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Abstract
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cell subsets is critical to the normal function of the 
immune system. Until recently, the paradigm held that 
naïve T cells differentiated into distinct subsets under 
the guidance of environmental cues (e.g. , cytokines) 
and that once polarized, these cells were committed 
to a particular functional state. However, the existence 
of transdifferentiated T cell populations, which 
express signature transcription factors and cytokines 
associated with more than one Th subset, challenges 
the immutability of T helper subsets and suggests that 
plasticity is a feature of multifaceted immune responses. 
How this process impacts immune dysregulation in 
diseases such as inflammatory bowel diseases (IBD) 
and the machinery that underlies this process is far 
from fully understood. Interleukin (IL)-17 secreting 
helper T (Th17) cells have been heavily implicated in 
tissue-specific immune pathology including murine 
models of IBD, human Crohn’s disease and ulcerative 
colitis. Plasticity within this subset is suggested by 
the existence of IL-17 secreting cells, which, can also 
secrete interferon-γ, the signature cytokine for Th1 cells 
or, can co-express the anti-inflammatory transcription 
factor forkhead box p3, a signature transcription factor 
of regulatory T cells. In this review we mainly discuss 
evidence for Th17 plasticity, mechanisms, which govern 
it, and highlight the potential to therapeutically target 
this process in human IBD.
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Core tip: Recently, two innovative clinical failures in 
inflammatory bowel disease which sought to manipulate 
T helper (Th) subsets via  either transplantation of 
regulatory T cells or interleukin-17 blockade using 
secukinumab, suggest that altering the balance between 
inflammatory and regulatory subsets in inflammatory 
bowel diseases (IBD) may be more complex than 



inflammatory and protective roles in mucosal immunity 
by secreting a spectrum of cytokines without requiring 
de novo differentiation of naïve T cells. Likewise, Th17 
cells may be generated quickly from Treg in order to 
defend from acute invasion of pathogens. This ability 
to transition between functional states is defined as T 
cell plasticity.

This review mainly focuses on human studies and 
outlines the major features of Th17 plasticity including 
the Treg/Th17 paradigm shift in the context of IBD and 
in the maintenance of intestinal homeostasis.

CHARACTERISATION OF TH17 AND 
TREG SUBSETS IN IBD
In the last 15 years or so, the focus of attention 
regarding T cell subsets has shifted from the classical 
Th1/Th2 paradigm to that of Th17/Treg. This has 
indeed been the case in IBD. 

The discovery of extrathymic Treg development in 
the intestine has attracted enormous attention and 
highlights the importance of Treg cells in intestinal 
homeostasis. Hori et al[23], demonstrated that co-
transfer of peripherally generated Foxp3 positive Treg 
cells could attenuate disease in the adoptive transfer 
model of mouse colitis. Shortly after this study, Makita 
et al[24], showed the intestinal prevalence of Treg in 
patients with IBD. Mucida et al[25], have since identified 
retinoic acid, derived from vitamin A and metabolized 
by dendritic cells, as a key signal regulating Foxp3 
expression by naïve T cells in response to TGF-β. 
Overall, the digestive tract requires high levels of 
inducible Treg cells in order to preserve tolerance 
to the enormous antigenic burden comprised by 
commensal flora and dietary antigens[26].

At around the same time, Fujino et al[27], first 
reported on the prevalence of Th17 cells in patients 
with IBD. Patients with UC and CD show increased 
IL-17A levels in serum and mucosa[17] and an IL-17A 
gene polymorphism has been linked to UC sus-
ceptibility[28]. This cytokine, in addition to promoting 
barrier function, is a potent promoter of granulopoiesis 
and neutrophil chemotaxis and plays an important role 
in the clearance of extracellular bacterial and fungal 
infections[29]. Recently, Ciofani et al[30] have described 
an intracellular network regulating Th17 specification. 
Interestingly, genome-wide association studies linked 
at least 24 loci within this network to single nucleotide 
polymorphisms (SNPs) associated with ulcerative colitis 
and Crohn’s disease, highlighting the importance of 
this T cell subset towards the pathogenesis of IBD[30,31].

