinogen and is synergistic with the 
above risk factors for liver cancer. Cirrhosis is observed 
to have a high correlation with alcohol-associated 
HCC. Alcohol activates the JAK/STAT and p38 mitogen-
activated protein kinase (MAPK) pathways, which 
responds by producing cytokines, chemokines, and 
stress. These changes, in turn, affect cell differentiation 
and growth[17]. Acetaldehyde, a metabolite of alcohol, 
is even considered to be a carcinogen as it increases 
oxidative stress and damages DNA[18]. These effects 
may induce liver fibrosis and cause cirrhosis and HCC 
development. However, approximately 5%-30% of HCC 
patients lack any apparent identifiable risk factors for 
their cancer. Non-alcoholic fatty liver disease (NAFLD) 
is the hepatic component of metabolic syndromes 
such as insulin resistance, obesity, hypertension, and 
hyperlipidemia; it includes both simple steatosis and 
non-alcoholic steatohepatitis (NASH)[19]. NAFLD/NASH 
itself becomes a risk factor for HCC, even in the 
absence of cirrhosis, because insulin resistance and 
inflammation are involved in HCC carcinogenesis. 
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examples involving the application of zebrafish models 
to the study of human liver disease and HCC, through 
transgenesis, genome editing technology, xenografts, 
drug discovery, and drug-induced toxic liver injury.
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Core tip: Hepatocellular carcinoma is one of the major 
cancers in the world and involves multiple mechanisms 
of tumor formation. Recently, the zebrafish has gained 
acceptance as a platform for developmental biology, 
drug toxicology, and translational medical research, 
offering innovative methods for studying disease and 
cancer formation. In this article, we summarize recent 
advances in the study of HCC based on the zebrafish 
as a model system through the use of transgenesis 
tools, genome editing technology, xenografts, drug 
hepatotoxicity, and novel drug discovery. Finally, we 
emphasize how each system works and how the 
technology was used in this cancer model.
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INTRODUCTION
Liver cancer is one of the world’s most common 
cancers and the second leading cause of cancer 
deaths, with nearly 745000 deaths recorded in 2012[1]. 
The incidence of liver cancer is higher among men than 
women[2]. Hepatocytes are the main cells to constitute 
70%-85% of the liver mass and are responsible for the 
metabolism of carbohydrates, amino acids, lipids, and 
chemical compounds as well as for the maintenance 
of the physiological environment[3-5]. Hepatocellular 
carcinoma (HCC), a primary hepatic cancer, accounts 
for 90%-95% of liver cancer cases. The pathogenesis 
of HCC consists of a stepwise process of liver damage 
that extends over decades, due to hepatitis, fatty liver, 
fibrosis, and cirrhosis before developing fully into HCC. 
Chronic liver damage induces genetic alterations of the 
hepatocytes, leading to cell death, cellular proliferation, 
dysplasia, and neoplasia. Multiple risk factors are 
highly correlated with HCC, including infection with 
hepatitis B virus (HBV) or hepatitis C virus (HCV), 
alcohol abuse, aflatoxin exposure[2,6], and metabolic 
diseases[7] (Figure 1). These factors play critical roles 
in regulating multiple oncogenes or tumor suppressor 
genes and activating tumorigenesis-related pathways.



Aflatoxin, especially Aflatoxin B1/AFB1, is a genotoxic 
hepatocarcinogen and a kind of co-carcinogen. AFB1 is 
metabolized by cytochrome-P450 enzymes to become 
less harmful metabolites. However, aflatoxin B1-8,9-
epoxide (AFBO), the reactive intermediate chemical 
compound, is a highly reactive genotoxic compound. 
AFB1 and AFBO both bind to liver cell DNA and form 
DNA adducts, causing DNA strand breakage, DNA base 
damage, and oxidative damage[6,20]. AFB1 has been 
found to accelerate the development of HCC initiated 
by other risk factors.

The zebrafish has become a model organism 
exploited in life science fields including embryonic 
development, toxicity, cancer research, human diseases, 
and drug screening[21,22]. The genome of the zebrafish 
is comprised of 25 chromosomes, which contain the 
full set of genes homologous to other vertebrates. After 
the current zebrafish genome was fully sequenced, 
approximately 70% of its orthologous genes were found 
to be associated with human disease[23,24]. Zebrafish 
have the following advantages and disadvantages: a 
short life cycle, low maintenance costs, small space 
requirements for maintenance, a large number of 
offspring, immune system deficiencies in early zebrafish 
embryos, transparency and transgenic lines, lower 
numbers of cells required for xenotransplantation per 
animal, availability for high-throughput drug screening, 
small organs and blood vessels, low body temperature, 
and a lack of organs such as lungs, among others. 

Compared to the mouse model, zebrafish are inex
pensive and can be easily used to rapidly create a 
transgenic animal model. Transgenes can be controlled 
by ubiquitous, inducible, or tissuespecific promoters. 
Furthermore, transparent zebrafish carry fluorescent 
proteins that allow the visualization of specific cells 
in real time. Such capabilities enable investigators 
to observe and trace specific cells and to produce a 
spatiotemporal analysis of gene expression. Therefore, 
the zebrafish is a suitable option for monitoring 
transgenic tumors from initiation, progression, and 
metastasis to transplantation. In addition, the zebrafish 
model can be used for large-scale genetic and high-
throughput screening[25,26]. These attributes make the 
zebrafish a more flexible option among animal models 
amenable to liver disease studies.

The genes and pathways involved in hepatogenesis 
and liver cancer are largely conserved between 
zebrafish and humans[27]. Hepatocytes possess similar 
functions in zebrafish and mammals and demonstrate 
similar genesis for shared histopathological characteri-
stics such as steatosis, cholestasis, and neoplasia[28]. 
Expression of HCV core protein in transgenic zebrafish 
treated with thioacetamide (TAA) was the first 
application of zebrafish in HCC studies.

Pathological features observed in this transgenic 
zebrafish model include steatohepatitis, fibrosis, 
cirrhosis and HCC. Progression to HCC is reduced to six 
weeks relative to TAAtreated wild type zebrafish and 
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Figure 1  Pathogenesis and risk factors of hepatocellular carcinoma. Hepatocellular carcinoma (HCC) formation results from multiple risk factors, including 
hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, alcohol, Aflatoxin, and metabolic diseases. These risk factors induce chronic hepatitis, which activates 
inflammatory pathways. After decades, this inflammatory stress leads to DNA damage and cell cycle dysregulation in hepatocytes, which eventually leads to the 
development of HCC from chronic disease states, such as liver fibrosis and cirrhosis. Metabolic diseases progress into fatty liver diseases. NAFLD: Non-alcoholic fatty 
liver disease; NASH: Non-alcoholic steatohepatitis.
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of serum proteins, including albumin, fibrinogen, 
complement factors, and acute-phase proteins[34].

