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Abstract
Hepatocellular carcinoma (HCC) is one of the most 
lethal malignancies in the world. Several signaling 
pathways, including the wingless/int-1  (Wnt) signaling 
pathway, have been shown to be commonly activated 
in HCC. The Wnt signaling pathway can be triggered 
via  both catenin β1 (CTNNB1)-dependent (also known 
as “canonical”) and CTNNB1-independent (often 
referred to as “non-canonical”) pathways. Specifically, 
the canonical Wnt pathway is one of those most 
frequently reported in HCC. Aberrant regulation from 
three complexes (the cell-surface receptor complex, 
the cytoplasmic destruction complex and the nuclear 
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CTNNB1/T-cell-specific transcription factor/lymphoid 
enhancer binding factor transcriptional complex) are 
all involved in HCC. Although the non-canonical Wnt 
pathway is rarely reported, two main non-canonical 
pathways, Wnt/planar cell polarity pathway and 
Wnt/Ca2+ pathway, participate in the regulation of 
hepatocarcinogenesis. Interestingly, the canonical Wnt 
pathway is antagonized by non-canonical Wnt signaling 
in HCC. Moreover, other signaling cascades have also 
been demonstrated to regulate the Wnt pathway 
through crosstalk in HCC pathogenesis. This review 
provides a perspective on the emerging evidence that 
the aberrant regulation of Wnt signaling is a critical 
mechanism for the development of HCC. Furthermore, 
crosstalk between different signaling pathways might 
be conducive to the development of novel molecular 
targets of HCC.

Key words: Hepatocellular carcinoma; Wingless/int-1; 
Catenin β1; Crosstalk; Canonical wingless/int-1 signaling; 
Non-canonical wingless/int-1 signaling
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Core tip: The development of hepatocellular carcinoma 
(HCC) is regarded as a multistage process in which 
multiple genetic alterations are necessary. The wing-
less/int-1 (Wnt) pathway is a signaling mechanism 
that is frequently activated in HCC, especially the 
canonical Wnt pathway. Moreover, two main non-
canonical pathways are also involved in the regula-
tion of hepatocarcinogenesis. Interestingly, the non-
canonical Wnt pathway could antagonize the canonical 
Wnt pathway in HCC. Crosstalk between other signaling 
pathways and the Wnt pathway has also been shown 
to promote tumorigenesis. This review highlights the 
details regarding the Wnt pathway in HCC, which might 
provide new potential targets for HCC prevention and 
therapy.

Liu LJ, Xie SX, Chen YT, Xue JL, Zhang CJ, Zhu F. Aberrant 
regulation of Wnt signaling in hepatocellular carcinoma. World 
J Gastroenterol 2016; 22(33): 7486-7499  Available from: UrL: 
http://www.wjgnet.com/1007-9327/full/v22/i33/7486.htm  DOI: 
http://dx.doi.org/10.3748/wjg.v22.i33.7486

INTRODUCTION
Hepatocellular carcinoma (HCC), the fifth most 
common malignancy in men and ninth among women 
worldwide, is the second leading cause of cancer 
deaths[1]. There are over half a million new cases 
diagnosed per year[1]. The pathogenesis of HCC 
involves a complex multistep process that derives from 
the accumulation of aberrant genetic and epigenetic 
changes and the dysregulation of certain signaling 
pathways[2-4], including the wingless/int-1 (Wnt) 

signaling pathway. 
Wnt signaling plays crucial roles in the regulation of 

diverse processes, including cell proliferation, survival, 
migration and polarization, embryonic development, 
specification of cell fate, and self-renewal in stem 
cells[5]. Aberrant activation of Wnt signaling may 
contribute to numerous malignancies, such as colon 
cancer[6,7], gastric cancer[8], esophageal cancer[9], 
HCC[10], and others. Approximately 95% of observed 
HCC cases showed deregulation of the Wnt signaling 
cascade[11]. 