IL-17 secreting Th17 subset
Intestinal effector T cells arise from naïve lymphocytes 
derived from the thymus, which then undergo fun-
ctional differentiation in the intestinal mucosa upon 
encountering their cognate antigen displayed by 
activated antigen-presenting cells (APCs). APCs and 
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previously thought. One reason may be the flexible 
nature of T helper subset commitment, otherwise 
referred to as plasticity. Here we discuss plasticity 
between regulatory and inflammatory subsets in T 
helper CD4+ cells, especially Th17 cell subset, and the 
potential to therapeutically target this process in human 
IBD.
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INTRODUCTION
The spectrum of immune-mediated disease en-
compasses a wide variety of chronic inflammatory 
conditions such as inflammatory bowel disease (IBD) 
comprised of Crohn’s disease (CD), and ulcerative 
colitis (UC) as well as rheumatoid arthritis (RA), 
multiple sclerosis, and psoriasis. Although the under-
lying triggers remain poorly understood, it is now 
clear that T cells are essential to the development 
and perpetuation of these diseases[1-3]. Since the 
landmark description of functionally distinct T helper 
1 (Th1) and Th2 CD4+ effector subsets, each with 
unique cytokine profiles[4], much work has focussed 
on dissecting their roles in both health and disease. 
The spotlight has recently been drawn to a novel 
subset, the Th17 cell, so named due to its ability to 
secrete interleukin (IL)-17A, which has emerged as 
a major player in tissue-specific immune pathology. 
The initial emphasis on the detrimental effects of 
Th17 is reflected by the plethora of early literature 
supporting such a role in both human and murine 
studies[5-10]. However, a growing body of evidence 
now suggests essential protective roles, particularly in 
the context of mucosal integrity and defence against 
extracellular pathogens[5,11-16]. Th17 cells and their 
associated cytokines have been found to interact 
more closely with other adaptive immune cells than 
previously thought, raising interesting questions 
about how to select and design therapeutic strategies 
targeting this cell population[2,17]. New technologies 
such as transcriptome profiling, global epigenetic 
mapping and computerized simulation analysis[18,19] 
have captured a more accurate picture of this T cell 
subset revealing it to be more transient, complex and 
perhaps more reversible than previously imagined. 
In addition to a well-established role in extracellular 
pathogen clearance, Th17 cells can also participate in 
intracellular pathogen clearance via unconventional 
interferon (IFN)-γ secretion[20,21]. Human forkhead box 
p3 (Foxp3) + regulatory T cells (Treg) can differentiate 
into IL-17 promoting cells in vitro[22]. Flexibility within 
this subset may allow Th17 cells to embrace pro-



potentially other cells release cytokines, which act in 
combination with environmental cues, including bacterial 
and dietary products as well as salt concentration[32,33], 
thereby activating the Jak-STAT and other signalling 
pathways to exert their biological functions.

Differentiation of Th17 cells is exclusively dependent 
on signal transducer and activator of transcription 3 
(STAT3)[34] and crucially requires the expression of 
the transcription factor retinoic acid receptor-related 
orphan receptor γ thymus in mouse (RORγt)[35]. 
Studies in the mouse and in vitro human cell cultures 
have revealed the critical roles of transforming growth 
factor β1 (TGF-β1) alongside IL-6[36-38], IL-1β[39] and 
IL-21[40] in Th17 polarization. IL-23, secreted mainly by 
innate myeloid cells including activated dendritic cells 
(DC), monocytes and macrophages, is critical for Th17 
proliferation and maintenance, though dispensable 
for the initiation of Th17 development. Importantly, 
mutations within the il23r locus, which encodes a 
receptor subunit unique to IL-23, are associated with 
psoriasis[41], ankylosing spondylitis[42] and IBD[43,44].

Whilst Th17 cells are distinguished by IL-17A 
production, they are also capable of producing other 
cytokines, including but not limited to IL-17F, IL-21 and 
IL-22. IL-17F, a member of the IL-17 family, may also 
have dual roles in the context of mucosal disease. In 
the DSS model of IBD, IL-17F

-/- mice show less severe 
disease than wild-types[28]. IL-17F evidently appears to 
have a distinct set of roles, despite structural similarity 
to IL-17A, and further research will be necessary to 
establish its specific importance. Substantial evidence 
exists for pathogenic roles of IL-22, particularly in the 
context of psoriasis[45]. However, IL-22 may play a 
critical role in the maintenance of the intestinal epithelial 
barrier and in mucosal healing[45]. It is thus important 
to emphasize that although Th17 cells are defined by 
their expression of IL-17 and RORc, human counterpart 
of RORγt, these cells likely express heterogeneous 
cytokine profiles, at times simultaneously expressing 
both protective (IL-22) and deleterious (IL-17A, IFN-γ) 
cytokines in a tissue-temporal specific manner[5]. In 
addition, the unexpected failure of secukinumab[46], 
a human anti-IL-17 monoclonal antibody, in the 
treatment of Crohn’s disease reflects the complex 
role of IL-17 and the heterogeneous causes of the 
disease[47].