Similar to the process in the mammalian liver, hepato-
genesis occurs in three major phases in zebrafish: 
hepatoblast specification, budding/differentiation, 
and hepatic outgrowth, accompanied by morpho-
genesis[28,35,36]. Cells in the anterior endodermal rod 
develop into hepatoblasts at 22 h post-fertilization 
(hpf) through the expression of hhex and prox1 during 
the hepatoblast specification phase. Hepatoblasts are 
located on the left side of the anterior gut tube, and 
the liver bud begins to form between 26 and 28 hpf. 
Some marker genes, such as ceruloplasmin (cp) and 
transferrin, are expressed in the liver bud at 32 hpf, 
with the clear emergence of the liver primordium at 
48 hpf during the differentiation phase. The liver bud 
leaves the intestine at approximately 50 hpf. Due to 
proliferative acceleration, hepatic outgrowth begins 
between 60 and 72 hpf and continues until the liver 
attains its apposite size, and a rapid growth phase of 
the liver begins at 80-84 hpf[37]. During the end of the 
outgrowth phase (120 hpf), the liver relocates from 
the left side to the right side[28].

Signaling molecules and transcription factors are 
conserved in hepatogenesis between mammals and 
zebrafish. These pathways also regulate early liver 
development in zebrafish, though there are some 
differences. FGF, BMP, and WNT signaling pathways 
are crucial for hepatogenesis[38,39]. FGF signaling is 
critical for hepatic specification in zebrafish and mice. 
Overexpression of a dominant negative FGF-receptor 
in zebrafish embryos between 18 and 26 hpf decreases 
the later expression of hhex, prox1, gata4, gata6, and 
cp[40]. A previous study revealed that BMPs are vital 
for zebrafish hepatic specification: zebrafish mutations 
such as lost-a-fin or over-expression of a dominant 
negative BMP receptor led to reduced expression of 
some hepatic specification genes, such as hhex and 
prox1[40]. Induction of wnt expression led to a block in 
liver specification in early somitogenesis and created 
an enlarged liver after a few hours in zebrafish liver 
development[41].

Hepatogenesis is a complex process controlled by 
many transcription factors. The earliest conserved liver-
specific transcription factors regulating hepatogenesis, 
such as hhex and prox1, are initially expressed 
and play crucial roles in the zebrafish hepatic bud 
at 24 hpf[40,42-44]. These hepatic nuclear factors also 
participate in liver development and differentiation 
in mammalian hepatogenesis[45]. Some transcription 
factors, including sox17, foxa1, foxa2, foxa3, and gata 
family members are required for both the generation 
of endoderm and the liver bud[35,46,47]. Recent research 
indicates that several genes, such as liver-enriched 
gene 1 (leg1), play important roles in the outgrowth 
stage in zebrafish[48]. Such research has also revealed 
that hypoxia-inducible transcription factors, such as 
hif2-alpha, directly regulate the hepatic outgrowth 

becomes a powerful preclinical platform for studying 
the mechanism of hepatocarcinogenesis in evaluating 
therapeutic strategies for HCC[29]. Today, genome 
editing technologies are rapidly advancing. Zincfinger 
nucleases (ZFNs), transcription activator-like effector 
nucleases (TALENs), and clustered regularly interspaced 
short palindromic repeat (CRISPR)/CRISPR-associated 
(Cas) systems have been developed to rapidly induce 
targeted genetic modifications[30]. Such technologies 
promote the generation of transgenic animal models. 
This review focuses on the zebrafish model for HCC. 
We summarize liver development and the anatomy of 
the zebrafish. Subsequently, expression systems and 
genome editing technologies are presented to examine 
the current status of transgenic zebrafish development. 
Finally, the zebrafish models for liver disease and HCC 
are introduced for a better understanding of recent 
findings regarding mechanisms, drug screening, and 
drug-induced toxic liver injury. 

OVERVIEW OF ZEBRAFISH LIVER 
DEVELOPMENT AND ANATOMY
The liver is a critical organ for vertebrates. Hepato-
cytes, the cell type which constitutes the majority of 
the liver, play a major role diverse biological functions, 
including digestion and metabolism through the 
regulation of many essential nutrients, the storage 
of vitamins, the decomposition of red blood cells, the 
synthesis of plasma proteins such as prothrombin, 
fibrinogen, and albumins, the production of hormones, 
and detoxification in mammals[31,32].

The zebrafish is effective as an animal model for 
studying liver development because of its experimental 
advantages, as has been demonstrated in numerous 
publications. However, some characteristics of the 
zebrafish liver differ from other vertebrates and 
mammals. For example, hepatocytes are not noticeably 
organized in cords or lobules, and the typical portal 
triads are not obvious in the zebrafish liver. The 
portal veins, hepatic arteries, and large biliary ducts 
of zebrafish are spread randomly within the hepatic 
parenchyma and are not grouped into portal tracts as 
in the mammalian system. Moreover, the hepatocytes 
are arranged as tubules that surround small bile ducts 
rather than as bilayered hepatocyte plates as in the 
mammalian system. The intrahepatic bile ducts are 
derived from the bile canaliculi. The bile ducts fuse and 
ultimately form the gallbladder. The bile is collected 
in the gallbladder via large ducts and an extrahepatic 
biliary system. Moreover, there are no Kupffer cells in 
the zebrafish liver[33,34]. The liver of zebrafish contains 
three lobes, one ventral and two lateral, which lie along 
the intestinal tract. The liver of teleosts is similar to the 
mammalian liver and plays a central role in metabolic 
homeostasis, including the processing of carbohydrates, 
proteins, lipids, and vitamins. In addition, it also plays 
an important role in detoxification and the synthesis 
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phase through binding to the promoter region of leg1 
but do not directly regulate the liver specification 
phase in zebrafish embryos[49].

According to the latest data, there is evidence that 
epigenetic regulation of gene expression in zebrafish 
liver development also plays an important role. Histone 
acetylation (hdac) and DNA methylation (dnmtin) are 
two major mechanisms regulating gene expression. 
An analysis of mutations in hdac or dnmtin embryos 
demonstrated that epigenetic regulation controls 
both hepatic specification and outgrowth phases in 
zebrafish liver development. For example, hdac1 
mutants develop small livers as a result of hepatic 
patterning defects[50]. Embryos treated with an hdac 
inhibitor at 24 hpf have also been shown to develop 
a small liver due to inhibition of hhex and prox1 gene 
expression. Furthermore, the knockdown of hdac1 
and hdac3 results in multiple defects in embryos. 
Aberrant hdac3 is more specific for liver development 
as it regulates zebrafish liver growth by suppressing 
growth differentiation factor 11, a member of the 
TGF-β family of growth factors[51]. Ubiquitin-like with 
PHD and RING finger domains 1 (uhrf1) plays a role in 
DNA methylation by recruiting DNA methyltransferase 
1 (dnmt1) to hemimethylated DNA. The uhrf1 mutants 
have defects in zebrafish hepatic outgrowth[52].