The Wnt signaling pathway is activated via both 
catenin beta 1 (CTNNB1)-dependent (also known 
as “canonical”) (Figure 1) and CTNNB1-independent 
(often referred to as “non-canonical”) pathways (Figure 
2). It is suggested that abnormal regulation of the 
canonical Wnt signaling pathway is a major and early 
carcinogenic event[12]. The role of the non-canonical 
Wnt signaling pathway in HCC is also uncertain. 
Some studies have shown that non-canonical Wnt 
signaling is activated in HCC[11,13]. However, others 
have demonstrated that non-canonical Wnt ligands 
antagonized canonical Wnt signaling[14,15] and inhibited 
HCC cell proliferation and migration[15]. Here, we 
present the general molecular pathology of both 
the canonical and the non-canonical Wnt signaling 
pathways, and also the crosstalk between distinct 
signaling cascades and the Wnt signaling in HCC. This 
will provide potential clinical implications in finding 
effective therapeutic targets.

WNT SIGNALING PATHWAY
Canonical Wnt signaling
Wnt proteins, which are highly conserved in metazoan, 
are a family of 19 secreted glycoproteins[16]. The 
canonical Wnt signaling pathway is operated by 
stabilizing the transcriptional co-activator CTNNB1 
through preventing its phosphorylation-dependent 
degradation. In a normal steady state, there are two 
pools for CTNNB1 in cells. One is known to interact 
with the cell adhesion molecule cadherin 1 (CDH1) 
at the cell-cell junction. The second is present in 
the destruction complex in cytoplasm, which is 
assembled by the scaffold proteins AXIN, the human 
tumor suppressor adenomatous polyposis coli (APC), 
glycogen synthase kinase 3 beta (GSK3B, also known 
as GSK3β), and casein kinase 1 alpha 1 (CSNK1A1)[17].

The second pool assembly maintains the low level 
of CTNNB1 in cytoplasm through phosphorylation 
of CTNNB1 at serine-45 (Ser45), Ser33, Ser37 
and threonine-41 by CSNK1A1 and GSK3β in the 
destruction complex[18,19]. Phosphorylated CTNNB1 
is subsequently recognized and ubiquitinated by the 
beta-transducin repeat containing E3 ubiquitin protein 
ligase (BTRC). BTRC is a component of an E3 ubiquitin 
ligase. This process results in the proteasomal de-
gradation of the phosphorylated CTNNB1[20]. In the 
absence of nuclear CTNNB1 translocated from the 
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cytoplasm, T-cell-specific transcription factor (TCF)/
lymphoid enhancer binding factor (LEF) proteins act 
as transcriptional repressors by binding to Groucho/
transducin-like enhancers of split 1 (TLE1) proteins. 
The proteins interact with histone deacetylases, leading 
to the transcriptional silencing of chromatin[21-23] (Figure 
1). In conclusion, three complexes are involved in the 
dynamic activating event: (1) the cell-surface receptor 
complex; (2) the destruction complex in the cytoplasm; 
and (3) the CTNNB1/TCF/LEF transcriptional complex in 
the nucleus.

Functionally, the Wnt signaling cascade can be 
activated through several pathways via stimulation 
of distinct Wnt receptors[24,25]. In vertebrates, ten 
members of the frizzled class receptor (FZD) family 
of proteins comprise a series of seven-pass trans-
membrane receptors that have been identified as 
Wnt receptors[26]. In addition to FZD proteins, single-
pass transmembrane proteins, such as the low density 
lipoprotein receptor-related protein (LRP) 5 and LRP6, 
have been reported to function as Wnt receptors in 

the canonical Wnt pathway[27,28]. The binding of Wnts 
to FZDs which form the cell-surface receptor complex 
promotes the binding of scaffold proteins, such as 
disheveled (DVL) proteins, to the FZD intracellular 
domains. This, in turn, induces the aggregation and 
phosphorylation of LRP6 and the translocation of 
AXIN[29,30]. 

Phosphorylated LRP6 also recruits AXIN to LRP6 
on the plasma membrane. This allows AXIN to be 
inactivated, which then inhibits CTNNB1 phosphorylation. 
As a result, CTNNB1 succeeds to escape degradation, 
accumulate in the cytoplasm, and translocate to the 
nucleus[31]. In the nucleus, CTNNB1 interacts primarily 
with members of the TCF/LEF family of transcription 
factors and triggers the activation of multiple intracellular 
signaling cascades. This results in the regulation of 
various cellular functions, including gene expression, cell 
growth and differentiation (Figure 1).

