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Abstract
AIM: To construct a global “metabolic phenotype” of 
pancreatic ductal adenocarcinoma (PDAC) reflecting 
tumour-related metabolic enzyme expression.

METHODS: A systematic review of the literature was 
performed using OvidSP and PubMed databases using 
keywords “pancreatic cancer” and individual glycolytic 
and mitochondrial oxidative phosphorylation (MOP) 
enzymes. Both human and animal studies investigating 
the oncological effect of enzyme expression changes 
and inhibitors in both an in vitro  and in vivo  setting 
were included in the review. Data reporting changes in 
enzyme expression and the effects on PDAC cells, such 
as survival and metastatic potential, were extracted to 
construct a metabolic phenotype. 

RESULTS: Seven hundred and ten papers were initially 
retrieved, and were screened to meet the review 
inclusion criteria. 107 unique articles were identified 
as reporting data involving glycolytic enzymes, and 
28 articles involving MOP enzymes in PDAC. Data 
extraction followed a pre-defined protocol. There is 
consistent over-expression of glycolytic enzymes and 
lactate dehydrogenase in keeping with the Warburg 
effect to facilitate rapid adenosine-triphosphate 
production from glycolysis. Certain isoforms of these 
enzymes were over-expressed specifically in PDAC. 
Altering expression levels of HK, PGI, FBA, enolase, 
PK-M2 and LDA-A with metabolic inhibitors have shown 
a favourable effect on PDAC, thus identifying these as 
potential therapeutic targets. However, the Warburg 
effect on MOP enzymes is less clear, with different 
expression levels at different points in the Krebs cycle 
resulting in a fundamental change of metabolite levels, 
suggesting that other essential anabolic pathways are 
being stimulated. 

CONCLUSION: Further characterisation of the PDAC 
metabolic phenotype is necessary as currently there 

SYSTEMATIC REVIEWS

3471 March 28, 2016|Volume 22|Issue 12|WJG|www.wjgnet.com

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.3748/wjg.v22.i12.3471

World J Gastroenterol  2016 March 28; 22(12): 3471-3485
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.



further glycolysis reactions. The energy released per 
glucose molecule in anaerobic respiration is only 2 ATP; 
per mole, this is 18-fold less than aerobic respiration 
but at a much faster rate of several hundred times[4]. 
The ratio of MOP and anaerobic fermentation is 
reduced in cancer cells[5-7], such as the Henrietta Lacks 
(HeLa) cervical cancer cell line where approximately 
80% of glucose uptake undergoes glycolysis, and only 
5% enters the Krebs cycle[8]. Warburg proposed that 
this “morphological inferiority” would change highly 
differentiated cells into undifferentiated cells that can 
divide, grow and lead to cancer. 

Hypoxia is one stress factor in the tumour micro
environment that is thought to lead to this switch[9]. 
Hypoxia-inducible factor 1 (HIF-1) is an important 
regulator of cellular oxygen homeostasis[10], but is also 
up-regulated in many cancers, including pancreatic, 
gastric, lung, breast and hepatic cancers[11-14]. HIF-1 up-
regulates most glycolytic enzymes, including hexokinase 
Ⅱ, the first enzyme in the glycolysis pathway[15], and 
reduces MOP by up-regulating pyruvate dehydrogenase 
kinase I, responsible for inactivating the pyruvate 
dehydrogenase complex that subsequently stops 
pyruvate decarboxylation for entry into the Krebs 
cycle[16]. HIF-1 also up-regulates other genes including 
vascular endothelial growth factor (VEGF, a known 
promoter of tumour angiogenesis[17]) and the glucose 
transporter protein, Glut-1, facilitating glucose influx[11].

The Warburg Effect is likely a result of mutations in 
oncogenes and tumour suppressor genes with several 
pathways contributing to this “metabolic switch”[18]. 
This study undertakes a systematic literature review 
of changes in enzyme expression and the resulting 
metabolite levels in both the glycolytic and MOP 
pathways in PDAC in order to construct a ‘metabolic 
phenotype’ of this disease. New potential therapeutic 
targets can be identified within this phenotype for 
further study as novel treatments for PDAC.