CONSTITUTIVE AND INDUCIBLE 
EXPRESSION SYSTEMS FOR THE 
DEVELOPMENT OF HCC MODELS IN 
ZEBRAFISH
Over the past 25 years, the available zebrafish 
transgenic technology has advanced significantly[53,54]. 
Transgenesis is an essential technique as in other 
model organisms. A variety of transgenic expression 
systems exist for zebrafish, including constitutive and 
inducible systems. Initial transgenes were plasmid-
based with ubiquitous promoters driving the expression 
of reporter genes and demonstrated that transgenic 
technology was a viable, reproducible strategy in 
zebrafish. In recent years, the use of transgenesis 
in zebrafish has become widespread. Researchers 
have used a mammalian promoter, promoters from 
other fish species, and tissue-specific promoters to 
drive gene expression[55]. In general, the design of 
most transgenic vectors thus far incorporates a single 
promoter to control when and where a transgene 
is expressed. The frequency of the development of 
germline founders is associated with the method of 
the introduction of the DNA. Supercoiled[53,56] or linear 
DNA[54] injection yields 1%-10% germline transgenic 
founders, while linearized ISce-I[57] meganuclease yield 
20%-30%. The rate of transgenesis has recently seen 
a dramatic increase with the use of transposon-based 
systems: 30% with Sleeping Beauty[58] and Ac/Ds[59], 
and 50% with Tol2[60,61]. The Tol2 element is an active 

transposable element found in Medaka genomes, and 
subsequent production of some cloning vectors has 
facilitated the use of this element in zebrafish, allowing 
the generation of many transgenic fish lines[62]. The 
Tol2 element transposon can be efficiently excised and 
integrated into the zebrafish genome using coinjection 
with Tol2 mRNA and vector plasmid[60]. Cloning 
vectors from multiple sources, including mini inverted 
repeat transposons and Tol2 transposase transcription 
vectors, made use of multisite Gateway cloning 
vectors[63,64]. In particular, the Tol2-kit was established 
for the scientific community to allow the use of 
versatile vectors. Gateway cloning technology is a 
universal cloning method based on the att sitespecific 
recombination properties of bacteriophage lambda and 
enables the rapid and highly efficient transfer of DNA 
sequences into multiple vector systems for protein 
expression and functional analysis[65]. The online Tol2-
kit community (http://tol2kit.genetics.utah.edu/index.
php/Main_Page) provides detailed information and has 
helped to make the Tol2 transposon system a routine 
genetic engineering tool. Widely useful entry clones 
were created by combining heat-shock protein 70 
(hsp70), CMV/SP6, histone2A-X, β-actin, and upstream 
activating sequence (UAS) promoters, cytoplasmic, 
nuclear, membranelocalized fluorescent proteins and 
Gal4VP16, IRES-driven GFP cassettes, and two Tol2-
based destination vectors, one with a Cmlc2/GFP 
transgenesis marker[64]. One of the most useful GFP 
transgenic fish lines was derived with a zebrafish liver 
fatty acid-binding protein (L-FABP) promoter[66,67]. A 
zebrafish model for hepatocarcinogenesis has been 
since developed through the expression of oncogenes 
under the control of the L-FABP promoter. Liver-
specific expression of HBx, src, and endothelin 1 
(edn1) established with Tol2 methodology triggered 
hepatocarcinogenesis in zebrafish[68,69].

While previous studies demonstrated the utility 
of constitutive expression systems, constitutive 
expression of oncogenes is often found to lead to gross 
tumor development which can result in embryonic 
lethality. Inducible systems can avoid these potentials 
deficiencies in constitutive systems as the duration 
and dosage of gene expression can be monitored, thus 
allowing for the spatiotemporal control of oncogene 
expression. Inducible systems currently being used 
include Heat-shock, Cre-loxP, GAL4-UAS, Tet-On, 
Tet-Off, and Mifepristone systems[70] (Table 1). Heat-
shock proteins were originally identified in cells after 
exposure to environmental stress. Induced jumps in 
temperature have been used to achieve spatiotemporal 
control of transgene expression in zebrafish embryos. 
GFP linked to an hsp70 promoter has been used to 
establish the pattern of gene expression induced by 
heat shock. At a normal temperature, GFP expression 
in transgenic embryos was not detectable. However, 
single embryos heat-shocked by exposure to 38 ℃ 
for 30 min exhibited GFP expression in approximately 
20%-90% of cells for more than 24 h after heat 
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treatment in a variety of tissues types[71,72]. 
Multiple transgenic lines have been derived in 

zebrafish through the use of tissuespecific expression 
of Cre recombinase. Initially, a plasmid-based system 
was developed for detecting Cre expression in vivo[73]. 
A neural progenitor-specific (nestin) promoter was 
used to drive the expression of an mCherry gene, 
flanked by loxP sites, and upstream of a promoterless 
EGFPfused to zebrafish kras-V12 oncogene, resulting 
in the exclusive expression of mCherry. Once this 
plasmid was exposed to Cre recombinase, the mCherry 
gene was excised, and the EGFP gene, fused to the 
oncogene, was controlled by the nestin promoter[74]. 
The GAL4-UAS system has also been successfully 
exploited in zebrafish to misexpress genes in a tissue
specific manner. The GAL4UAS methodology requires 
two transgenic lines: the activator zebrafish line which 
expresses the yeast transcriptional activator GAL4 
under the control of a specific promoter, and the 
effector zebrafish line which possesses the transgene 
of interest fused to the DNA-binding motif (UAS) of 
GAL4[75,76]. In 1999, an activator line was developed 
to express GAL4 under the control of the βactin 
promoter. In these experiments, the transgene in the 
effector line encoded a myc-tagged protein adjacent 
to the UAS of GAL4[77]. This report demonstrated 
that the cross of the effector line with an activator 
line is necessary for gene expression. This strategy 
was used to develop an HCC model. In this model, 
walleye dermal sarcoma virus rv-cyclin gene (orf-A) 
fused to the UAS of GAL4 was expressed in the livers 
of zebrafish when crossed to animals harboring GAL4 
under the control of L-FABP promoter[78]. 