Non-canonical Wnt signaling
Non-canonical Wnt pathways are triggered by seve-
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Figure 1  Canonical wingless/int-1signaling pathway. Three complexes are involved in the dynamic activating event: (1) the cell-surface receptor complex; (2) 
the destruction complex in the cytoplasm; and (3) the CTNNB1/TCF/LEF transcriptional complex in the nucleus. In a normal steady state, there are two pools for 
CTNNB1 in cells. One is known to interact with CDH1 at the cell-cell junction. The second is present in the destruction complex in cytoplasm, which is assembled 
by the scaffold proteins AXIN, APC, GSK3β, and CSNK1A1. CSNK1A1 and GSK3β phosphorylate CTNNB1 in the AXIN complex. Phosphorylated CTNNB1 is 
subsequently recognized and ubiquitinated by BTRC. In the absence of nuclear CTNNB1 translocated from the cytoplasm, TCF/LEF proteins bind to DNA and act as 
transcriptional repressors by binding to TLE1 proteins. These in turn interact with histone deacetylases whose activities lead to the transcriptional silence of chromatin. 
The binding of Wnts to FZDs, which form the cell-surface receptor complex, promotes the binding of scaffold proteins such as DVL to the FZD intracellular domains. 
This subsequently induces the aggregation and phosphorylation of LRP6 and the translocation of AXIN. Phosphorylated LRP6 also recruits AXIN to LRP6 on the 
plasma membrane. This allows AXIN to be inactivated, which then inhibits CTNNB1 phosphorylation. This in turn allows CTNNB1 to escape degradation, accumulate 
in the cytoplasm, and translocate to the nucleus. In the nucleus, CTNNB1 interacts primarily with members of the TCF/LEF family of transcription factors and triggers 
the activation of multiple intracellular signaling cascades. This results in the regulation of various cellular functions. CTNNB1: Catenin beta 1; TCF/LEF: T-cell-specific 
transcription factor/lymphoid enhancer binding factor; CDH1: Cell adhesion molecule cadherin 1; APC: Adenomatous polyposis coli; GSK3β: GSK3B, glycogen 
synthase kinase 3 beta; CSNK1A1: Casein kinase 1 alpha 1; FZD: Frizzled class receptor; BTRC: Beta-transducin repeat containing E3 ubiquitin protein ligase.
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then increases intracellular Ca2+ concentration through 
the depletion of cellular cGMP and the inactivation 
of cGMP-dependent protein kinase. Ca2+ activates 
calcium/calmodulin-dependent protein kinase II and 
protein kinase C, which in turn inhibits the canonical 
Wnt pathway. This leads to a wide variety of effects, 
such as tissue separation during gastrulation in ver-
tebrates and ventral patterning in Xenopus species, as 
well as cell adhesion, migration, neurodegeneration, 
inflammation, and tumorigenesis[35-37].

Wnt/Receptor tyrosine kinases pathway: The 
receptor tyrosine kinases (RTK) of the receptor-like 
tyrosine kinase (RYK) and RAR related orphan receptor 
A (RORA/ROR2) families function as extracellular 
Wnt-binding domains and are implicated in Wnt 
signaling[38]. 

Wnt/RYK pathway: RYK binds to Wnt-induced 
repulsion of axons and mediates cell migration in 
Drosophila and mice. SRC kinase may act downstream 
of RYK in flies, wherein it was originally identified as 
Derailed[36].

Wnt/ROR2 pathway: Wnt5a/ROR2 activates the 
phosphatidylinositol 3-kinase (PI3K)-cell division cycle 
42 (CDC42)-mitogen-activated protein kinase kinase 
7-JNK pathway, resulting in the activation of activating 
transcription factor 2 and c-Jun and the expression of 
PAPC[39]. ROR2 also binds to the actin-binding protein 
filamin A and promotes filopodia formation[40,41]. The 
Wnt5a/ROR2 pathway inhibits the canonical Wnt 
pathway[36].

Wnt/casein kinase I epsilon/TERF2 interacting 
protein (Rap1) pathway: Wnt8 activates casein 
kinase I epsilon (CSNK1E), which enhances the 
phosphorylation and degradation of signal-induced 
proliferation-associated 1 like 1 (SIPA1L1), a Rap1-
specific GTPase-activating protein. Rap1 is thereby 
activated in a CTNNB1-independent manner. Rap1 
regulates actin cytoskeleton and/or cell adhesion 
during vertebrate gastrulation[42].