MATERIALS AND METHODS
Literature search strategy
A systematic review of the literature was performed 
using OvidSP and the PubMed database. Search 
terms for individual glycolytic enzymes (hexokinase, 
phosphoglucose isomerase, phosphofructokinase, 
aldolase, triosephosphate isomerase, glyceraldehyde-
3-phosphate dehydrogenase, phosphoglycerate 
kinase, phosphoglycerate mutase, enolase, pyruvate 
kinase and lactate dehydrogenase) and Krebs 
cycle enzymes (pyruvate dehydrogenase, pyruvate 
carboxylase, citrate synthase, aconitase, isocitrate 
dehydrogenase, α-ketoglutarate dehydrogenase, 
succinyl-CoA synthase, succinic dehydrogenase, 
fumarase and malate dehydrogenase) were combined 
with key words “PC” and the Boolean “AND” operator 
(e.g., “Hexokinase and PC”). Human and animal in 
vivo studies, as well as in vitro studies involving cell 
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are few clinical studies and no successful clinical trials 
targeting metabolic enzymes.
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Core tip: Our systematic review constructs a global 
“metabolic phenotype” of pancreatic ductal adeno
carcinoma (PDAC) reflecting tumour-related metabolic 
enzyme expression. We show that the Warburg effect 
is consistently demonstrated, with the over-expression 
of glycolytic enzymes and lacate dehydrogenase to 
facilitate rapid adenosine-triphosphate (ATP) production 
from glycolysis. We also show that the Warburg effect 
on mitochrondial oxidative phosphorylation in PDAC is 
more varied and not solely focused on ATP production, 
but also to stimulate other anabolic pathways for the 
purposes of tumourigencity. The metabolic phenotype 
provides an overview essential to elucidating the 
pathological changes that occur in PDAC. 
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INTRODUCTION
Pancreatic cancer (PC), typically ductal adenocarcinoma 
(PDAC), is the 13th most common cancer[1] contributing 
to 250000 deaths annually worldwide and accounting 
for 3.6% of cancer deaths and 0.5% of all deaths[2]. 
Despite advances in diagnostic technology and 
treatment modalities, there has been no significant 
improvement over the last three decades, with five-
year survival remaining below 7%. Recent progress in 
genetics has led to a renewed interest in the Warburg 
Effect described in 1956 by German physiologist Otto 
Warburg[3] who postulated that carcinogenesis was the 
result of “irreversible injuring of respiration”. Eukaryotic 
cells utilise glycolysis to derive energy, where glucose 
is broken down over a series of enzymatic steps to 
produce adenosine-triphosphate (ATP) and pyruvate. 
In aerobic respiration, pyruvate is oxidised in the 
Krebs cycle to produce ATP and NADH (nicotinamide 
adenine dinucleotide hydride). Mitochondrial oxidative 
phosphorylation (MOP) then occurs via a series of 
redox reactions to generate more ATP from NADH. 
Overall, between 30 and 36 ATP are generated from 
1 molecule of glucose. In the absence of an adequate 
oxygen supply, anaerobic fermentation occurs, 
reducing pyruvate to lactate and converting NADH into 
NAD+ (nicotinamide adenine dinucleotide) for use in 



lines, were included. The initial search yielded 710 
results, and after excluding review articles, non-
cancer articles and those with non-relevant content, 
367 articles were analysed. A further 217 articles 
describing pancreatic cancers of histology other than 
PDAC, such as carcinoid and other neuroendocrine 
tumours were excluded. Finally, duplicate articles 
(24) were identified and excluded. One hundred and 
twenty-six publications were identified as meeting the 
inclusion criteria of this systematic review looking at 
the metabolic phenotype of PDAC (Figure 1). Of these, 
107 unique articles describe glycolytic enzymes (Table 
1) and 28 unique articles describe the MOP pathway 
(Table 2) in PDAC.

Eligibility, data extraction and analysis
Studies describing the biochemical mechanisms 
involved in the physiological, onco-pathological or 
manipulation of metabolic pathways and/or individual 
metabolic enzymes in PDAC were included. For quality 
assurance, information was extracted following a 
predefined protocol from the text of each article, 
including changes in expression of metabolic enzymes 
and/or in the metabolic pathways and their overall 
effect on normal and PDAC phenotype. The effect on 

cell viability and growth was also noted, particularly 
if a metabolic inhibitor was used, as was evidence 
implicating known oncogenic pathways. The data 
were collated (Tables 1 and 2) using Microsoft Excel 
(Microsoft, Richmond, United States) for analysis. A 
PDAC “metabolic phenotype” was constructed using 
these data (Tables 3-5), and the results presented as 
the hexose and triose stage of glycolysis, anaerobic 
fermentation and aerobic respiration (Krebs Cycle).

RESULTS
Hexose stage of glycolysis
Hexokinase: Hexokinase (HK) is the first enzyme 
in glycolysis, and exists as 4 isoforms (HKI - Ⅲ, and 
glucokinase). It phosphorylates glucose into glucose-6-
phosphate (G6P), and represents the rate-limiting step 
in glycolysis[19]. G6P is transported into mitochondria 
and immediately used for ATP production via glyco
lysis, or for nucleic acid synthesis via the pentose-
phosphate shunt[20]. Three HK isoforms (Ⅰ, Ⅱ and 
Ⅲ) are competitively inhibited by 2-Deoxy-D-glucose, 
whereas 3-bromopyruvate (3-BP) selectively inhibits 
HK-Ⅱ[21].

Several studies have shown HK to be over-expressed 
in PDAC[22,23] with expression levels varying by tumour 
histology. Ductal tumours, for example, take up more 
glucose and express HK-Ⅰ and Ⅱ more than acinar 
variants[24]. Direct inhibition with 3-BP reduces cell 
survival and increase necrosis in PDAC[25,26] and Panc-1 
cell lines[27]. Treatment of Panc-1 with 3-BP also affects 
cell signalling, significantly reducing the expression 
of the GTPase signal transduction KRas (Kirsten rat 
sarcoma) pathway, as well as the Akt (protein kinase B) 
and mTOR (mammalian target of rapamycin) pathways, 
to induce cell necrosis[27]. Inhibiting the mTOR pathway 
in Panc-1 using everolimus reduces the expression of 
HK-Ⅱ and glycolysis, which inhibits cell proliferation and 
induces apoptosis[28]. 