Foxp3+ Treg subset
In contrast, anti-inflammatory Foxp3-expressing Treg 
cells play an important role in tissue homeostasis via 
controlling pro-inflammatory effector T cells. Treg cells 
were first described as “self”-recognising T cells which 
develop in the thymus. Nowadays this population 
of Treg cells has come to be referred to as naturally 
occurring Treg[48]. Initially, Treg cells were believed 
to differentiate along a distinct pathway to that of 

conventional T cells which arise from naïve T cells in 
the periphery (extra-thymically). It is now apparent 
however that naïve progenitor T cells can give rise to 
a population of anti-inflammatory Foxp3 expressing 
T cells extra-thymically. This population is referred to 
as inducible Treg (iTreg)[48]. The major residential and 
developmental organs of iTreg cells are in fact the gut 
mucosa and mesenteric lymph nodes. Differentiation 
of iTreg cells is dependent on STAT5 and requires 
activation of the lineage-specifying transcription 
factor Foxp3. In vitro studies using human cells have 
revealed the critical roles for TGF-β1, together with the 
cofactor retinoic acid in iTreg development from naïve 
Th cells[49].

Similarities and differences between Th17 and Treg 
development
Interestingly, both Th17 and iTreg cells share essential 
developmental cues, and thus similar developmental 
pathways, as both subsets can be generated under the 
influence of TGF-β1. However additional signals specify 
development of each subset. Similar to Th1 and Th2 
subsets, Th17 and Treg can negatively influence each 
other. In mice, increasing concentrations of TGF-β1 are 
associated with increased Foxp3 levels and decreased 
IL-23R expression, leading to decreased IL-23-
dependent maintenance of Th17 cells and resulting 
in impaired Th17 development[50]. In addition, Foxp3 
was found to directly inhibit IL-17 expression. As a 
result, Foxp3 and RORγt double expressing T cells 
in the lamina propria produced lower levels of IL-17 
compared to T cells expressing RORγt alone[50]. Smad 
2, 3, and 4, which transduce the extracellular TGF-β1 
signal to the nucleus, are pivotal to iTreg generation 
whilst dispensable for Th17 development[51,52].

Gut resident and pathogenic microbes contribute 
to gut homeostasis and disease in part by shaping 
Th subset polarization. Interestingly, Th17 cells are 
induced by components of the intestinal flora, as 
has been shown for segmented filamentous bacteria 
(SFB)[53]. This requires MHC class Ⅱ-dependent 
presentation of SFB antigens by DCs. On the other 
hand, commensal bacteria are known to influence 
gut tolerance by generating Treg cells specific to 
themselves. Transplantation of specific Clostridia 
clusters into germ free mice induces increased colonic 
Treg cells[54,55]. Lactobacillus reuteri colonization is also 
associated with an increase in gut residential Treg 

cells[56]. Interestingly, bacterial fermentation products 
may also play an important role in Treg generation. 
The short-chain fatty acids can promote DC tolerance 
along with generation of colonic Treg cells[57,58]. Another 
bacterial product, polysaccharide A from Bacteroides 
fragilis can induce anti-inflammatory Foxp3+, IL-10 
secreting Treg cells via TLR2 signalling[59]. Thus, 
intestinal dietary and commensal products can 
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Figure 1  Concept of 17 secreting helper T plasticity. The Foxp3 expressing Treg subset either develops naturally (nTreg) or is peripherally induced from naïve T 
cells (iTreg). Th17 generating factors including cytokines, transcription factors, and other molecular cues can induce these cells to differentiate into transitional cells 
with co-expression of Foxp3 and RORc. Th17 cells may be converted into Th17/1-transitional cells with co-expression of RORc and TBX21. Th17: 17 secreting helper 
T; Foxp3: Forkhead box p3; RORγt: Related orphan receptor γ thymus in mouse; IL: Interleukin; TGF: Transforming growth factor; IFN: Interferon.

exogenous Th17-generating cytokines are able to 
convert Foxp3+ Treg cells into IL-17 secreting Th cells 
in vitro. Since cytokine secretion is a final step in 
lineage differentiation, this population is considered 
to possess two signature features for two different 
subsets; Foxp3 for Treg, and IL-17 for Th17. We 
found increased levels of circulating IL-17 and Foxp3 
double expressing T cells in IBD patients compared 
to healthy controls. Furthermore, we demonstrated 
the conversion of CD25+ CD45RO- Treg cells from 
peripheral blood of IBD patients into IL-17 secreting 
Foxp3 expressing cells as well as RORc and Foxp3 
expressing cells in the presence of combinations of the 
above mentioned cytokines[60]. Comparing the in vitro 
generation of double expressing cells in two types of 
IBD patients, CD patients have a higher prevalence 
of double expressing cells generated in the presence 
of IL-1β/TGF-β/IL-6 than UC while UC patients have 
an increased frequency of this population in response 
to IL-21/IL-23 than CD samples, suggesting disease-
associated plasticity of Th cells in IBD[60]. A recent 
elegant study by Basu et al[61], revealed that IL-1 
signalling represses SOCS3, an inhibitory molecule of 
STAT3 altering the STAT3/STAT5 balance resulting in 
Th17 generation. This model offers an explanation for 
why exogenous IL-1β converts Foxp3+ Treg cells into 
IL-17+ Foxp3+ double expressing Th cells[61].