Chemically inducible expression systems (Tet-On, 
Tet-Off, and Mifepristone) have also been used in 
zebrafish[79-82]. The Tet-On and Tet-Off systems are 
binary transgenic systems in which the expression 
of a transgene is dependent on the activity of an 
exogenous inducible transcriptional activator. In 
both the Tet-On and Tet-Off systems, expression 
of the transcriptional activator can be regulated 
both reversibly and quantitatively by exposing the 
transgenic animals to varying concentrations of 

tetracycline derivatives, such as doxycycline (Dox). 
The design of the Tet-On and Tet-Off systems allows 
tissue-specific promoters to drive the expression of 
the reverse Tet-controlled transcriptional activator 
(rtTA) and Tet-controlled transcriptional activator (tTA), 
resulting in tissuespecific expression of the regulated 
target transgene[55]. 

Several HCC models have been developed using 
such technology. Li et al[80,83] fused the xiphophorus 
xmark and mouse myc oncogenes to the rtTA 
responsive element, and placed the rtTA transgene 
was under the control of the 2.0-kb L-FABP promoter. 
Liu et al[81] fused the HBV and HCV oncogenes to the 
tTA responsive element, and placed the tTA transgene 
under the control of the 2.8-kb L-FABP promoter. In 
the mifepristone inducible LexPR system, the LexPR 
chimeric transactivator was fused to a 2.0-kb L-FABP 
promoter to produce the driving zebrafish line, and 
the effector zebrafish line contained EGFP-fused to 
zebrafish kras-V12 oncogene under the control of the 
LexA-binding site. Expression was induced by exposing 
animals to varying concentrations of mifepristone 
(RU-486)[81]. In these studies, dose-dependent, Dox, 
or mifepristone mediated activation of oncogene 
expression were detected in the liver of the transgenic 
zebrafish. 

GENOME EDITING TECHNOLOGY 
FOR GENE KNOCKOUT AND LOSS OF 
FUNCTION IN ZEBRAFISH
Over the past two decades, genetic engineers have 
made great strides in developing a reliable technique 
to examine genotypes. Gene knockdown using small 
interfering RNAs and microRNAs restore the function 
of dysfunctional genes, but the main disadvantages 
are off-target interactions and the temporary nature of 
inactivation achieved through these methods. Today, 
ZFNs, TALENs, and CRISPR/Cas have become well-
established genome editing tools for customizing 
genomes in human, animal, and plant cells[83-85]. 
The characteristics and gene editing capabilities in 
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Table 1  Advantages and disadvantages of constitutive and inducible expression systems

Expression systems Advantages Disadvantages

Constitutive Well established, commercially available; in vitro and in 
vivo, successful methodology for expression of transgene

Expression of oncogenes may cause advanced/highly aggressive 
tumors and early lethality

Heat-shock Expression of transgene can be induced on a single cell 
level

Adverse effects that may arise from the heat shock

Cre-loxP Well established; commercially available; in vivo, 
successful methodology for expression of transgene

Not all tissue specific promoters are perfectly specific; leaky gene 
expression; two plasmid system

GAL4/UAS Well established; in vivo, successful methodology for 
expression of transgene

In vivo expression of GAL4 can have side effects, probably related to 
immune and stress responses; two plasmid system

Mifepristone Well established; in vivo, successful methodology for 
expression of transgene

Opening and closing of the switch is slow (hours to days); cell 
permeability of the RU-486 can be restricted

Tet-on/off-inducible Well established; commercially available; in vitro and in 
vivo, successful methodology for expression of transgene

Opening and closing of the switch is slow (hours to days); cell 
permeability of the doxycycline can be restricted; two plasmid system
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complex genomes of ZFNs, TALENs, and CRISPR/Cas 
systems are summarized in Table 2 and Figure 2. RNA-
programmable DNA nucleases have been adapted as 
a precise genetic scissors for correcting and editing 
genetic defects[86]. Sitespecific nucleases induce DNA 

double strand breaks (DSBs) that stimulate non-
homology end joining (NHEJ) and homology-directed 
repair (HDR) for targeted genomic loci[2]. 

As one of the numerous DNA-binding motifs in 
eukaryotic genomes with the ability to recognize 
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Table 2  Characteristics of three genome editing systems

Nucleases ZFN TALEN CRISPR/Cas

DNA binding domain Multiple zinc finger peptides Transcription-activator like effectors CRISPR-derived RNA/Single-guide RNA
Endonuclease Fok1 Fok1 Cas9
Binding specificity of each repeat 3 bp 2 bp 1 bp
Target site length 18 to 36 bp 30 to 40 bp 23 bp
Off-target High probability Low probability Variable
Libraries generation No Feasible, depend on technology Yes, cloning 20 bp, oligos targeting each 

gene into a plasmid

(ZFNs)

A T G G C A A C T N N N N A A G G A T C C G

T A C C C T T G A N N N T T C C T A G G CN

3 2 1

Fo
k1

 (
-)

Fok1 (-)

321

(TALENs)

(CRISPR/Cas)

A T G G C A A C T N N N N A A G G A T C C G

T A C C C T T G A N N N T T C C T A G G CN

Fo
k1

 (
-)
Fok1 (-)

NI NI NN NN NI NG HD HD NN

NINMNGNGNNHDHDNING

NI = A NG = T NN = G HD = C

Recognition code

Guide RNA tracrRNA
Cas9

A T G G C A A C T N N N N A A G G T C C C G
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N
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Figure 2  Schematic representation of programmable engineered nucleases of ZFNs, TALENs and CRISPR/Cas.
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any sequence[87,88], ZFNs are being widely applied to 
anything in biological research, from the design of 
animal models to human gene therapies[89]. A ZFN 
is composed of two domains: a site-specific DNA-
binding domain, which is derived from a zinc finger 
containing transcription factor, and a bacterial Fok1 
restriction enzyme endonuclease domain. The zinc 
finger protein recognizes a 3bp sequence of DNA on 
the major groove, with its tandem repeats potentially 
attaching to a stretch of nucleotides between 9 and 18 
bp long[90].

To perform site-specific cleavage of DNA, two 
ZFN monomers are necessary for the process; one 
monomer recognizes the binding site on the forward 
strand while the other recognizes it on the reverse 
strand. The ZFN binding on both strands enables 
higher specificity targeting and dimerization of Fok1 in 
an adequate space[91], so that the pair of Fok1 nuclease 
domains can cleave the DNA generating a DSB. Cells 
then utilize either NHEJ or HDR to repair DSBs. The 
manner in which NHEJ introduces frameshifts into 
the coding region to knock out a gene, achieved for 
example through nonsense-mediated mRNA transcript 
disintegration, is not especially efficient. HDR, however, 
is used to generate a specific mutation by means of a 
repair template containing the desired mutation-paired 
oligonucleotide[92]. 