The up-regulation of HK is partly due to the HIF-1 
pathway in hypoxic conditions[29]. An increase in 
extracellular glucose is responsible for increasing HIF-1 
expression (and subsequently intracellular ATP) whilst 
inhibiting mitochondrial activity in MiaPaCa2 cells[30]. 
An interaction between insulin and HIF-1 has also been 
suggested[31], with type 2 diabetes mellitus associated 
with the development of PDAC in patients who have 
a particular HK Ⅱ (genotype R844K) or glucokinase 
(ICS1+9652C>T) variant[32,33]. Clinically, a high level 
of HK-Ⅱ expression is associated with longer survival, 
with different variants of HK Ⅱ (such as N692N) 
associated with differing clinical outcomes[33].

Phosphoglucose isomerase: Phosphoglucose iso
merase (PGI) reversibly catalyses glucose-6-phosphate 
to fructose-6-phosphate. Previously identified as the 
autocrine motility factor (AMF)[34], PGI binds to the 
gp78/AMFR receptor[35] to stimulate cell migration and 
metastasis[36]. Under hypoxic conditions, PGI expression 

3473 March 28, 2016|Volume 22|Issue 12|WJG|www.wjgnet.com

710 
Potentially relevant articles 
identified and screened for 

retrieval

367
Articles on metabolic phenotype 

of pancreatic cancer

126
Unique articles included in the 

systematic review

107
Articles on glycolytic enzymes 

in pancreatic cancer

28
Articles on krebs cycle enzymes 

in pancreatic cancer

343 Excluded
   11 Review articles
   19 Non-cancer topics
   304 Not relevant content
   9 Non-English articles

217 Excluded
   51  Neuroendocrine tumours
   166 Insulinomas

24 Duplicate articles excluded

Figure 1  Preferred reporting items for systematic reviews and meta-
analyses flowchart of articles found and screened in the systematic review.
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- a protein involved in cell adhesion - also occurs. 
HIF-1 expression in PDAC can be inhibited by 
3-(5’-hydroxymethyl-2’-furyl)-1-benzyl indazole, 
which subsequently reduces PGI mRNA expression; 
this has the effect of reducing overall cell viability 
and increasing apoptosis rates[40,41]. Herceptin has 

is regulated in part by the HIF pathway[29,37] and has 
been found to be over-expressed in the Capan-2 
cell line. PGI increases the metastatic potential of 
PDAC[38] and MiaPaCa-2 cells transfected with PGI 
grow more aggressively with an increase in tumour 
mass[39]. Down-regulation of E-cadherin expression 
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Table 1  Systematic review of the literature involving glycolytic enzymes and pancreatic ductal adenocarcinoma

Glycolytic enzyme In vitro  studies In vivo/clinical studies

Ref. Summary Ref. Summary

Hexokinase (HK) [23-30,32,33,153-155] Induced by hypoxia. Higher expression 
in PDAC than acinar cells. Suppresses 

mitochondrial ATP production

[31,153,156,157] HK-2 expression suggests an 
unfavourable clinical outcome

Phosphoglucose 
isomerase (PGI)

[29,38-40,158] Stimulates cell migration and metastatic 
potential. Induced by hypoxia. β-1 

integrins are stimulated by PGI 

[39] Over-expression contributes to a more 
aggressive PDAC phenotype

Phosphofructokinase 
(PFK)

[11,48] Upregulated in PDAC epithelia. 

Aldolase [49,52,54] Overexpressed in PDAC. Induced by 
hypoxia. Delays apoptosis.

[52,53] Highly expressed in PDAC where 
HIF-1a is constitutively expressed. 

Inhibition prolongs survival
Triosephosphate 
isomerase (TPI)

[55,56] Overexpressed in PDAC

Glyceradehyde-
3-Phosphate 
Dehydrogenase (G3PD)

[27,50,55,57,58,61,159] Overexpressed in PDAC. Increases 
PDAC metabolic activity, and disrupts 

downstream apoptotic capases

[50,58] Increased expression. Possible 
biomarker candidate.

Phosphoglycerate 
kinase (PK)

[62-66,160] Overexpressed in PDAC. Angiogenesis 
promoter

[63] No significant increase in expression in 
a murine model, but fivefold increase 

in activity.
Phosphoglycerate 
mutase (PGM)

[67,68] M-isoform is under-expressed and 
B-isoform is over-expressed in murine 

models
Enolase [55-58,69-83] Overexpressed in PDAC. Promotes cell 

migration and metastasis. Biomarker 
candidate

[58,69,76,77,161-163] Increased expression. Induced 
antibodies to enolase-alpha correlates 

to a better outcome
Pyruvate kinase (PK) [108,109,117,121,122,

157,164-166]
Overexpressed in PDAC. Dimeric form 

favours synthesis; Tetrameric form favours 
energy production; PK-M2 used as a 

tumour marker

[110,112,115,119,120,
157,167,168]

M2 isoform levels correlate to tumour 
metastasis. HK-2 and M2 expression 

indicates an unfavourable clinical 
outcome

Lactate dehydrogenase 
(LDH)

[28,89,123-138,164,
169-179] 

Overexpressed in PDAC. Down regulated 
by graviola

[153,180-183] Down regulated by graviola to reduce 
tumorigenicity and metastasis

HIF: Hypoxia-inducible factor; PDAC: Pancreatic ductal adenocarcinoma.