Cytokines which induce Th17 development and 

influence Treg and Th17 development.

MECHANISMS OF PLASTICITY AND 
RECIPROCAL REGULATION BETWEEN 
TREG AND TH17 SUBSET
There are at least four major pathways and/or factors 
which contribute to Th17 plasticity. The cytokine 
milieu directs T cell subset development and also 
induces plasticity via the activation of different and 
specific STAT molecules and multiple transcription 
factors. Furthermore, it has emerged that immune-
regulatory microRNA (miR) plays a fundamental role 
in controlling gene expression, thus influencing T cell 
fate and plasticity. There is also the unique role of aryl 
hydrocarbon receptor (AhR) and its environmental and 
physiological ligands alongside histone methylation 
and epigenetic modifications which may fundamentally 
influence T cell plasticity. Figure 1 summarizes the 
concept of Th17 plasticity.

Cytokine pathways (main contributor to plasticity)
As described above, TGF-β signalling with the 
additional influence of IL-1β, IL-6 and IL-21 are 
critical to Th17 lineage development as well as 
the role of IL-23 signalling for the maintenance 
and function of this subset. High concentrations of 
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plasticity are summarised in Table 1[62-69].

Transcription factors
There is now vast literature detailing multiple trans-
cription factors and their relationship to T cell plasticity. 
These transcription factors directly regulate and/or 
promote gene expression by binding to their promoter 
regions in order to contribute to the multifaceted 
nature of T cell subsets.

Ciofani et al[30] recently identified FOS-like antigen 
2 (Fosl2) as a key determinant of Th17 plasticity in 
their remarkable study of Th17 cell specification[30]. 
in vitro differentiation of mouse CD4 T cells deficient 
in Fosl2 under Th17 polarizing conditions yielded 
IL-17 producing cells which co-expressed Foxp3. 
Interestingly, Fosl2 deficiency also enabled IFN-γ 
production in Th17 and Th2 cultures, particularly when 
Th17 cells were subsequently exposed to Th1-skewing 
conditions. 

Interferon regulatory factor 4 (IRF4) is a trans-
cription factor expressed in hematopoietic cells and 
plays pivotal roles in the immune response. IRF4 levels 
were augmented in patients with active inflammatory 
bowel disease and correlated with enhanced pro-
duction of IL-17 and IL-22 mRNA[70]. On the other 
hand, lack of IRF4 seems to cause resistance to Th17-
mediated autoimmune diseases[71]. Basic leucine zipper 
transcription factor, BATF, along with IRF4, was recently 
proposed as a “pioneer factor” in T cells[30]. After T cell 
receptor ligation, BATF expression is rapidly induced in 
naïve T cells. The BATF-JUN heterodimer and IRF4 bind 
to the same regulatory regions to mediate chromatin 
remodelling and facilitate accessibility to regulatory 
elements by other Th cell subset-specific transcription 
factors including STAT3, MAF and RORγt in Th17. 
Interestingly, BATF and IRF4 are also necessary for 
Treg differentiation in visceral adipose tissue through 

direct regulation of IL-33 receptor, ST2 and PPAR-γ 
expression[72]. BATF+ RORc- Th17 cells are found in gut 
tissues from UC but not CD patients[73]. Taken together 
BATF/IRF4 axis may direct Treg/Th17 balance and 
plasticity in the gut. 

A member of the Ikaros family, IKZF3 (or Aiolos) is 
known to promote Th17 differentiation by supressing 
IL-2 production[74]. Interestingly, IKZF3 is also ex-
pressed in iTreg lacking the expression IKZF2, (or 
Helios). These IKZF2- IKZF3+ Foxp3+ Th cells express 
IL-17 and exert reduced regulatory functions in healthy 
human blood samples[75]. Furthermore, polymorphism 
in Ikzf3 locus shows an association with CD and UC[31]. 
Thus, IKZF3 may turn out to be an important regulator 
of Th17-Treg plasticity in IBD. 

An environmental sensor, Hypoxia-inducible factor 
1 (HIF-1), which is induced by Th17 cells to promote 
signalling in a Stat3-dependent manner, cooperates 
with RORγt to control expression of Th17 genes, such 
as IL-17A, IL-17F, and IL-23R. Furthermore, HIF-1 
negatively regulates Treg development by mediating 
Foxp3 protein degradation[33]. 

