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Abstract
Transplantation is the optimal treatment for end-stage 
organ failure, and modern immunosuppression has 
allowed important progress in short-term outcomes. 
However, immunosuppression poorly influences 
chronic rejection and elicits chronic toxicity in current 
clinical practice. Thus, a major goal in transplantation 
is to understand and induce tolerance. It is well 
established that human regulatory T cells expressing 
the transcription factor FoxP3 play important roles in 
the maintenance of immunological self-tolerance and 
immune homeostasis. The major regulatory T cell 
subsets and mechanisms of expansion that are critical 
for induction and long-term maintenance of graft 
tolerance and survival are being actively investigated. 
Likewise, other immune cells, such as dendritic cells, 
monocyte/macrophages or natural killer cells, have been 
described as part of the process known as “operational 
tolerance”. However, translation of these results towards 
clinical practice needs solid tools to identify accurately 
and reliably patients who are going to be tolerant. In 
this way, a plethora of genetic and cellular biomarkers 
is raising and being validated worldwide in large multi-
center clinical trials. Few of the studies performed so 
far have provided a detailed analysis of the impact 
of immunosuppression withdrawal on pre-existing 
complications derived from the long-term administration 
of immunosuppressive drugs and the side effects 
associated with them. The future of liver transplantation 
is aimed to develop new therapies which increase the 
actual low tolerant vs  non-tolerant recipients ratio.
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Unfortunately, true immunologic tolerance has been 
difficult to achieve, in part, because allergenic en­
graftment is not a naturally occurring phenomenon 
and graft rejection is the most powerful and diverse 
immunologic response known. In recent years, the 
main endpoint of immunosuppressive therapy has 
shifted from the prevention of acute rejection toward 
the preservation of long-term graft function[7,8]. For 
instance, Foxp3-expressing regulatory T cells (Treg) 
critically prevent the occurrence of autoimmunity 
and suppress various immune responses. Some of 
the studies indicated that higher presence of Tregs 
correlated with better transplant outcomes, but some 
showed Tregs do not affect graft function and survival. 
The conclusion of each study might be limited to 
their study design or small sample size. Here, we 
review the development and function of Tregs, and 
how these cells are used to facilitate the induction of 
transplantation tolerance. Moreover, while dendritic 
cells (DC) are highly efficient antigen presenting cells 
(APC) for exerting allergenic immune responses, DC 
are also involved in establishing immune tolerance 
by deleting T cell clones or inducing Tregs[9], and 
we describe attempts of using tolerogenic DC as a 
therapeutic strategy to promote transplant tolerance. 
Likewise, we detail the implication of other cells in both 
the innate and adaptive immune system to diminish 
allergenic response.

In the other hand, development of new immuno­
suppressive drugs treating to minimize the adverse 
events while maintaining immunosuppressive efficacy 
are raising. The inhibitors of mechanistic target of 
rapamycin (mTOR), such as rapamycin and its derivate 
everolimus, are powerful non nephrotoxic agents 
with a different mechanism of action than calcineurin 
inhibitors (CNI), which blocking growth-factor-
mediated cell proliferation in the cellular response to 
alloantigen[10,11], and could maintain an adequate level 
of IS while concomitantly promoting an immunologic 
profile which could favor tolerance to the graft.

Last but not least, a review of different attempts 
to establish a biomarker signature which define 
liver transplant recipients who are candidates to be 
subjected to a weaning protocol will be addressed in 
the last part of this overview.