Table 2  Systematic review of the literature involving Krebs cycle enzymes and pancreatic ductal adenocarcinoma

Glycolytic Enzyme In vitro/In vivo/clinical studies

Ref. Summary

Pyruvate dehydrogenase [30,109,131,132,140,154,164,170,171,173,177,
179,180,184-188]

Inhibition of pyruvate dehydrogenase kinase (the activity of which is 
regulated by pyruvate dehydrogenase) stimulates the Krebs cycle and 

reverses the Warburg effect.
Pyruvate carboxylase [141] Over expressed in human and murine PDAC
Citrate synthase [67,124,179] Over expressed in PDAC. Activity of citrate synthase also higher in PDAC 

compared to normal tissue
Aconitase [67] Mitochrondrial isoform under-expressed
Isocitrate dehydrogenase [67,158,189,190] Regulated by HuR (an RNA-binding protein) in PDAC. 
a-ketoglutarate dehydrogenase [67,187] Marginally increased in murine PDAC
Succinyl-CoA synthetase [67] Reduced expression
Succinic dehydrogenase [67,128] Over expressed in human and murine PDAC
Fumarase [30] HIF-1a increases fumarate by inhibiting distal mitochondrial metabolisms
Malate dehydrogenase [50,64,67] Over expressed in human and murine PDAC. Possible candidate 

biomarker

HIF: Hypoxia-inducible factor; PDAC: Pancreatic ductal adenocarcinoma.
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been shown to inhibit the expression of PGI and 
potentiate the effects of other PGI inhibitors[42]. 
Beta-1 integrins (receptors that facilitate binding 
between neighbouring cells) are stimulated by PGI, 
up-regulating cell adhesion, invasion and metastasis 

possibly by a signalling pathway involving protein 
kinase C[43]. Beta-1 integrins have been shown to be 
highly expressed in several PDAC cell lines[44] which 
may explain its high metastatic potential. PGI has also 
been shown to regulate the expression of apoptotic 
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Table 3  Summary of changes in glycolysis in pancreatic ductal adenocarcinoma

Glycolytic enzyme Encoding gene Change in 
PDAC

Implicated 
pathways

Known inhibitors Inhibitor effect in PDAC

Hexokinase HIF 2-Deoxy-D-glucose
   Hexokinase Ⅰ 10q22 Up mTor
   Hexokinase Ⅱ 2p13 Up K-ras 3-BP[21]; Lonidamine, Everolimus Reduced PDAC survival/induces 

PDAC necrosis
   Hexokinase Ⅲ 5q35.2 - Akt
   Glucokinase 7p15.3-p15.1
Phosphoglucose Isomerase 
(also known as Autocrine 
Motility Factor)

19q13.1 Up HIF; 
Apoptosis

Insulin-like growth factor 
binding protein-3; Herceptin; 

3-(5'-hydroxymethyl-2'-furyl)-1-benzyl 
indazole

Reduces overall cell viability and 
increases apoptosis rates

Phosphofructokinase HIF Aurintricarboxylic acid[191] Inhibits fatty acid synthesis in rat 
hepatocytes   PFK-M (muscle type) 12q13.3 Down

   PFK-L (liver type) 21q22.3 Up
   PFK-P (platelet type) 10p15.3-p15.2 Up
Aldolase HIF 3-fluro-D-glucose; 4-fluro-D-glucose
   Aldolase-A 16p11.2 Up 3-[2-hydroxyethyl(methyl)amino]-2-

quinoxalinecarbonitrile 1,4-dioxide
Reduces PDAC proliferation and 

tumour volume
   Aldolase-B 5q22 Down
   Aldolase-C 17cen-q12 Up
Triose Phosphate Isomerase 12p13 Up 2-phosphoglycolate; D-glycerol-1-

phosphate[192]

Glyceraldehyde Phosphate 
Dehydrogenase

HIF; p53 Iodoacetate[27]; gossypol[21] Reduces cell survival and induces 
necrosis. No effect on K-ras

   GAPDHS 12p13 Up
   GAPDHS (testes-specific) 19q13.12
Phosphoglycerate Kinase HIF 1,3-bisphosphoglycerate[193]

   PGK1 Xq13.3 Up
   PGK2 6p12.3 ?
Phosphoglycerate Mutase p53 Inositol hexakisphosphate[194]

   PGM-B 1p31 Up
   PGM-M 4p14 Down
Enolase c-Myc Sodium fluoride[21]; D-tartonate; 

3-aminoenolpyruvate 2-phosphate[195]   ENO1 (alpha) 1p36.2 Up
   ENO2 (gamma, neuronal) 12.p13 Up
   ENO3 (beta, muscle) 17pter-p11 -
Pyruvate Kinase Tyrosine 

kinase
   Isoform PK-M1 (liver/RBC) 1q21 - Akt/c-Myc
   Isoform PK-M2 (muscle) 15q22 Up L-phospholactate; M2-PK-binding 

peptide aptamers[196]
Anti-cancer effects in animal models

      Dimeric form
      Tetrameric form

HIF: Hypoxia-inducible factor; PDAC: Pancreatic ductal adenocarcinoma.