On the other hand, Liu et al[76] recently reported 
that TGF-β and IL-6 regulate Th1 cell conversion into 
the Th17 subset via expression of Runx1. This is 
supported by the finding that siRNA mediated silencing 
of Runx1 inhibits this conversion. Furthermore, TGF-β 
enhanced histone H3K9 acetylation but inhibited H3K9 
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Table 1  Cytokines related to 17 secreting helper T development 
and plasticity in human

Cytokine Effect Ref.

IL-1β Accelerate IL-17A secretion from IL-17 secreting 
Innate

[69]

Lymphoid cells and Th17
IL-6 Induce autocrine IL-21 and generation of Th17 [20]
IL-10 Suppress IL-17A and Th17 generation [62]
IL-12 Induce IFN-γ secretion from Th17 cells (Th1/Th17 

plasticity)
[20]

IL-21 Potentiates pathogenic effects of Th17 cells in the 
gut

[64,65]

IL-22 Attenuate the development of intestinal pathology 
via Stat3-mediated effects on epithelial cells

[66,67]

IL-23 Induce IL-22 and IL-17A secretions and maintain 
Th17 expansion

[68]

TGF-β1 Initiate generation of Treg and Th17 populations 
dependent on the concentration

[63]

Table 2  Transcription factors related to 17 secreting helper T 
development and plasticity

Transcription 
factor

Effect Ref.

Fosl2 A key determinant of cellular plasticity [30]
IRF4 Th17 differentiation via RORγt dependent and 

independent pathways
[115]

Augmented in patients with IBD and 
correlated with enhanced production of IL-17 

and IL-22 mRNA

[70]

BATF Required for differentiation of Th17 via 
induction of RORγt, and bound to IL-17, IL-21 

and IL-22 promoters

[116]

BATF+ RORc- Th17 cells are found in gut 
tissues from UC but not CD patients.

[73]

HIF-1 A key transregulator of Th17 polarization and 
suppressor of Foxp3 in Treg

[33,81]

Reciprocal regulation between HIF-1 and 
miR210

[81]

Jmjd3 H3K27 demethylase, important for Th1/Th17 
plasticity

[101]

RORc (human) Essential for Th17 differentiation induced by 
TGF-β1 and IL-6 or IL-21

[35]
RORγt (mouse)
IKZF3 (Aiolos) Promotes Th17 differentiation via  silencing of 

the IL-2 locus
[74]

Aiolos+ iTreg respond to IL-1β and 
downregulate their suppressor functions

[75]
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Th17: 17 secreting helper T; IL: Interleukin; TGF: Transforming growth 
factor; IFN: Interferon.

RORγt: Related orphan receptor γ thymus in mouse; IL: Interleukin; TGF: 
Transforming growth factor; CD: Crohn's disease; UC: Ulcerative colitis; 
HIF: Hypoxia-inducible factor; IRF4: Interferon regulatory factor 4; IBD: 
Inflammatory bowel diseases.



trimethylation of Runx1- and ROR-γt-binding sites on 
the IL-17 or RORc gene in Th1 cells in this disease 
model[76].

Transcription factors which are critical for Th17 
development and plasticity are summarised in Table 2.

Micro-RNA (a cause of plasticity)
miR are small fragments of non-coding RNA (mostly 
17-22 nucleotides) that act as regulators of RNA 
expression through binding to the 3’-UTR of com-
plementary mRNA resulting in repression/silencing 
of target RNAs. Several miRs have been reported to 
influence the differentiation of Th cell subsets[77] as 
well as plasticity and reciprocal regulation among Th 
cell subsets[78].

Targeting STAT1, which is required for optimal Th1 
development, miR146a plays an essential role in Treg 
function and development[78]. Targeting suppressor of 
cytokine signalling 1 (SOCS1), an inhibitor of STAT1, 4, 
and 5, miR155 plays an unique role in the development 
of Th1, Th2, and Treg cells and conversely in the 
suppression of Th17 differentiation. Targeting of 
PIAS3, an antagonist of STAT3, miR301 influences 
Th17 expansion[78]. Interestingly, the miR146a and 
miR155 are induced by toll-like receptors, well-known 
bacterial sensors, suggesting a critical involvement 
of micro-organisms[79]. Moreover, NOD2, a bacterial 
sensor closely linked to the pathogenesis of Crohn’
s disease, induces miR29 resulting in downregulation 
of IL-23 secretion by dendritic cells through targeting 
of IL-12p40 and IL-23p19. This, in turn, was shown to 
suppress RORγt expression in the DSS mouse model of 
colitis[80]. 