Wnt/cyclic adenosine monophosphate/protein 
kinase A pathway: Wnt1/Wnt7a activates the G 
protein and adenylyl cyclase (AC) to increase cyclic 
adenosine monophosphate (cAMP) levels, which in turn 
activates protein kinase A (PKA) and the transcription 
factor cAMP responsive element binding protein 1 
(CREB) and myogenic gene expression[36]. Wnt3a can 
also trigger the cAMP/PKA pathway[43], which could 
suppress osteoclast differentiation by PKA-mediated 
phosphorylation and inactivate the nuclear factor of 
activated T-cells 1 (NFATC1)[44].

Wnt/DVL/atypical protein kinase C pathway: 
Wnt/FZD signaling induces atypical protein kinase C 

(aPKC) stabilization and activation via interaction with 
DVL. This pathway can promote axon differentiation 
mediated by the pulmonary adenoma resistance (PAR) 
3/PAR6/aPKC complex[45].

Wnt/GSK3β/microtubule pathway: Wnt/DVL 
increases microtubule (MT) stability through the 
concomitant inhibition of GSK3β and activation of 
JNK. This pathway is involved in the modulation of 
cytoskeleton dynamics[46].

Wnt/mechanistic target of rapamycin pathway: 
Wnt activates mechanistic target of rapamycin (MTOR)-
mediated translational regulation in tumorigenesis 
via inhibiting GSK3-dependent phosphorylation of 
tuberous sclerosis 2 (TSC2). DVL, AXIN and APC are 
all involved in it. Activation of the Wnt/MTOR pathway 
promotes cell growth and tumorigenesis[47].

Wnt/FYN (FYN proto-oncogene, Src family tyro-
sine kinase)/signal transducer and activator 
of transcription 3 pathway: Wnt5/FZD2 can be 
triggered by FYN through its SH2 domain. The activated 
complex subsequently recruits and phosphorylates 
signal transducer and activator of transcription 3 (STAT3) 
on Tyr705 and finally contributes to the epithelial-
mesenchymal transition (EMT) program, cellular 
migration, and tumor metastasis[48].

The non-canonical Wnt pathways have also been 
shown to play critical roles, such as in axon differen-
tiation, cell adhesion, cell proliferation, migration and 
tumorigenesis, in multi-cellular animals.

GENETIC MECHANISMS OF WNT 
SIGNALING IN HCC
Increasing evidences have shown that the Wnt sig-
naling pathway plays a vital role in HCC[49-51], especially 
the canonical Wnt pathway[52]. Additionally, two of the 
main non-canonical pathways (the Wnt/PCP pathway 
and the Wnt/Ca2+ pathway) are also involved in the 
development of HCC[15,53]. Interestingly, the canonical 
pathway is antagonized by non-canonical Wnt signaling 
in HCC[14,15]. Moreover, other signaling cascades have 
also been found to regulate the Wnt pathway through 
crosstalk[54-57].

Canonical Wnt signal in HCC
Twenty percent to 90% of HCC cases exhibit CTNNB1 
activation[58], which promotes cell growth and invasive 
capability in c-Myc/transforming growth factor alpha 
transgenic mice[59]. Simultaneous mutation of CTNNB1 
and HRAS leads to 100% incidence of HCC in mice[60]. 
However, the molecular mechanism of this process is 
less clear. As described above, three complexes are 
involved in the dynamic activation of the canonical 
Wnt signaling pathway. We discuss this below and 
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according to the regulation of the complexes, including 
the cell-surface receptor complex, the cytoplasmic 
destruction complex, and the nuclear CTNNB1/TCF/LEF 
transcriptional complex. 

Dysregulation of the cell-surface receptor 
complex in HCC: Most of the Wnt ligands and their 
receptors have been reported to be highly expressed in 
HCC cell lines. Wnt3, Wnt9a and Wnt10b have displayed 
strong expression in most HCC cell lines, independent 
of differentiation status. Wnt2b, Wnt4, Wnt5a, Wnt5b 
and Wnt7b have been reported as overexpressed in 
poorly differentiated cell lines, while Wnt8b and Wnt9b 
have been reported as selectively overexpressed in 
well differentiated cell lines[14]. Almost all FZD receptors 
(except FZD9 and FZD10) and two co-receptors have 
also been reported as overexpressed in HCC cell 
lines[14]. Furthermore, LRP6 has also been found to be 
overexpressed in 38% of HCC[61]. 