Table 4  Summary of changes in anaerobic fermentation in pancreatic ductal adenocarcinoma

Glycolytic enzyme Encoding gene Change in 
PDAC

Implicated pathways Known inhibitors Inhibitor effect in PDAC

Lactate dehydrogenase Oxamate Inhibits PDAC growth
   Lactate dehydrogenase A 11p15.4 Up c-Myc; mTor Aryl-substituted N-hydroxyindole-2-

carboxylates; Everolimus (by blocking the 
mTor pathway[28])

Inhibits PDAC growth

   Lactate dehydrogenase B 1p12.2-p12.1 Up
   Lactate dehydrogenase C 11p15.1 -

PDAC: Pancreatic ductal adenocarcinoma.

Chan AKC et al . Metabolic phenotype of PC



protease activating factor 1 (Apaf-1) and caspase-9 
genes involved in apoptosis[45]. 

Phosphofructokinase: Phosphofructokinase (PFK) 
phosphorylates fructose-6-phosphate into fructose 
1,6-bisphosphate[19]. It has been referred to as the 
“pacemaker of carbohydrate metabolism” as it also 
regulates a wide range of sugars, including fructose and 
galactose that can feed into glycolysis[21]. The activity 
of PFK is regulated by fructose-2,6-bisphosphate, 
which itself is regulated by 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatases, encoded by 4 
genes (PFKFB1-4)[46]. PFKFB expression (particularly 
isoenzyme 3 which exhibits the highest kinase/
bisphosphatase activity) is altered in lung, gastric and 
pancreatic cancers[11,47,48]. Hypoxia also up-regulates 
the expression of PFKFB-3 and -4 in Panc-1 cells via 
the HIF-1α dependent pathway[11]. 

Fructose bisphosphate aldolase: Fructose bispho
sphate aldolase (FBA) splits fructose 1,6-biphosphate 
into glyceraldehyde-3-phosphate (G3P) and dihy
droxyacetone phosphate. Three different isoenzymes 
exist (A, B and C) and are encoded by 3 different 
genes[21]. FBA-A is overexpressed in PDAC and 
pancreatic cystadenoma[49], and proteome analysis 
of murine PDAC has also shown an overexpression of 
FBA-C[50]. Overexpression of FBA delays apoptosis, as 
does the addition of the end product G3P, by suppressing 
caspase-3 activity[51]. Under hypoxic conditions, PDAC 
cells expressing HIF-1 also express FBA-A and Glut-1 
(glucose transporter 1) more highly, making the cell 
more resistant to apoptosis[52]. The hypoxic cytotoxin 

3-[2-hydroxyethyl(methyl)amino]-2-quinoxaline
carbonitrile 1,4-dioxide inhibits the expression of FBA-A 
together with HIF-1, which subsequently reduces 
the proliferation of PDAC cells in vivo and reduced 
tumour volumes in models of in vitro murine cancer[53]. 
Suppression of HIF-1 also reduces the overexpression 
of FBA-A in PDAC and subsequently reduces in vivo 
tumorigenicity[54].

Triose phosphate isomerase: Triose phosphate 
isomerase (TPI) reversibly isomerises dihydroxyacetone 
into G3P. TPI is overexpressed in pancreatic cancer 
in several studies[55,56], but no correlation, however, is 
found between TPI-1 expression and tumour staging.

Triose stage of glycolysis
Glyceraldehyde phosphate dehydrogenase: 
Glyceraldehyde phosphate dehydrogenase (GAPDH) 
reversibly catalyses G3P into 1,3-biphosphoglycerate, 
and is over-expressed in PDAC[50,55,57,58], as well as 
other adenocarcinomas such as prostate[59] and 
breast[60]. GAPDH and Glut transporter over-expression 
is thought to be partially responsible for an increase in 
PDAC metabolic capacity[61]. Inhibition with iodoacetate 
on Panc-1 cells reduces survival and induces necrosis[27] 
but interestingly, did not significantly reduce the 
induction of signalling pathways K-ras, Akt and mTOR, 
as seen with 3-BP. 