Zinc finger proteins with diverse binding speci-
ficities are designed using several methods. Modular 
assembly, which involves a preselected library 
comprising zinc finger domains for the recognition 
of 64 nucleotide triplets, is one way of generating 
customized zinc finger domains[93]. To identify the 
perfect combination, oligomerized pool engineering 
utilizes a zinc finger array, and through bacterialbased 
selection, identifies proteins that bind efficiently to the 
target site[94]. Other strategies also apply zinc finger 
modular assembly based on context-dependent DNA 
to produce ZFNs with endonuclease (endogenous) 
activities[95]. Although ZNFs offer convenience and 
are widely utilized, they still possess a high off-target 
effect[96], which may be improved by developing a 
heterodimer composed of ZFNs with different Fok1 
domains to cleave target DNA[97-99].

TALENs contain a DNA-binding domain and a 
Fok1 catalytic domain, just like ZFNs, for genomic 
engineering. A DNA-binding domain is constructed 
with an N-terminal segment, a central repeat domain, 
and a half repeat. The central repeat domain is 
comprised of several monomers that are called 
transcription activator-like effectors (TALEs). TALEs 
are effector proteins that are secreted from the 
bacteria of the Xanthomonas genus. They were first 
found in plant cells, enhancing their susceptibility 
to pathogens[100]. TALEs are tandem repeats of a 
34-amino-acid domain[101], and positions 12 and 
13 are known as repeat-variable di-residue (RVD) 
domains used to determine the specificity of the 
TALEs. There are four RVD domains, NN, NI, HD, and 

NG, for the recognition of guanine, adenine, cytosine, 
and thymidine, respectively[102]. TALEs function as 
eukaryotic transcription factors via DNA binding to 
activate target gene expression. Fok1 is located in 
the C-terminal segment and generates a DSB in 
a spacer sequence. TALENs therefore can be used 
for targeted gene disruption[103]. It is challenging to 
construct TALE repeats because each TALE repeat 
unit has high similarity. Specific methods, such as the 
restriction enzyme and ligation method[104], Golden 
Gate cloning[105], and fast ligation-based automated 
solid-phase high-throughput system[106] have all been 
designed for the rapid assembly of specific TALENs, 
so that custom-designed TALENs are in fact a realistic 
possibility for genetic engineering.

CRISPR/Cas is a prokaryotic defense system against 
invasion of foreign DNA, utilizing an RNA-guided DNA 
cleavage system. Small fragments (protospacers) of 
foreign DNA are inserted at repeat sequences in their 
own genomes to form CRISPR[107]. The type Ⅱ system 
consists of a trans-activating crRNA (tracrRNA) in 
addition to the primary CRISPR RNA transcript (pre-
crRNA) transcribed from the protospacers, which is 
subsequently processed into short crRNAs[108]. To 
achieve direct sequencespecific DNA recognition and 
cleavage, CRISPR-associated protein 9 (Cas9) must 
be complexed with both the crRNA and the tracrRNA, 
with the crRNA providing the sequence required 
for target recognition through Cas9. The essential 
targeting component (5’-NGG-3’ protospacer adjacent 
motif sequence) is located upstream of the crRNA, 
which is recognized through the Cas9. Through this 
mechanism, CRISPR/Cas systems cleave the target 
DNA sequence of 23 bp. Compared to ZFNs and 
TALENs, the generation of a CRISPR/Cas target specific 
endonuclease is much easier with the methods of 
cloning and transcription[109]. Recently, a CRISPR/Cas9 
construct was established for tissue-specific gene 
disruption in zebrafish, and this vector system may 
become a unique tool to spatially control targeted 
somatic mutations, gene knockout and loss of function 
studies in zebrafish[110]. 

HCC AND LIVER DISEASE MODELS IN 
TRANSGENIC ZEBRAFISH
The most studied oncogene associated with the 
development of HCC is the HBx antigen from HBV. HBx 
has been shown to induce HCC in mice and enhance 
colony formation in HCC cell lines[111-113]. Transgenic 
mouse models indicate that HCV is directly pathogenic 
and oncogenic[114,115]. AFB1 is one of the most 
prominent carcinogens associated with HCC[116], and it 
is known to induce formation of DNA adducts and p53 
mutations in liver cell lines[117]. Mutational inactivation 
of p53 has been described as one of the key molecular 
mechanisms involved in the pathogenesis of HCC[118]. 
AFB1 is synergistic with other factors as AFB1 treatment 
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induced significantly more liver tumors in HBx and HCV 
transgenic mice than in wild-type mice[114,115]. 

Models for liver disease and HCC have been 
generated in zebrafish through the tissue specific 
expression of such oncogenes regulated by the L-FABP 
promoter. In zebrafish, HBx overexpression causes 
hepatic fat accumulation and liver degeneration in 
a wild-type background[119]. Tumorigenesis however 
requires inactivation of the p53 tumor suppressor 
pathway, either through mutation of the gene itself 
or aberrant expression of a negative regulator, 
such as murine double minute 2 (mdm2) protein. 
Overexpression of mdm2 alone in the zebrafish liver 
leads to growth retardation and a fragile liver[120]. 
Another oncogene affecting the p53 pathways is 
gankyrin. This protein binds ubiquitin protein ligase 
mdm2 which promotes p53 degradation. The inhibition 
of p53 function through any of these mechanisms 
prevents the activation of p53-dependent apoptotic 
genes, which leads to cell survival, genomic instability, 
and oncogenic transformation[121]. Overexpression of 
gankyrin was found to induce hepatic steatosis and 
regulated miR-16, miR-27b, miR-122, and miR-126. 
The protein has also been shown to be involved in lipid 
metabolism[122]. 

UHRF1 is an important regulator of DNA methy-
lation that is highly expressed in many cancers. 
UHRF1 overexpression destabilizes and delocalizes 
dnmt1, causing DNA hypomethylation, p53-
mediated senescence, and hepatocarcinogenesis in 
zebrafish[123]. Cyclins are involved in tumor formation 
and cell death. rv-cyclin may also play a role in 
walleye dermal sarcoma tumor regression by inducing 
apoptosis[124,125]. Liver-specific expression of walleye 
dermal sarcoma virus rv-cyclin (orf-A) in zebrafish 
protects the fish liver from damage with treatment of 
7,12-Dimethylbenz[a]anthracene and delays the onset 
of malignancy[78].