In activated T cells, miR-210, which targets HIF-1, 
is upregulated 100 fold. This is especially notable in 
Th17 cells, resulting in decreased HIF-1α expression. 
Deletion of Mir210 promotes Th17 differentiation 
under hypoxic conditions. In experimental colitis, 
miR210 reduced the abundance of Hif1a transcripts 
and the proportion of cells that produced inflammatory 
cytokines resulting in decreased disease severity[81]. 
Induced by natural and environmental ligands of the 

aryl hydrocarbon receptor, the miR132/212 cluster 
promotes Th17 development[82]. The mechanisms of 
Th plasticity in aryl hydrocarbon receptor signalling will 
be described in the next section of this review. 

Targeting EST1 which is a negative regulator of 
Th17 cells, miR326 is critical for Th17 differentiation. 
Furthermore, miR10, which is selectively expressed 
in Treg and induced by TGF-β signalling together 
with retinoic acid, can limit Th17 differentiation and 
furthermore can convert conventional Th cells into 
iTreg. The contribution of this miRNA to Treg stability 
is highly dependent on Foxp3 expression yet not 
responsible for Foxp3 induction[78]. A regulator of the 
suppressive activity of Treg cells, miR-126 leads to 
enhanced Foxp3 expression by targeting PIK3R2, a 
regulatory component of PI3K which downregulates 
Foxp3 induction[83]. The cluster of miR17-92, a complex 
of 6 miRNAs, influences Treg function in vitro resulting 
in the generation of IL-10 secreting Foxp3+ T cells. 
Although miR17 specifically targets TGF-β receptor Ⅱ 
and Creb1, the targets of other parts of this cluster are 
still unknown[78].

Interestingly, deletion of critical compounds for 
miR signalling, such as DICER or DROSHA which are 
found in the micro RNA biogenesis pathways, showed 
that Treg-specific micro RNA expression is required 
to suppress T effector cells and maintain tolerance, 
suggesting that lack of Treg-specific miR results in 
immune-dysregulation[78]. 

Since miRs directly regulate the expression of 
many genes essential to Treg and Th17 subsets, it is 
highly likely they contribute to Th17-Treg plasticity. 
However, this exciting field is still in its infancy and 
further studies are undeniably required. 

MicroRNA which influence Th17 development and 
plasticity are summarised in Table 3.

Aryl hydrocarbon receptor (unique mechanistic role of a 
receptor with dual functions)
The AhR first came to attention1970-80s[84,85] as a 
receptor for a recognized carcinogen, 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD). This receptor is 
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Table 3  MicroRNAs influencing 17 secreting helper T development and plasticity

MicroRNA Inducer Target Effect Ref.

miR10 TGF-β Bcl-6 Limit Th17, convert Th cells into Treg [78,83]
miR17-92 cluster Creb1, TGF-βRII, 

KZF4 (miR17), PTEN (miR19)
Accumulation of antigen-specific iTreg development, IL-10 production, 

and possibly Treg cell migration
[78,83]

miR29 NOD2 IL-12p40, IL-23p19 Inhibit IL-23R signalling [80]
miR126 PIK3R2 Treg-mediated Immunosuppression [83]
miR132/212 cluster TCDD, FICZ Bcl-6 Enhance Th17 development via AhR pathway [82,83]
miR146a TLR2-5 STAT1 Block Th1 development [78,79]
miR155 TLR2-4, TLR9 SOCS1 Unleash STAT1, 4, and 5 signals, and promote Th1, Th2, and Treg [78,79]
miR210 HIF-1 (counter regulator) Control Foxp3 expression [81,83]
miR301 PIAS3 Unleash STAT3 signal, and generate Th17 [78]
miR326 EST-1 Critical for Th17 development [78]
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a ligand-activated transcription factor, which is 
responsible for the regulation of several xenobiotic 
response genes, such as the cytochrome P450 
family[86]. Soon, attention shifted to the contribution 
of this receptor to oncogenesis via the suppression of 
immune-surveillance in response to TCDD, suggesting 
a TCDD-induced immune regulatory function of AhR 
pathways[87]. Later, 6-formylindolo [3,2-b] carbazole 
(FICZ) was recognised as an endogenous ligand of 
AhR; however the function of the receptor bound 
to FICZ was not the same as that bound to TCDD, 
suggesting that this receptor has ligand specific 
functions[88]. In regard to T cell polarization, Quintana 
et al[89], discovered that activation of the AhR with 
TCDD leads to the generation of Tregs, and in the 
same issue of Nature, Veldhoen et al[90], reported 
alternative activation with FICZ leading to Th17 cell 
differentiation. The effect on Th17 generation has 
been confirmed by subsequent studies in vitro and in 
vivo[91,92], while the influence on Treg generation has 
been more controversial[93]. Recently, Mezrich et al[94], 
showed evidence for a missing link in AhR-derived 
Treg generation in that kynurenine, a metabolite in 
the indoleamine 2,3-dioxygenase (IDO) dependent 
tryptophan degradation pathway, is a key ligand of 
AhR[94,95]. IDO is an enzyme known to suppress effector 
T cells and is expressed in regulatory plasmacytoid 