Phosphoglycerate kinase: Phosphoglycerate kinase 
(PGK) reversibly dephosphorylates 1,3-biphospho
glycerate into 3-phosphoglycerate, and is over-
expressed in human PDAC[62]. In contrast, a study 
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Table 5  Summary of changes in aerobic respiration in pancreatic ductal adenocarcinoma

Glycolytic Enzyme Encoding gene Change in 
PDAC

Implicated 
pathways

Known inhibitors Inhibitor effect in PDAC

Pyruvate dehydrogenase complex 11p13 HIF-1 Dichloroacetate (inhibits 
PDC regulator, pyruvate 
dehydrogenase kinase)

Stimulates Krebs Cycle and reverses 
Warburg effect; Reduces PDAC 

proliferation and viability
Pyruvate dehydrogenase Stimulator: Lipoic acid Reduces cancer cell viability
   Pyruvate dehydrogenase α Xp22.1 Down
   Pyruvate dehydrogenase β 3p21.1-p14.2 Down
Pyruvate carboxylase 11q13.4-q13.5 Up/down1 Avidin
Citrate synthase 12q13.2 Up Succinyl-CoA
Aconitase Flouroacetate
   Aconitase 1 (soluble) 9p21.1
   Aconitase 2 (mitochondrial) 22q13.2 Down
Isocitrate dehydrogenase
   ICD (soluble) 2q33.3
   ICD (mitochondrial) 15q26.1 Down
Oxoglurate (α-ketoglutarate) Dehydrogenase 7p14-p13 Up
Succinyl-CoA synthetase Down
Succinic dehydrogenase Up/down1

Fumarase  1q42.1 D-malic, trans-aconitic, 
citrate, glycine

Malate dehydrogenase
   MD (soluble) 2p13.3
   MD (mitochondrial) 7cen-q22 Up

1Under-expressed in animal PDAC. PDAC: Pancreatic ductal adenocarcinoma.
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involving hamster PDAC cell lines demonstrated no 
overall increase in expression levels, but did show a 
significant fivefold increase in PGK activity[63]. Clinically, 
its use as a diagnostic marker has been suggested 
due to its high antibody reactivity and high accuracy in 
distinguishing between cancer and non-cancer[64-66].

Phosphoglycerate mutase
Phosphoglycerate mutase (PGM) reversibly catalyses 
3-phosphoglycerate into 2-phosphoglycerate, and 
exists as two isoenzymes (M and B). Expression levels 
of PGM-M have been found to be under-expressed, 
and PGM-B over-expressed, in rat PDAC[67]. PGM 
expression is regulated by p53[68].

Enolase
Enolase reversibly catalyses 2-phosphoglycerate 
into phosphoenolpyuvate, and is over-expressed in 
PDAC, particularly α-enolase[55-58,69-72]. It is also seen 
in pancreatic atypical hyperplasia[73] and intraepithelial 
neoplasia[74]. Its presence on the PDAC cell surface 
allows the promotion of cell migration and metastasis, 
but also induces a strong T-cell response leading it to 
be recognised as a tumour antigen[69,75,76]. As such, 
an increase in circulating enolase autoantibodies has 
been observed[76]. Animal studies have also shown 
good humoral and cellular immune responses against 
PDAC following inoculation with an α-enolase-encoded 
plasmid[77]. The resulting IgG response resulted in 
slower tumour progression and significantly improved 
survival. Several case reports have also clearly 
shown an over-expression of γ-enolase in serous 
microcystic adenomas[78,79], and solid-papillary[80], 
solid-pseudopapillary[81-86], solid-cystic papillary[87-102], 
and serous cystic[103,104] pancreatic tumours as well as 
PDAC[71]. 

Pyruvate kinase
Pyruvate kinase (PK) is the last enzymatic step in 
glycolysis, dephosphorylating phosphoenolpyruvate 
into pyruvate and converting ADP to ATP. Pyruvate 
then fuels the Krebs cycle. PK exists as 2 isoforms 
(M1 and M2); PK-M2 expressed exclusively in cancer 
cells (favouring anaerobic respiration) whereas the 
PK-M1 is predominately expressed in normal cells 
(favouring increased oxidative phosphorylation)[50,105,106]. 
Expression of the oncogenic tyrosine kinase receptor 
pathways inactivate PK to disrupt the pathway between 
glycolysis and MOP to perpetuate the Warburg 
effect[107]. Furthermore, two forms of PK-M2 have been 
identified - a tetrameric form favouring ATP production 
and a dimeric form that channels glucose into synthesis. 
The hypoxic and acidified tumour microenvironment 
staved of glucose favours the dimeric form of PK-M2[108]. 
Inhibition of the Akt/c-Myc (myelocytomatosis) path
way inhibits the activity of PK-M2 to down-regulate 
glycolysis[109]. TLN-232/CAP-232 (amino acid peptides 
targeting M2-PK) has also been shown to have anti-

cancer effects in animal models, and clinical trials are 
underway to ascertain its effectiveness in pancreatic 
cancer[21].

Several studies have shown an increase in serum 
PK-M2 in patients with metastatic PDAC[110], and other 
pancreatic conditions such as chronic pancreatitis[111]. 
Its presence has also led suggestions that it should be 
used as a tumour marker for diagnosis, prognosis[112] 
and surveillance[113,114] in both pancreatic and other 
gastrointestinal cancers[115-117], particularly in combination 
with another marker, such as Ca19-9[118] or CEA[119], 
to increase its specificity value[120]. Surprisingly, PK-M2 
over-expression is not found immunohistochemically 
in premalignant or PDAC tissue samples[64,121]. It is 
also weakly expressed in some cell lines such as 
SK-PC-1[122].