Edn1 has been identified as a gene that is 
significantly up-regulated in HBx-induced HCC in the 
mouse model[126]. Liver-specific induced expression of 
edn1 caused steatosis, bile duct dilation, hyperplasia, 
and HCC in zebrafish[68]. Expression of the transcription 
factor Yin Yang 1 (YY1) was also significantly up-
regulated by HBV in a concentration-dependent 
manner[127]. A previous study has demonstrated through 
chromatin immunoprecipitation that HBx interacts with 
YY1[128]. CCAAT/enhancer-binding protein alpha which 
controls differentiation of hepatocytes was found to be a 
direct target down-regulated by YY1[129]. Overexpression 
of YY1 promoted zebrafish liver steatosis and 
lipotoxicity by inhibiting C/EBP homologous protein 10 
expression[130]. 

Excessive food intake and increased weight gain to 
the point of obesity is one of the causes of steatosis. 
Activation of cannabinoid receptor 1 (CB1R) is a 
molecular mechanism underlying the regulation of 
food intake, weight gain, and obesity in mammals. 
Tet-Off conditional expression of the zebrafish CB1R 

ortholog gene promoted hepatic lipid accumulation 
and lipotoxicity through the induction of srebp-1c 
expression in zebrafish[131]. In vertebrates, apoptosis is 
a fundamental part of normal embryonic development 
and participates in sculpting organs and regulating 
cell populations. zfBLP1 and zfMcl-1a are functionally 
similar to members of the Bcl-2 family, which inhibit 
apoptosis. Overexpression of zfBLP1 or zfMcl-1a in 
zebrafish larval liver induced hyperplasia[132].

Combined treatment of zebrafish with HBx and 
AFB1 induced hepatitis, steatosis, and liver hyperplasia 
during the early stages of hepatocarcinogenesis[133]. 
HBx and src overexpression induced HCC in p53 
mutant zebrafish and revealed a role for src in HCC 
progression[69]. TAA enhanced the development of 
steatohepatitis, cirrhosis, and HCC induced by the 
expression of the HCV core protein in transgenic 
zebrafish[29]. In vitro, the HCV core protein has been 
shown to directly activate the RAS-RAF-MEK-ERK 
pathway[134]. In human HCC, Ras proto-oncogenes 
are activated in as many as 50% of all HCC cases, 
which leads to activation of downstream signaling 
pathways including RAF-MEK-ERK and PI3K-AKT-
mTOR. Approximately 7% of HCCs carry activating 
mutations in the K-RAS oncogene, which is higher 
than the percentage of cases carrying H-RAS and 
N-RAS mutations. A high level of kras-V12 expression 
induced through constitutive or inducible mechanisms 
initiated liver tumorigenesis in zebrafish[81,135]. The 
co-expression of HBx and the HCV core protein 
trigger intrahepatic cholangiocarcinoma in transgenic 
zebrafish[80]. However, transgenic zebrafish over-
expressing HBx or HCV individually do not develop 
HCC. 

Recently, expression of kras-GV12 and xmrk, 
the homolog of mammalian epidermal growth factor 
receptor oncogene, in zebrafish with TetOn conditional 
methodology has been reported as an outstanding 
model for revealing new therapeutic targets involved in 
oncogene-regulated hepatocarcinogenesis[79,136]. RNA 
sequencing analysis of an xmrk transgenic HCC model 
revealed a potential role for immune responses in HCC 
progression and regression. This model may provide 
molecular insight into the targeted inhibition and 
significance of immune response in tumor regression[137]. 

The liver is one of the most important organs 
for the study of autophagy[138]. In fact, liver tumors 
are one of the main phenotypes in knockout mice 
of autophagy-related genes[139]. In zebrafish, the 
EGFP-Lc3 transgenic line crossed with the xmrk 
transgenic line yielded animals susceptible to HCC and 
thus, demonstrated that autophagy plays an important 
role in HCC development[140]. Cross-species analyses 
demonstrated that Tet-On conditional expression of 
myc in a zebrafish model paralleled findings in myc 
mouse models for HCC. Elevated myc expression in 
zebrafish caused liver hyperplasia, adenoma, and HCC. 
Mycinduced liver tumors in zebrafish also possessed 
molecular signatures that were similar to those from 
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mouse and human HCC. This zebrafish model thus 
revealed a conserved role for myc in promoting 
hepatocarcinogenesis in all vertebrate species[82]. RNA 
expression profiling of liver tumors from the three 
different zebrafish models, xmrk, kras-G12V, and myc, 
showed however relatively little overlap in significantly 
deregulated genes and biological pathways. However, 
these three transgenic tumor signatures were found to 
be significantly correlated with advanced or late stage 
human HCC[141]. 

In human HCC, deregulation of MYC is frequently 
detected and correlated with poor prognosis. Two 
differentially expressed MYC orthologs exist in the 
zebrafish genome: myca and mycb. Overexpression 
of myca and mycb in the liver using a mifepristone-
inducible system demonstrated that both myc genes 
were oncogenic. myca overexpression accelerated 
tumor progression and reduced apoptosis in p53 mutant 
zebrafish. Malignant hepatocytes were dependent 
on sustained myca expression; withdrawal of the 
mifepristone inducer resulted in a rapid regression of 
HCC, with liver tumor regression occurring even in a 
p53 mutant background[142]. 

RhoA is a member of the RHO small GTPase 
family, which is highly homologous to the RAS. These 
proteins are also involved in the regulation of cell cycle 
dynamics, and are key molecules for cell growth and 
tissue development of the switch. Expression levels 
and the overall activity of RhoA has been found to be 
elevated in HCC[143]. Tet-On conditional expression of 
kras-G12V, rhoA, constitutively active rhoA-G14V, 
dominant-negative rhoA-T19N, or kras-G12V plus 
one of the three rhoA genes, was also examined in 
zebrafish. Overexpression of kras-G12V during early 
development led to liver enlargement and hepatocyte 
proliferation. The increase in liver size was augmented 
by the dominant-negative rhoA-T19N, but abrogated 
by the constitutively active rhoA-G14V. This study 
revealed the existence of signaling crosstalk between 
kras-V12 and rhoA in regulating liver overgrowth and 
hepatocarcinogenesis[136]. Based on these results, the 
zebrafish emerges as a model system for elucidating 
the mechanisms of hepatocarcinogenesis and for 
screening drugs to inhibit the oncogenic effects of 
specific genes (Table 3). 