dendritic cells in response to IFN-γ. This kynurenine 
bound AhR generates Treg via influencing the TGF-β 
signalling pathway[94]. Furthermore, Moura-Alves et 
al[96], has reported that AhR binds pathogen-associated 
molecular patterns (PAMPs), regulating immunity in 
response to bacteria. Although this observation was 
limited to myeloid and epithelial cells from lung in a 
murine infectious model, there is a possibility that 
bacterial activation of AhR may modulate development 
of Th subsets in a complex bacterial environment, such 
as the digestive tract. 

Taken together one can speculate that a unique 
function of AhR may be to contribute to plasticity 
between the Treg and Th17 subsets via differential 
binding to environmental or physiological ligands 
including bacteria-derived metabolites and PAMPs. 

Figure 2 illustrates the contributing factors to the 
plasticity between Treg and Th17. 

Histone methylation (monitoring the characteristics of 
plasticity)
Histone modifications including acetylation, methy-
lation, and phosphorylation, are associated with gene 
expression or repression via alternations in chromatin 
structure[77]. In regard to Th1, Th2 and Th17 subset 
development, trimethylation of lysine 4(H3K4me3) and 
lysine 27(H3K27me3) play important roles in activation 
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Figure 2  Factors influencing the plasticity between Treg and 17 secreting helper T subsets. Cytokines and growth factors (shown in blue letters) may trigger 
transdifferentiation of the pre-committed Foxp3 expressing Treg population to RORc expressing cells. Micro RNAs (miR, shown in red letters) play a pivotal role 
in differentially regulating Treg/Th17 plasticity. Transcription factors (aqua ovals) direct the plasticity by positively or negatively controlling Foxp3 and/or RORc 
expression. The aryl hydrocarbon receptor (AhR, green circle) can promote distinct differentiation pathways in response to two pathway-specific ligands (TCDD and 
FICZ, Green circles) resulting in either augmentation of Foxp3 or RORc, respectively. Th17: 17 secreting helper T; FICZ: 6-formylindolo [3,2-b] carbazole; TCDD: 
Tetrachlorodibenzo-p-dioxin; FICZ: Formylindolo [3,2-b] carbazole; AhR: Aryl hydrocarbon receptor; Treg: Regulatory T cells.
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and repression, respectively, of gene expression 
downstream of transcription factors specific to Th 
subsets. Thus, monitoring H3K4me3 and H3K27me3 
status can visualize the potential for plasticity in T cell 
subsets.

 H3K4me3 marks the signature cytokine genes 
(Ifng for Th1, Il4 for Th2, Il17a) within the Th17 
subset while repressive H3K27me3 is found on Th17 
signature cytokine genes in Th1 (Il4, Il17a), Th2 
(Ifng, Il17a) and Th17 (Il4, Ifng), suggesting lineage 
commitment to these particular subsets within these 
cells. Interestingly however, trimethylation on some 
transcription factor genes is bivalent (both H3K4 
and H3K27) suggesting an element of reversibility 
in epigenetic status, particularly in Th17 cells. In 
these cells it is possible to find bivalent methylation 
in the Th1 transcription factor Tbx21 and Th2 
transcription factor Gata3, in addition, Foxp3 may 
remain unmethylated suggesting a “neutral” state. 
Thus, histone methylation states may help explain 
why Th17 cells can swing to other subsets more easily 
than other T cell subsets[97-99]. Cytokines regulate 
the trimethylation status of Th17, resulting in subset 
conversion and plasticity. Also, the universal bivalent 
status of Tbx21 in all Th subsets except Th1, where 
you have only permissive H3K4me3, explains why 
plasticity towards the Th1 subset is dominant[99]. Thus, 
monitoring trimethylation status of H3K4 and H3K27 
is useful in predicting the potential for, and direction of 
Th cell plasticity.

A histone modifying enzyme, JMJD3 is a histone 
H3K27 demethylase[100]. Li et al[101], reported that 
JMJD3 ablation promoted Th cell differentiation into 
Th2 and Th17 cells in the small and large intestines, 
and inhibited T-cell differentiation into Th1 cells in vitro 
and in a Th1-dependent colitis model. JMJD3 deficiency 
also restrains plasticity of Th2, Th17 and Treg cells 
towards Th1 cells. The skewing of T-cell differentiation 
is concomitant with changes in the expression of key 
transcription factors and cytokines via changes in 
H3K27me3 and H3K4me3 levels[101].