Anaerobic fermentation - lactate dehydrogenase
Lactate dehydrogenase (LDH) reversibly catalyses 
pyruvate to lactate, and is a target gene of the c-Myc 
regulator[123]. There are five isoforms, with LDH-A 
being the primary and over-expressed isoform in 
PDAC[124-128], including cell lines Capan-1[129] and 
SW-1990[130]. Mass spectrometry studies on LDH from 
PDAC have shown differential methylation to the LDH 
from normal ductal cells[131]. PDAC LDH-A acetylation, 
which normally inhibits LDH-A and prepares it for 
lysosomal degradation is also reduced[132]. Forced 
expression and inhibition of LDH-A increases and 
reduces the rate of growth respectively[133]. The 
activity of LDH-A and subsequent lactate production 
can be inhibited by blocking the mTor pathway using 
everolimus. The transcription factor Forkhead box 
protein M1 (FOXM1) over-expresses LDH-A to increase 
tumorigenicity[134].

Other inhibitors of LDH-A, such as derivatives of 
aryl-substituted N-hydroxyindole-2-carboxylates, have 
also been shown to inhibit the growth of PDAC[135]. 
Oxidative stress and a subsequent reduction in ATP 
may be responsible for this inhibition[136]. Lactate in the 
PDAC microenvironment has also been shown to be 
immunosuppressive by directly inhibiting Natural Killer 
cells and preventing an innate response to tumour 
cells[137]. Clinically, a raised serum LDH levels can also 
be a poor prognostic indicator in PDAC[138].

Aerobic respiration - Krebs cycle
The pyruvate dehydrogenase complex (PDC) consists 
of pyruvate dehydrogenase (PDH), dihydrolipoyl 
transacetylase and dihydrolipoyl dehydrogenase, and 
is the first enzymatic reaction that converts pyruvate 
into acetyl Co-A for the Krebs cycle. PDC itself is 
regulated and inhibited by pyruvate dehydrogenase 
kinase (PDK). Three isoenzymatic forms of PDK have 
been found in eukaryotic cells, with PDK2 being the 
major form that regulates PDC[139]. Inhibition of PDK 
by dichloroacetate in Panc-1 cells has been shown to 
stimulate metabolism via the Krebs cycle and away 
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from glycolysis, with the effect of reducing Panc-1 
proliferation and viability[140]. 

Expression levels of other Krebs cycle enzymes 
are also changed in PDAC (Table 5). Malate dehydro
genase has been shown to be over-expressed in both 
human[64] and animal PDAC[50] cell lines, as has succinic 
dehydrogenase in mice PDAC[128], and pyruvate carbo
xylase[141]. The activity of citrate synthase was found 
to be higher in PDAC tissue than in normal pancreatic 
tissue by up to 20%[67]. The expression levels of 
mitochondrial citrate synthase and α-ketoglutarate 
dehydrogenase were found to be marginally increased in 
recent rat PDAC mRNA microarray studies by Yabushita 
et al[67]; pyruvate carboxylase, aconitase, isocitrate 
dehydrogenase, succinic dehydrogenase, succinic-CoA 
ligase and malate dehydrogenase expression were 
found to be reduced. Transcriptomic profiling from the 
same dataset also showed an increase in anaerobic 
glycolysis and nucleotide degradation and a reduction in 
Krebs cycle activity.

There is evidence that the mitochondrial oxidative 
phosphorylation (MOP) pathway can be used as a 
therapeutic target[142,143]. In glucose-limiting conditions, 
MOP inhibitors have been shown to be cytotoxic to 
Panc-1 cells. Momose et al[144] report that treatment 
with efrapeptin F (a fungal toxin that acts as a potent 
ATPase inhibitor) was cytotoxic to Panc-1 cells if 
they were cultured in nutrient-deficient media and, 
importantly, in glucose limiting conditions. Panc-1 
cells grown in nutrient-deficient media were found to 
have reduced levels of ATP, and were sensitive to MOP 
inhibitors, suggesting that mitochondrial oxidative 
phosphorylation contributes to intracellular ATP 
production.

DISCUSSION
This detailed overview demonstrates that the metabolic 
phenotype of pancreatic cells is altered in PDAC where 
the Warburg effect increases glucose utilisation to fuel 
the pathological metabolic requirements of neoplastic 
cells. Enzymes at almost every stage of glycolysis 
are over-expressed. The rate at which glucose is 
transported into cells is also increased, and it has 
long been known that an over-expression of glucose 
transporters (particularly subtypes Glut-1 and Glut-3 
in PDAC[145]) is associated with cancer progression 
and poor tumour prognosis[145-148]. Glut-1 expression 
in pancreas neoplasia correlates to tumour size 
and histological grading, from low grade PanIN 1A 
dysplastic lesions which are devoid of Glut-1, to PDAC 
where most cases showed some degree of GLUT-1 
expression[149]. Serous cystadenomas consistently 
exhibit Glut-1 expression[150]. With such differences 
in expression between normal and cancerous tissue, 
the Glut family represents a potential therapeutic 
target. 2-Deoxyglucose, a metabolic inhibitor of Glut, 
hexokinase and phosphoglucose isomerase, inhibits 
growth by as much as 59% in Panc-1 cells and over 

95% in MIAPaCa-2 after 2 d of treatment[151]. A similar 
but less profound effect was seen when the cells were 
treated with oxamate, a competitive metabolic inhibitor 
of lactate dehydrogenase at the final step of glycolysis. 
The reduction of cell proliferation is more profound 
under hypoxic conditions, where Glut-1 expression 
levels were increased and were more sensitive to 
inhibition. 