REGULATORY T CELLS IN 
TRANSPLANTATION AND TOLERANCE
Regulatory cells are defined by their functional ability 
to suppress immune responses. In 1970, Gershon and 
Kondomade the seminal finding that T cells not only 
augmented but also dampened immune responses and 
that this down-regulation was mediated by T cells that 
were different from Th cells[12]. The term regulatory 
or suppressor cells was reintroduced in 1995 based 
on studies with mice thymectomized in the neonatal 
period that developed a fatal autoimmune disease[13]. 
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Core tip: Nowadays, the major goal in transplantation is 
to understand and induce tolerance. Although a plethora 
of genetic and cellular biomarkers is raising and being 
validated worldwide in large multi-center clinical trials, 
little is known about the impact of immunosuppression 
withdrawal on pre-existing complications derived from 
the long-term administration of immunosuppressive 
drugs and the side effects associated with them. The 
future of liver transplantation is aimed to develop new 
therapies which increase the actual low tolerant vs  non-
tolerant recipients ratio.
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INTRODUCTION
In 1953, Peter Medawar and his colleagues described 
in their key paper[1] that “acquired tolerance is due 
to a specific failure of the host’s immunological 
response”. Following on from this pioneering work of 
Medawar and his colleagues more than 50 years ago, 
extensive data obtained from rodents and large animal 
experimental transplantation models have led to a 
better understanding of the mechanisms leading to 
graft rejection and transplantation tolerance. In clinical 
transplantations since 1995, there has been increasing 
evidence to demonstrate that liver transplant reci­
pients who cease to take immunosuppressive drugs 
maintain allograft function, suggesting that tolerance 
is already present[2,3]. Graft acceptance in the presence 
of significantly reduced immunosuppression (IS) 
requirements is referred to as “prope tolerance” 
or “minimal IS tolerance”[4]. In the clinical setting, 
“operational tolerance” (OT) is defined as the absence 
of acute and chronic rejection, and graft survival with 
normal function and histology in an IS-free, fully 
immunocompetent host, usually as an end result of 
a successful attempt at IS withdrawal[5]. Although 
complete immunosuppressive drug withdrawal has 
been rarely performed in an intentional manner, 
accumulated experiences from selected institutions 
indicate that this strategy is feasible in 20% of liver 
transplant recipients[6]. The achievement of immune 
tolerance to an allergenic donor has been a field of 
intense research over the last decades, fuelled by a 
critical need to avoid IS-related side effects (particularly 
nephrotoxicity, cancer, and cardiovascular events). 



They identified the CD25 molecule [the interleukin 
(IL)-2 receptor α-chain] as a Treg surface molecule 
candidate because CD25+ T cells, which constituted 
5%-10% of peripheral CD4+ T cells (and less than 1% 
of peripheral CD8+ T cells) in normal naive mice, were 
confined in the CD25high and CD45RBlow fraction of 
CD4+ T cells. The identification of the forkhead box 
P3 (FoxP3) as a key transcriptional factor in Tregs has 
enabled us to determine a number of immunological 
characteristics of natural Tregs, including their function, 
stability and differentiation[14-16]. FoxP3 was initially 
identified as the responsible gene for an X-linked 
recessive inflammatory disease in scurfy mutant mice 
and then for the fatal autoimmune/inflammatory 
disease, immune dysregulation, polyendocrinopathy, 
enteropathy or X-linked syndrome (IPEX) in humans[17]. 
The indispensable role of FoxP3 for the control of these 
autoimmune and inflammatory disorders underlines 
the crucial importance of naturally arising FoxP3+CD4+ 
Tregs for self-tolerance and immune homeostasis[18]. 

Although other subsets of cells with regulatory 
functions have been described, CD4+CD25+FOXP3+ 
regulatory T-cells are the classic example. These 
cells are defined by FOXP3 expression, but they 
are not a homogeneous subset of cells. Regulatory 
T-cells can be subdivided into naturally occurring 
regulatory T-cells, which develop in the thymus, and 
adaptive or induced regulatory T-cells, which are 
converted from CD4+CD25- T-cells into cells with a 
characteristic molecular profile in peripheral blood[19]. 
Stable expression of FoxP3 in naturally occurring 
Tregs requires DNA methylation-based regulation[20]. 
Demethylation at a highly conserved region within 
the human FoxP3 gene (Tregs-specific demethylated 
region, TSDR) was found to be restricted to Tregs 
when tested against all major peripheral blood cell 
types and a selection of non blood cells[21]. In addition 
to the high specificity for Tregs, it was also observed 
that FoxP3 TSDR demethylation occurred only in 
natural Tregs, but not in recently activated effector T 
cells transiently expressing FoxP3[22]. Some authors 
found that FoxP3 was fully demethylated in nTregs, 
partially demethylated in TGF-β-polarized iTregs and 
methylated in naïve and Th cells[21,23]. TSDR demethy­
lation does not act as an on/off switch, but corre­
sponds with stability of FoxP3 expression determined 
during the development in the thymus for naturally 
occurring Tregs. This data indicated that epigenetic 
modifications in the FoxP3 TSDR serve as a valuable 
marker for the identification of nTregs with a stable 
Tregs phenotype[24]. 