It has been reported that HCV core protein 
correlates with increased Wnt1 and Wnt3a expression 
in HCC cell lines[62,63]. Interaction between Wnt3a and 
FZD7 could activate canonical Wnt signaling in different 
groups of HCC studies[64,65]. FZD7 overexpression has 
been shown to occur in early HCC and to contribute 
to enhanced tumor cell migration[65]. Overexpression 
of LRP6 has been shown to lead to hyperactivation of 
the canonical Wnt signaling pathway and to result in 
enhanced cell proliferation, cell migration, and invasion 
of human HCC[61,66].

Altered expressions of several secreted extracellular 
antagonists of Wnt ligands, such as secreted Frizzled-
related proteins (SFRP), Wnt inhibitory factor-1 (WIF-1) 
and Dickkopf-related protein 3 (DKK-3), have been 
detected in HCC. Different SFRPs have been reported 
to bind with Wnt and thereby down-regulate their 
ability to activate FZD[67]. Numerous studies have 
shown that hypermethylation induces down-regulation 
of SFRPs (SFRP1 and SFRP5) and the subsequent 
activation of canonical Wnt signaling in HCC[68-71]. 
Down-regulation of WIF-1 and DKK-3 mediated by 
promoter methylation has also been reported to be a 
common event in HCC[72,73]. 

In addition, the scaffold protein DVL, which binds 
to the FZD intracellular domain to activate canonical 
Wnt signaling, has been shown to be up-regulated in 
a c-Myc/E2F transcription factor 1 transgenic mouse 
model of HCC[74]. The antagonisms of DVL, which 
negatively regulate the canonical Wnt signaling, 
including, dishevelled binding antagonist of beta 
catenin 2 (DACT2)[75], Prickle-1[76] and the human 
homologue of Dapper 1 (HDPR1)[77], are down-
regulated in HCC.

Abrogation of the cytoplasmic destruction 
complex and CTNNB1 activation in HCC: Tumor 
formation is accelerated in HCC cells with active 
CTNNB1[78,79]. Nuclear accumulation of CTNNB1 is 
associated with proliferation in HCC cells, whereas 

CTNNB1 knockdown reduces migration and invasion 
of HCC cells[80]. However, the molecular mechanism 
for CTNNB1 activation in HCC still needs further 
investigation.

Researchers have reported that different degrees 
of mutations in CTNNB1 lead to the activation of 
CTNNB1. Reported mutations in exon 3 of CTNNB1 
ranged from 2.8% to 44% in HCC cases[52,81-84]. The 
most frequently mutated site is Ser45, the principal 
site for phosphorylation mediated by CSNK1A1[85]. 

Since abnormal CTNNB1 redistribution has 
been reported in up to 90% of HCC cases[58], and 
the mutation rate of CTNNB1 in HCC is unmatched 
(2.8%-44%), it is implied that other mechanisms in 
addition to the CTNNB1 mutation are involved in the 
aberrant regulation of Wnt signaling in HCC. Mutations 
of the destruction complex members in HCC are 
also reported to contribute to hepatocarcinogenesis. 
AXIN1[52,84,86] and AXIN 2[86,87] mutations are observed 
in 5% to 54.2% and around 2.7%-37.5% of HCC 
cases, respectively. Conditional disruption of AXIN1 
leads to the development of liver tumors in mice[88]. 
However, inactivating mutations of APC and GSK3β 
are quite rare in human HCC cases[86]. Nevertheless, 
deletion of APC showed significant connections to 
HCC through the activation of CTNNB1[89,90], while 
overexpression of wild-type APC in HCC cell lines 
reduces canonical Wnt signaling and results in growth 
suppression[91]. Elevated levels of inactive GSK3β are 
also observed in both human HCC tissues and mouse 
models of HCC harboring CTNNB1 accumulation[92-94]. 
Suppression of GSK3β activation by phosphorylation of 
Ser9 decreases CTNNB1 activity[92].

Actually, wild-type and mutated CTNNB1 transgenic 
mouse models indicate that abnormal CTNNB1 is not 
sufficient for carcinogenic transformation[95,96]. More 
factors are found in hepatocarcinogenesis mediated by 
Wnt signaling. Increasing evidences show that several 
etiologic factors which induce HCC might be involved 
in the aberrant regulation of canonical Wnt signaling, 
including HBV, HCV, and carcinogen exposure.