TH17 PLASTICITY IN CHRONIC 
INFLAMMATORY DISEASES INCLUDING 
IBD
IFN-γ+ IL-17+ double expressing cells are considered a 
cross-over transition of Th17 into Th1 lymphocytes[102]. 
This cell population represents an efficient local 
host defense system which shifts host defense from 
extracellular pathogens to intracellular microbial 
infections[103] and may contribute to autoimmune 
pathogeneses in both mouse models and in human 
diseases[104,105]. Globig et al[106], suggested that this 
population is indeed a subpopulation of Th17 cells 
and may be involved in IBD pathogenesis of both CD 
and UC. Interestingly, Weaver and colleagues recently 
have provided evidence that Th17 cells can act as 

precursors for IFN-γ secreting Th1 cells in a mouse 
of colitis, showing the indispensability of Th17/Th1 
plasticity in the pathogenesis of colitis[21].

Likewise, IL-17+ Foxp3+ double expressing CD4+ 
T cells may differentiate into Th17 cells under pro-
inflammatory conditions such as IL-1β, IL-6, IL-21, 
IL-23 and TGF-β+, having as yet largely unknown 
consequences for human disease initiation or pro-
gression[107]. On the other hand, plasticity from Th17 
to Treg has not been frequently reported. However, a 
recent study from Yale University, suggests that this 
can in fact occur in the context of intestinal immune 
responses. According to their findings, Th17 cells 
generated during bacterial infection can be converted 
into IL-10high, Foxp3lo Tr1-like regulatory T cells. This 
was dependent on TGF-β1 and could be enhanced in 
vitro using an AhR ligand, FICZ[108]. This suggests that 
Th17 cells may alter their inflammatory status during 
infection, thus quenching inflammation and suggests 
possible avenues via which this mechanism could be 
harnessed therapeutically[108].

The Th17-promoting cytokine, IL-23 is known 
to play an essential role in driving intestinal inflam-
mation. This cytokine also plays an inhibitor role 
in augmentation of intestinal iTreg generation[109]. 
Furthermore, IL-23 together with IL-12 signalling 
promotes IFN-γ secretion from Th17 in intestine, 
leading Th17/Th1 plasticity[110]. IL-23 signalling 
pathway is considered as a plasticity initiator in regard 
of Th17 subset via decreasing Foxp3 expression and 
assisting increased IFN-γ secretion.

In 2011, a hallmark study of Hovhannisyan et 
al[111] showed evidence for Treg/Th17 plasticity in IBD 
by showing the presence of IL-17 producing, Foxp3 
expressing Th cells in inflamed intestinal mucosa from 
Crohn’s disease patients. Importantly, this population 
showed suppressor activity in vitro. We have gone 
on to demonstrate the presence of this unique T cell 
subset in peripheral blood from IBD patients[60] and 
have found evidence for several types of plasticity 
including Treg/Th17, Th1/Th17 and Th22/Th17 within 
the lamina propria of lesions from IBD patients[112].

CONCLUSION
Plasticity between Treg and Th17 likely occurs in the 
context of dynamic changes in the inflammatory 
milieu. Thus, pro-inflammatory stimuli may promote 
conversion of immune-suppressive regulatory T cells 
into pro-inflammatory Th17 cells, while resolution of 
inflammation may trigger or even require the alternate 
shift from Th17 to Treg. This concept is just becoming 
appreciated and requires further study to correlate 
both causes and outcomes. Targeting plasticity may 
offer avenues to pharmacologically restore the Th17/
Treg balance in the intestine for therapeutic benefit[113]. 
In addition, targeting plasticity may help improve 
upon future therapies. Clinical trials of Treg therapy of 
Crohn’s disease failed[114] perhaps in part due to Treg 
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instability. Further understanding of Treg plasticity may 
help to augment Treg therapy in the future. 

Many studies have implicitly suggested the 
possibility of plasticity during their experiments and 
observation of inflammatory processes. It is clear 
however that several pathways give rise to the 
heterogeneous populations referred to as Th17 and 
Treg in the intestine. The field is in part limited due to 
constraints inherent to the techniques used to analyse 
these cells. Most investigators rely upon multicolor flow 
cytometry, requiring the precise selection of surface 
and intracellular markers and setting of conditions 
and controls in order to provide limited functional and 
expression data. New technologies look to overcome 
these technical issues as well as to enhance the 
depth of analysis. Examples include deep immune-
phenotyping using CYTOF 2 mass spectrometry which 
allows the analysis of over 100 parameters at the 
single cell level without dealing with spectral overlap, 
alone or in combination with single cell transcriptomics.

To conclude, unravelling the complexity that 
underlies plasticity between Th17 and Treg cells may 
be key to understanding the intricate pathogenesis 
of T cell-mediated immune disorders, such as IBD. 
However, novel approaches and their application to 
human IBD will be required to reach this objective. 
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