POTENTIAL APPLICATIONS OF 
XENOGRAFTS AND ZEBRAFISH HCC 
MODELS IN DRUG DISCOVERY
The United States Food and Drug Administration 
approves only a few new chemical entities for clinical 
usage each year because the investigation of new 
drugs is a lengthy and costly process. Drug-discovery 
generally proceeds first through in vitro assays, where 
cell proliferation, cytotoxicity, marker expression, 
motility, activation of specific signaling pathways, and 
changes in morphology are examined in response 

to treatment with small molecules[144], and second 
through in vivo screening where endpoints such as 
extended life span can be evaluated. The zebrafish 
has the advantage of combining both processes in a 
single model. It is a high-throughput and in vivo model 
simultaneously; therefore, the zebrafish might improve 
the success rate in the later stages of preclinical drug 
development while reducing the cost and the time 
necessary for the screening process[70].

The trend of using zebrafish embryos in screening 
for anti-cancer drugs continues to rise. The use of 
computational drug design and screening of zebrafish 
embryos has successfully uncovered a novel lead 
compound that displays selective inhibitory effects 
on CDK2 activity, cancer cell proliferation, and tumor 
progression in vivo[145].

 Zebrafish/tumor xenograft models have been 
used to study angiogenesis, invasion, and metastasis. 
One advantage of zebrafish is that the embryos are 
transparent, allowing the observation of labeled tumor 
cells and the evaluation of response to candidate 
molecules in a high-throughput format in vivo[146]. In 
order to achieve maximum transparency, zebrafish 
embryos are incubated in an egg medium with 0.3% 
phenylthiourea to prevent the formation of pigments. 
(In the mouse system, the spatial resolution is limited 
in vivo due to normal opacification of the skin and 
subdermal structures). Tumor cells labeled with CM-Dil, 
a lipophilic fluorescent tracking dye, are injected into 
the perivitelline space or yolk of embryos at 48 hpf and 
are followed thereafter. fli1:gfp transgenic embryos 
and the whole-mount akaline phosphatase vessel 
staining assay allows for rapid and relatively easy 
investigation of tumor angiogenesis, cell dissemination, 
invasion, metastasis, and anti-vascular endothelial 
growth factor (VEGF) drugs for cancer therapy[68,147]. 
Transgenic zebrafish (vegfr2:grcfp) where GFP 
expression is restricted to blood vessels have been 
used to screen a compound library for antiangiogenic 
compounds. SU4312 and AG1478, two known anti-
angiogenic compounds, were used as positive 
controls in the screen. Two new compounds with no 
previously described antiangiogenic activity, indirubin-
3’-monoxime (IRO) and EM011 (9-bromonoscapine), 
were also identified[148,149]. Embryos of the transgenic 
flk:gfp zebrafish were also used in screening the 
compound library. One lead compound, rosuvastatin, 
was identified which could inhibit the growth of the 
zebrafish intersegmental vessels[150]. The zebrafish 
tumor xenograft model represents a new tool for 
investigating the neovascularization process and is 
exploitable for drug discovery as well as gene targeting 
in tumor angiogenesis.

In zebrafish HCC models, mifepristone-induced 
kras-V12 transgenic larvae treated with MEK1/2 
inhibitor PD98059 resulted in the inhibition of hyper-
plastic liver growth in 49% of cases. Inhibition of 
PI3K-AKT-mTOR signaling by LY294002 or rapamycin 
restored the normal liver phenotype in 57% and 

12051 November 14, 2015|Volume 21|Issue 42|WJG|www.wjgnet.com

Lu JW et al . Zebrafish as an HCC model



69% of kras-V12 transgenic larvae, respectively. 
Results furthermore demonstrated that blocking two 
pathways in kras-V12 transgenic larvae resulted in 
a more significant anti-tumor effect (78%-96%)[81]. 
Recently, liver tumors were induced in doxycycline 
regulated xmrk transgenic fish with 100% penetration 
in both juveniles and adults. Overexpression of xmrk 
activated downstream targets of MEK1/2 and STAT5, 
which led to increased cell proliferation during tumor 
progression and enhanced apoptosis during tumor 
regression. Juvenile fish were also exposed to MEK1/2 
inhibitor PD98059 or STAT5 inhibitor nicotinohydrazide 
in combination with doxycycline. After three weeks of 
treatment, abdomens and livers in 100% of transgenic 
fish exposed to either inhibitor were reduced relative 
to untreated transgenics[79]. Transient expression of the 
HCV core protein under the control of a CMV promoter, 
human hepatic lipase promoter, and zebrafish LFABP 
enhancer in zebrafish embryos was used as a possible 
model to examine HCV replication and treatment with 
drugs. The amplified subreplicon was evidence of high 
expression of HCV core RNA and protein. This model 
was used to evaluate efficacy of four HCV clinical 
drugs: oxymatrine, ribavirin, IFNa-2b, and vitamin 
B12. Vitamin B12 inhibited HCV core mRNA and 

protein levels in a dose-dependent manner. Ribavirin 
and oxymatrine drugs also significantly inhibited 
replication of the HCV sub-replicon. Such models may 
provide a novel strategy for studying mechanisms of 
HCV replication as well as facilitate the discovery of 
new anti-HCV drugs[151-153].

ZEBRAFISH MODELS FOR STUDYING 
DRUG-INDUCED TOXIC LIVER INJURY
Drug-induced liver injury (DILI) is a major problem 
in clinical pharmacology. Here, zebrafish is also 
promising as an animal model[25]. Zebrafish is a high
throughput in vivo model that can be potentially 
used to predict which therapeutic compounds 
will cause DILI in humans as well as present new 
markers and molecular mediators of DILI. One of the 
most important features of the model is that drug 
metabolization in zebrafish is mediated through similar 
pathways utilized in humans[154]. Different methods 
have been used in order to evaluate and quantify DILI 
in zebrafish. Although higher vertebrate organisms 
that are physiologically similar to humans have 
typically been used to assess DILI, the zebrafish has 
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Table 3  Zebrafish animal models of liver disease and hepatocellular carcinoma

Transgene name Expression system Liver pathology Ref.