HBV-related HCC: A previous study has determined 
that mutations in AXIN1 were correlated with HBV-
related HCC, whereas mutations in CTNNB1 were 
correlated with non HBV-related tumors[97]. This 
implies that mechanisms other than the mutation of 
CTNNB1 are involved in HBV-related HCC. However, a 
recent study has shown that genetic polymorphisms in 
CTNNB1 might affect tumor development and survival 
in HBV-related HCC[98]. The HBV x gene (HBx) up-
regulates von Willebrand factor C and EGF domains 
(VWCE/URG11) and binds to APC to displace CTNNB1 
from the destruction complex, which in turn activates 
CTNNB1[99]. Thereby, the canonical Wnt signaling is 
triggered[100].

HCV-related HCC: Inconsistent with the mechanism 
in HBV-related HCC, CTNNB1 mutation is shown to be 
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approximately twice as significant in HCV-related HCC 
compared with other causes[101]. Additionally, more 
studies have proven the tumor-associated role of Wnt 
signaling in HCV-related HCC[102]. It has been reported 
that HCV up-regulates microRNA-155 (miR-155), 
which promotes the nuclear accumulation of CTNNB1 
and an accompanying increase in downstream tar-
gets[103]. NS5A protein and core protein of HCV may 
increase CTNNB1 by activating PI3K and increasing the 
phosphorylation of GSK3β at Ser9[63,104,105].

Carcinogen exposure-induced HCC: The increased 
accumulation of CTNNB1 has been shown in around 
45% of aflatoxin B1 (AFB1)-associated HCC cases[106]. 
Further studies indicate that AFB1 exposure might 
activate the canonical Wnt signaling pathway by down-
regulating miR-34[107]. However, there is also research 
showing a totally distinct role of AFB1 on CTNNB1. The 
results suggest that AFB1 down-regulates CTNNB1 in 
HCC[108]. Moreover, HCC is induced in transgenic mice 
whose liver tumors showed conditional expression 
of CTNNB1 at 6 mo after diethylnitrosamine (DEN) 
exposure. However, no tumor is formed in wild-type 
mice at 6 mo after DEN exposure, indicating that 
overexpression of CTNNB1 accelerates tumorigenesis 
and progression to HCC following DEN exposure[109].

Activation of the nuclear CTNNB1/TCF /LEF 
transcriptional complex in HCC
The human TCF/LEF family consists of four members: 
TCF-1, LEF-1, TCF-3, and TCF-4[51]. Increased LEF-1 in 
HCC tissues is associated with cyclin D1 overexpression 
in the nuclear compartment[110]. 

In our previous review, the role of aberrantly 
spliced TCF-4 variants in HCC was discussed[111]. 
Overexpression of TCF-4J in HCC cells up-regulates the 
expression level of hypoxia-inducible factor-alpha (HIF-
2α) under hypoxia[112]. HIF-2α is capable of modulating 
TCF-4-mediated transcriptional activity by interacting 
with CTNNB1[113] and of up-regulating the expression 
of epidermal growth factor receptor (EGFR)[112]. HIF 
family proteins are involved in the development of HCC 
via promotion of angiogenesis[114]. EGFR promotes 
HCC cell proliferation and resistance to anti-cancer 
drugs[115]. In addition, a dominant-negative form of 
TCF-4 decreases the expression of c-Myc and cyclin 
D1 and suppresses the growth of BEL7402 cells[116]. 
Thirty-three percent of human HCC cases in which 
shorter survival periods are observed show c-Myc 
amplification[117]. Both N terminus of HCV NS5A and 
core protein increase TCF-4-dependent transcriptional 
activity and subsequently up-regulate the downstream 
targets, such as c-Myc and cyclin D1 in HCC[63,105].

Non-canonical Wnt signaling in HCC
Rare studies have demonstrated the role of non-
canonical Wnt signaling in HCC. Several non-canonical 
Wnt signaling pathways have been proven to be 

involved in the regulation of hepatocarcinogenesis, 
such as the Wnt/PCP pathway[53] and the Wnt/Ca2+ 
pathway[15]. However, different factors induce distinct 
cell fates within the same pathways.