Although the exact mechanism of action of regu­
latory T-cells is still under debate, studies involving 
animal models have provided some insight. Such 
studies have shown, for example, that regulatory T-cells 
use several mechanisms to inhibit effector T-cells: 
modulation of APC function; metabolic disruption such 
as IL-2 deprivation or adenosine secretion; direct 
cytotoxicity toward effector T-cells; and secretion of 

inhibitory cytokines such as IL-10, IL-35 or TGF-β[25]. 
In the absence of regulatory T-cells, effector T-cells 
recognize alloantigens presented in the context of MHC 
molecules by APCs directly (donor APCs) or indirectly 
(recipient APCs). After T cells are activated by the 
binding of alloantigen-MHC to the TCR, and of CD80/86 
to CD28, IL-2 is secreted by the effector T-cells, 
and through autocrine mechanisms leads to further 
T-cell activation, and proliferation and differentiation, 
ultimately causing allograft rejection. Regulatory T-cells 
inhibit APC function by down-regulating the expression 
of co-stimulatory molecules on APCs and by inducing 
APCs to produce immunoregulatory enzymes, such 
as indoleamine dioxygenase, that alter the metabolic 
microenvironment and depleting essential amino 
acids. In addition, the interaction between CD80/86 
expressed by APCs and CTLA-4 expressed by regulatory 
T-cells is essential in mediating allograft tolerance. 
Once regulatory T-cells are activated, they secrete 
TGF-β, IL-10 and adenosine, which inhibit effector T-cells 
and render them unresponsive (anergy) or tolerant 
towards the graft. Collectively, these mechanisms 
protect the graft[25], such as Tregs are considered to 
be critical for the induction of transplant tolerance. 
Transplantation of MHC histoincompatible tissues 
elicits a strong, cytopathic, T cell-dependent immune 
response to donor tissues. In this T cell-dependent 
pathway to rejection, donor alloantigens are processed 
by donor (direct pathway of allorecognition) or recipient 
(indirect pathway of allorecognition) specialized APCs. 
The characteristics of the inflammatory environment 
in which donor-reactive CD4+ T cells recognize 
donor antigens determine the lineage commitment 
of these cells. Thus, depending on the cytokines 
present when antigen activation occurs, naïve CD4+ 
Th cells can acquire a variety of cytopathic and/or 
immunoregulatory phenotypes[26]. In the absence of 
proinflammatory cytokines, transforming growth factor 
TGF-β induces expression of FoxP3 and differentiation 
of CD4+ T cells into Tregs. In contrast, expression 
of TGF-β with IL-6 or IL-21 prevents development of 
the transplant-protective Tregs; instead, the antigen-
reactive CD4+ T cells become IL-17-producing T cells 
(Th17), which are highly cytopathic[27-29]. Recent dis­
coveries also revealed that, instead of being terminally 
differentiated, Th17 and Tregs have remarkable 
plasticity and are closely interlinked[30]. Thus, Tregs 
can differentiate into IL-17-producing cells in the 
presence of IL-2 and IL-1-β whereas in the presence 
of IL-27, Th17-producing cells also produce IL-10, 
an immunosuppressive cytokine that prevents them 
from functioning as destructive effector cells[31,32]. The 
current paradigm is that the outcome of transplant 
recipients, rejection or graft acceptance, is determined 
by the relative balance between cytopathic Th1 and 
Th17 CD4+ T cells vs rejection-blocking, cytopro­
tective Tregs; this balance depends on the level of 
inflammation in the microenvironment in which T-cell 
activation takes place[33].
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therapies induce profound and durable (weeks to 
months) reduction of circulating lymphocytes capable 
of mounting an alloresponse. Recent data suggests 
that T-cell depletion protocols allow preferential 
expansion of Tregs once lymphocytes gradually 
repopulate the host, thus skewing the Tregs/effector 
T cells ratio towards tolerance[54]. The “first-in-man” 
studies with expanded nTregs were carried out in 
patients who developed GVHD following bone marrow 
transplantation[55-58]. However, the use of antigen-
specific Tregs at the time of transplantation may be 
limited if the donor is cadaveric, i.e., not known in 
advance, as time is required to generate and expand 
ex vivo donor-specifc Tregs. In the contrary, if a living 
donor is available (HSCT, kidney, LT), recipient (or 
donor in the case of HSCT) T cells could be isolated 
in advance and manipulated ex vivo in the presence 
of donor-derived APC or peptides. Efficient isolation, 
expansion and cryopreservation strategies that comply 
with good manufacturing practice (GMP) guidelines 
are prerequisites for the clinical application of human 
CD4+CD25+CD127low FoxP3+ Tregs. Although the 
existence of Tregs is indisputable, using them for 
therapeutic purposes has not been straightforward; 
in fact the local microenvironment in which Tregs 
reside can have a considerable influence on their 
functional status[59]. In addition, one of the obstacles 
in the implementation of clinical protocols using Tregs 
is their low frequency in the peripheral blood leading 
to the need for ex vivo multiplication of the cells prior 
to their use in vivo[60]. While the transfer of Tregs 
prolonged allograft survival, it was not sufficient to 
induce robust tolerance on its own. This highlights 
the need for adjuvant immunomodulatory therapies 
to suppress strong immune activation and overcome 
the rapidly expanding pool of alloreactive T cells early 
after transplantation. Thus, the in vivo homeostasis, 
lifespan and stability of nTregs and iTregs need to be 
clarified before clinical trials on Tregs transfer can be 
considered.