cnr1 (Zebrafish) Tet-off-inducible Steatosis [132]
edn1 (Zebrafish) Constitutive Steatosis, bile duct dilation, hyperplasia and HCC [69]
gankyrin (Zebrafish) Constitutive Atrophy, hypoplasia and steatosis [123]
HBx (Human) Constitutive Hypoplasia and steatosis [120]
HBx + AFB1 (Human) Constitutive Hepatitis, steatosis and hyperplasia [134]
HBx + HCV (Human) Tet-off-inducible Intrahepatic cholangiocarcinoma [81]
HBx + p53M214 (Human) Constitutive Chronic inflammation, steatosis, bile duct dilation, dysplasia and HCC [70]
HBx + src (Human/Zebrafish) Constitutive Chronic inflammation, steatosis, bile duct dilation, dysplasia and HCC [70]
HCV (Human) Constitutive Steatosis [29]
HCV + TAA (Human) Constitutive Steatosis and HCC [29]
kras-G12V (Zebrafish) Mifepristone Hyperplasia and HCC [82]
kras-G12V (Zebrafish) Constitutive Hyperplasia and hepatocellular adenoma [82]
kras-G12V (Zebrafish) Tet-on-inducible Hyperplasia, hepatocellular adenoma and HCC [137]
kras-G12V + p53M214 (Zebrafish) Constitutive Hyperplasia and hepatocellular adenoma [82]
kras-G12V + RhoA (Zebrafish) Tet-on-inducible Hyperplasia, hepatocellular adenoma and HCC [137]
kras-G12V + RhoAG14V (Zebrafish) Tet-on-inducible Hyperplasia, hepatocellular adenoma and HCC [137]
kras-G12V + RhoAT19N (Zebrafish) Tet-on-inducible HCC [137]
Lc3 (Rat) Constitutive Investigation of liver autophagy [141]
mdm2 (Zebrafish) Constitutive Atrophy, contraction and hypoplasia [121]
MYC (Mouse) Tet-on-inducible Hyperplasia and hepatocellular adenoma [83]
myca (Zebrafish) Mifepristone Small, typical, hypervascular and ascites of liver tumor [143]
myca + p53M214 (Zebrafish) Mifepristone Small, typical, hypervascular and ascites of liver tumor [143]
mycb (Zebrafish) Mifepristone Small, typical, hypervascular and ascites of liver tumor [143]
orf A (Human) GAL4/UAS Delayed onset of liver tumor [79]
src (Zebrafish) Constitutive Chronic inflammation, steatosis, bile duct dilation, hyperplasia, 

dysplasia and HCC
[70]

src + p53M214 (Zebrafish) Constitutive Steatosis, hyperplasia, dysplasia and HCC [70]
UHRF1 (Human) Constitutive Atypical cells, dysplastic foci and HCC [124]
UHRF1 + p53M214 (Human) Constitutive Atypical cells, dysplastic foci and HCC [124]
xmrk (Xiphophorus) Tet-on-inducible Hyperplasia, hepatocellular adenoma and HCC [80]
yy1 (Zebrafish) Constitutive Steatosis [131]
zfBLP1 (Zebrafish) Constitutive Hyperplasia [133]
zfMcl-1α  (Zebrafish) Constitutive Hyperplasia [133]

HCC: Hepatocellular carcinoma; HBx: Hepatitis B virus X protein; HCV: Hepatitis C virus.
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similar molecular and cellular processes that accurately 
simulate human physiology. Therefore, zebrafish 
provide a significant advantage for research purposes 
compared to higher vertebrate organisms (e.g., mice 
and rats). For example, the ability to assess liver 
damage with visually evaluable phenotypic endpoints 
enables the transparent larval zebrafish to be used 
in high-throughput screening[155,156]. In addition, DILI 
in embryonic or adult zebrafish exhibits histological 
changes, such as steatosis, apoptosis, and necrosis, 
that parallel human liver pathologies[157]. TAA has been 
shown to induce steatohepatitis in zebrafish, which is 
accompanied by the accumulation of fatty droplets and 
apoptosis[158]. AFB1 induced hepatitis and steatosis 
in zebrafish[133]. Zebrafish exposed to ethanol also 
exhibited histological changes such as steatosis, as 
found in alcoholic liver disease in humans[159]. Serum 
biochemical values, such as total bilirubin concentration 
and serum alanine transaminase (ALT) activity, have 
been determined in zebrafish[160]. Such values can be 
therefore used to evaluate liver function in response 
to drug treatment. ALT activity was found to be 
increased in zebrafish treated with paracetamol in a 
dose and time dependent fashion[157]. Furthermore, 
the circulating concentration of miR-122, a new 
experimental biomarker for liver toxicity, was increased 
in fish with paracetamolinduced liver injury[161]. 

Although many studies clearly illustrate the 
potential advantages of zebrafish as a model for liver 
toxicity, a number of challenges still exist. For example, 
zebrafish are exposed to a drug simply by introducing 
it into the water[162]. Immersion in the drug enables 
easy and fast administration, but the amount actually 
consumed by the fish is a variable even though the 
concentration is known and equal for all fish[163]. To 
overcome the problem of absorption, the quantity of 
the drug taken up by the fish can be determined by 
using a radio-labeled compound and liquid scintillation 
counting[154]. 

Before the zebrafish model can be more broadly 
applied, translatability of the model to humans must 
be confirmed. First, tests need to be conducted on 
established human hepatotoxic and nonhepatotoxic 
compounds, comparing dose responses between 
fish and humans. Second, translational biomarkers 
that bridge the gap between fish and humans must 
also be developed. Finally, immunological response 
in zebrafish must be evaluated in order to establish 
whether DILI develops similarly as in humans. The use 
of zebrafish as a model for liver injury shows promise 
and may enable better decision making in the early 
stages of drug discovery, before a compound is tested 
in higher mammals.

CONCLUSION
HCC is a primary malignant tumor of the liver. It is a 
complex disease that is accompanied by an overall 
poor prognosis. Although numerous oncogenes, 

tumor suppressor genes, and point mutations have 
associated with development of the disease over 
the past several decades, treatment options remain 
limited. One of the more intriguing approaches to 
the study of HCC and potential treatments, has been 
through the development of HCC disease models in 
zebrafish. Several zebrafish HCC models have been 
established through expression of various transgenes, 
including HBx, HCV, myc, kras-G12V, rhoA, xmrk, 
src, edn1, myca, mycb, or UHRF1. Zebrafish models 
have also been used for evaluation of DILI and tumor 
xenotransplantation. Recently, new genome editing 
technologies, including ZFNs, TALENs, and CRISPR/Cas 
systems, have been developed to facilitate targeted 
gene disruption in zebrafish. Together with transgenic 
technology, several inducible expression systems are 
also available for zebrafish, which will help to accelerate 
further development of fish models for HCC. Although 
establishment of liver disease and HCC models in 
zebrafish has led to further understanding of the 
molecular mechanisms and biology of these diseases, 
zebrafish perhaps more importantly serve as in vivo 
models with high throughput screening capabilities 
for the discovery of novel therapeutic agents. Novel 
inhibitors of angiogenesis, IRO and EM011, have been 
identified through such screening technology. As the 
utility of zebrafish for the study of HCC becomes more 
universally accepted, we will perhaps facilitate drug 
discovery and thus one day advance our treatment 
and the prognosis of HCC patients.
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