Cyclin-dependent kinase 14 (CDK14)[118], which is 
overexpressed in HCC tissues and confers cell invasive 
potential[119], can regulate cell cycle progression 
and cell proliferation by specifically interacting with 
members of cyclin proteins, such as cyclin D3 and 
cyclin Y[120,121]. Studies have demonstrated that CDK14 
up-regulated DVL2 and Naked1 in non-canonical Wnt 
signaling in HCC by forming a direct complex with 
cyclin Y[53]. Exogenous overexpression of CDK14 and 
cyclin Y is also able to activate Rho GTPases (RHOA, 
RAC1, and CDC42) in HCC. The activated Rho GTPases 
result in the active formation of actin stress fibers[53], 
which lead to the modulation of cell motility[122].

Activation of non-canonical Wnt pathways, under 
some conditions, could suppress HCC. For instance, 
Wnt11 is reported to activate RHOA and Rock. 
Activated Rock subsequently inhibits RAC1 which 
contributes to decreased cell migration and motility in 
HCC[15].

In addition, the same Wnt ligand could also 
activate different non-canonical Wnt pathways in HCC. 
Exogenous overexpression of Wnt11 in HCC cells could 
also increase cytosolic free Ca2+, and subsequently 
activate PKC, which translocates from the cytoplasm to 
the plasma membrane[15].

Regulation of Wnt signaling by crosstalk in HCC
Non-canonical Wnt pathway antagonizes the 
canonical pathway: It has been reported that the 
non-canonical Wnt pathway can inhibit canonical 
Wnt signaling in other cancers[123,124]. However, this 
phenomenon is rarely reported in HCC. Non-canonical 
Wnt ligand Wnt5a has been reported to inhibit TCF 
activation mediated by activated CTNNB1 in HCC 
cells[14]. Wnt11, which has been shown to inhibit HCC 
cell proliferation, antagonizes canonical Wnt signaling 
through phosphorylation of CTNNB1 and reduction 
of TCF-mediated transcriptional activity induced by 
activated PKC[15].

Other signaling pathways activate the Wnt 
signaling pathway: Accumulating evidences have 
demonstrated that activation of Wnt signaling can act 
in concert with other oncogenes, such as transforming 
growth factor beta (TGF-β)[54], hepatocyte growth factor 
(HGF)/c-Met pathway[55], HIF-1α/EMT pathway[125] and 
insulin/insulin-like growth factor-1 (IGF-1) pathway[57], 
to promote tumor progression (Figure 3). 

Wnt pathway activation may be mediated by 
TGF-β[54,126,127]. Interactions between the TGF-β and 
CTNNB1 pathways are crucial for expression of 
CTNNB1 target genes in HCC[126]. The TGF-β effector 
Smad3 can promote the nuclear translocation of 
CTNNB1[128]. Recently, AXIN2 was reported to be 
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up-regulated by TGF-β treatment in HCC cell lines, 
resulting in the activation of Wnt signaling[129]. βII-
spectrin (SPTBN1), an adapter protein for Smad3/
Smad4 complex formation during TGF-β signal 
transduction, is down-regulated in HCC cells[130]. Loss 
of SPTBN1 promotes tumor formation and invasion 
of HCC cells through suppressing Wnt inhibitor 
Kallistatin and subsequently promoting CTNNB1 
dephosphorylation and nuclear localization[130].

Crosstalk between the HGF/c-Met pathway and the 
Wnt pathway might also contribute to the progression 
of HCC. C-Met, a tyrosine kinase receptor of HGF, 
which can be associated with CTNNB1 at the inner 
surface of the hepatocyte membrane[131], is often co-
activated with CTNNB1 in HCC[132]. Co-delivery of 
c-Met and constitutively active CTNNB1 into mouse 
livers rapidly induced primary hepatic tumors[132-134]. 
Monga et al[131] have shown that HGF treatment could 
induce the dissociation of CTNNB1 from c-Met and its 
subsequent translocation to the nucleus via tyrosine 
phosphorylation. Further studies have determined that 
CTNNB1 enhanced c-Met-stimulated focal adhesion 
kinase (FAK) activation and synergistically induced 
the activation of the AKT/extracellular receptor kinase 
(ERK)-Cyclin D1 signaling pathway in a FAK kinase-
dependent manner[55]. FAK is also reported to be 
overexpressed in HCC[135] and required for CTNNB1-
induced Cyclin D1 expression in a kinase-independent 
way[55].