The enzyme changes in metabolic phenotype of 
PDAC is complex, with variable changes in expression 
levels. Altering expression levels of HK, PGI, FBA, 
enolase, PK-M2 and LDA-A with metabolic inhibitors 
have shown a favourable effect on PDAC, thus 
identifying these as potential therapeutic targets. 

To date, there are no clinical trials involving metabolic 
inhibitors and PDAC. There is, however, progress in 
using metabolic inhibitors in cell types other than PDAC 
which show a translation to in vivo treatment. Ko et 
al[148] have reported the use of 3-BP as an anticancer 
drug tested on the highly glycolytic hepatocellular 
cancer cell line AS-30D, where it was shown to rapidly 
and completely deplete intracellular ATP levels whilst 
not affecting levels in normal hepatocytes. Cell viability 
was ultimately affected, dropping to 10% with the 
ATP depletion. The in vivo effects of 3-BP in an animal 
model confirmed this anti-cancer effect. More recently, 
Ko et al[152] published a case study of a 16 year old 
male with primary hepatocellular cancer treated with 
3-BP. The patient responded to treatment with tumour 
destruction (confirmed by computed tomography) and 
went on to survive 2 years. Clearly, the use of metabolic 
inhibitors as a treatment for cancer is at an early stage. 
By “blocking” glycolysis, there will be a global and 
unpredictable effect on all cellular functions, and present 
as an obstacle when translating in vitro cell line research 
into clinical practice. By using a metabolic phenotype to 
identify pathologically over-expressed enzymes, a more 
targeting approach can differentiate a patient’s normal 
enzymes to that of PDAC.

In summary, the Warburg Effect has been long 
been recognised to occur in cancer cells, and describes 
a “metabolic switch” in the way cells use glucose to 
produce ATP. This overview highlights the extensive 
changes that in PDAC to produce a distinct metabolic 
phenotype. This phenotype has potential clinical 
correlates in that distinct components may be amenable 
to therapeutic manipulation. 

COMMENTS
Background
Pancreatic cancer, typically ductal adenocarcinoma (PDAC), is an insidious 
cancer with poor outcomes that has seen no significant improvement over 
the last three decades. Recent progress in genetics has lead to a renewed 
interest in the Warburg effect, which describes the pathological switch from 
mitochondrial phosphorylation to glycolysis for rapid ATP production, thus 
presenting new potential therapeutic targets. The primary aim of this review 
is to provide a comprehensive overview of the metabolic phenotype of PDAC, 
particularly where metabolic inhibitors have shown a favourable response. The 
second aim is to identify steps in the metabolic pathways where there is little or 
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no research evidence to show its oncological importance.

Research frontiers
The Warburg effect was described in 1956 by German physiologist Otto 
Warburg who postulated that carcinogenesis was the result of “irreversible 
injuring of respiration”. Data from high throughput techniques, such as genomic 
and metabolomic studies, have shown the Warburg effect is much more 
complex and extends to biomass synthesis for tumour proliferation. 

Innovations and breakthroughs
There have been numerous studies looking at individual metabolic enzymes 
and the effect of inhibiting these enzymes on tumour cell physiology. Retrieved 
manuscripts concerning the metabolic enzyme and their role in PDAC were 
reviewed by the authors, and the data extracted to construct an overall 
“metabolic phenotype”. 

Applications
The metabolic phenotype of PDAC illustrates the role of individual enzymes, 
and the known effects on PDAC. Inhibiting certain enzymes - hexokinase, 
phosphoglucose isomerase, aldolase, pyruvate kinase and lactate 
dehydrogenase - has been shown to interfere with PDAC cell function. The 
review also highlights areas (and thus unidentified therapeutic targets) in the 
pathways, particularly in mitochondrial oxidative phosphorylation, where there 
is little research into the effects of metabolic inhibition.

Terminology
The Warburg effect describes the pathological switch from mitochondrial 
phosphorylation to glycolysis for rapid ATP production. The change in enzyme 
expression at certain points of these pathways facilitating the Warburg effect 
may be potentially exploitable as a therapeutic target.

Peer-review
Simply “blocking” major pathways such as glycolysis in an in vitro cell line 
environment may yield successful in reducing cell growth or tumourigenicity, but 
would also have a non-specific effect on normal cells leading to as yet unknown 
toxic effects. This presents a challenge of using such broad inhibitors in an in 
vivo or clinical setting. A detailed metabolic phenotype is therefore useful in 
identifying and targeting specific oncological changes and so would theoretically 
have less effect on normal cells. 
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