EMT is a process of phenotype shifting of cells 
associated with embryogenesis, inflammation, and 
cancer metastasis[136]. HIF-1α is reported to mediate 
the hypoxia-induced EMT via up-regulation of 

transcription effectors such as TCF-3, which suppress 
CDH1 expression[137]. HIF-1α can compete with TCF-4 
to bind with CTNNB1 and form the HIF-1α/CTNNB1 
complex. Increased HIF-1α activity, in turn, leads 
to decreased canonical Wnt signaling activity, and 
consequently enhanced hypoxia-induced EMT in 
HCC[56].

Studies have demonstrated that the presence 
of insulin/IGF-1 could result in CTNNB1 stabilization 
through inhibition of GSK3β activity, which stimulates 
TCF/LEF-dependent transcription activation[57]. The 
activation of PI3K/Akt and Ras might mediate the 
inactivation of GSK3β[57].

CONCLUSION
Development of HCC is a multistage process pre-
cipitated by multiple specific molecular alterations. 
Several signaling pathways take part in this process, 
such as the PI3K/Akt pathway, the Wnt pathway, the 
TGF-β pathway, the HGF/c-Met pathway, and the IGF 
pathway. Among these, aberrant regulation of the 
Wnt signaling pathway appears to be an important 
event leading to inappropriate transcription of various 
oncogenic target genes. Most importantly, Wnt 
signaling might play vital roles in hepatocarcinogenesis 
through crosstalking with several different signaling 
cascades (Figure 3). However, the molecular mecha-
nisms of the crosstalk in HCC context still demand 
further investigation.

Considering that targeting the Wnt signaling 
pathway might provide potential therapeutics in the 
treatment of HCC, extra studies are still needed. 

 

Akt/ERK 
pathway

Figure 3  Regulation of wingless/int-1 signaling by crosstalk in hepatocellular carcinoma. The crosstalk between other signaling cascades and the Wnt 
signaling pathways involved in hepatocarcinogenesis are shown (see text). Lines ending with arrows or bars indicate activating or inhibitory effects respectively. The 
distinct line colors indicate the different pathways that crosstalk with Wnt signaling, including: Wnt signaling pathway (black), TGF-β pathway (green), HGF/c-Met 
pathway (blue), HIF-1α/EMT pathway (yellow), and IGF-1 pathway (purple). Wnt: Wingless/int-1; TGF-β: Transforming growth factor beta; HGF: Hepatocyte growth 
factor; HIF-1α: Hypoxia- inducible factor-1 alpha; EMT: Epithelial-mesenchymal transition; IGF-1: Insulin/insulin-like growth factor-1.
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Our recent study has shown that urolithin A, one 
of the intestinal metabolites of ellagic acid, exerts 
antiproliferative and antioxidant effects in HepG2 cells 
through the inhibition of canonical Wnt signaling[138]. 
In addition, several types of antagonisms, such as 
peptides, small synthetic compounds, and blocking 
antibodies, etc. could suppress tumor formation 
and metastasis by targeting different factors in 
the Wnt pathway. Some of them target the interac-
tion between the Wnt ligand and the Fzd receptor; 
some target the destruction complex; the others 
could target the CTNNB1/TCF/LEF transcriptional 
complex[5,139-141]. Actually, some commercial medicines 
for other diseases have been found to modulate the 
Wnt signaling pathway. For instance, antipsychotic 
medications like dopamine D(2) receptor antagonist 
may treat symptoms of psychosis, at least in part, 
through modulation of the Wnt signaling pathway[142]. 
The non-steroidal anti-inflammatory drugs aspirin 
and indomethacin attenuate the canonical Wnt 
signaling pathway[143]. The cyclooxygenase-2 inhibitor 
celecoxib can inhibit CTNNB1-dependent transcription 
in colorectal cells[144] and suppress polyp formation 
in familial adenomatous polyposos patients[145]. 
However, these drugs may function through other 
signaling cascades either. Furthermore, there is still 
no inhibitor specific to the Wnt signaling pathway that 
have progressed to HCC clinical therapy. As a result, a 
better definition of the role of the Wnt pathway in the 
cascades network during hepatocarcinogenesis may 
reveal novel molecular targets which might be used for 
therapy of HCC.
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