DCs IN TOLERANCE
DCs act as surveillance for the immune system, 
sampling self and exogenous antigens in the peripheral 
tissues and presenting them to T cells in lymphoid 
organs. So, APCs serve as a bridge between antigens 
and lymphocytes. Likewise, DCs providing additional 
costimulatory signals and cytokines to stimulate the 
immune response. Functions of DCs stem from their 
high expression of surface major histocompatibility 
complexes (MHC) class Ⅰ and Ⅱ, costimulatory 
molecules and adhesion molecules[61]. Apart from 
their immunogenic roles, the influence of DCs on the 
immune system can also be tolerogenic or inhibitory 
in nature. DCs have been shown to be critical in 
maintaining central and peripheral tolerance through 
immune deviation, induction of T cell anergy, promotion 
of T cell apoptosis and induction of Tregs. 

Tregs have been used as a diagnostic tool in 
organ transplantation, and Tregs counts have been 
measured in blood, biopsy and urine samples after 
transplantation in many studies[34,35]. Although not 
unanimous, some studies have suggested that Tregs 
is associated with better outcome and can also serve 
as an immune marker to predict the individual risk of 
rejection and identify tolerant patients[36-41]. 

In liver transplantation (LT), several trials have 
been conducted to assess the feasibility of purposely 
discontinuing all immunosuppressive drugs under 
medical supervision[33]. Three studies reported the 
relationship between Tregs and transplant tolerance 
in LT[38,40,42,43] and demonstrated that Tregs content 
and function werenot lower in tolerance groups than 
chronic rejection group, stable group and control 
group, which suggested that Tregs may be associated 
with transplant tolerance. This Tregs increment was 
reported in retrospective studies where long-term 
operationally tolerant patients were compared with 
immunosuppressed patients. In the context of human 
LT, the dynamics of Tregs have not been extensively 
studied and may afford a means of identifying tran­
splant recipients with a predilection to developing 
tolerance. Therefore, the immune process that occurs 
during the weaning off the IS was not analyzed. Our 
group carried out a prospective study to investigate 
the dynamic profile of the Tregs population in liver 
transplant patients during IS withdrawal and whether 
this profile could aid identification of patients who 
develop operational tolerance[44]. In this study the 
first evidence was provided to demonstrate that 
the increase of CD4+CD25high T cells and FoxP3 
transcripts was associated with operational tolerance in 
liver transplanted patients during IS withdrawal.

Nowadays, Tregs are used as a cellular therapy for 
controlling rejection. In vitro and in vivo experimental 
models have demonstrated that production of Tregs in 
the periphery by FoxP3 transfection in naïve T cells can 
lead to tolerance induction and graft acceptance[45,46]. 
Nadig et al[47] have demonstrated that ex vivo 
expanded CD25hiCD4+ and CD127loCD25+CD4+ 
Tregs are very effective at inhibiting vasculopathy, 
with CD127loCD25+CD4+ cells being five times 
more efficient than T cells selected on the basis 
of high levels of CD25 expression prior to ex vivo 
expansion. These experimental data gave support to 
the potential use of Tregs in clinical transplantation. 
Many strategies exist for the ex vivo generation and
⁄or expansion of Tregs[35,48-50]. Currently, three main 
approaches are being explored for Tregs expansion 
in the perspective of therapeutic protocols: ex vivo 
nTregs expansion, ex vivo conversion of naïve T cells to 
iTregs and in vivo expansion of nTregs and/or induction 
of iTregs[51-53]. Besides co stimulatory blockade, 
T-cell depletion induction therapies (e.g., anti-CD3, 
anti-CD52 monoclonal antibodies or polyclonal anti-
thymocyte globulins) are used in clinical solid organ 
transplant (SOT) to prevent acute rejection. These 
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The importance of DCs in transplant rejection was 
highlighted by the finding that graft rejection was 
related to the migration of immunogenic passenger DCs 
into recipient lymphoid tissues, instigating rejection[62]. 
Donor derived DCs from allografts have the ability 
to directly migrate to recipient secondary lymphoid 
tissues to initiate immune responses[63], referred as 
direct pathway of allorecognition. Recipient DCs can 
be equally implicated in transplant rejection, through 
indirect pathway of allorecognition, as evidenced by the 
fact that skin allografts from MHC class Ⅱ-/- donors onto 
MHC class Ⅰ-/- recipients were still rejected[64]. However, 
more recently the view on recipient DCs as being solely 
potent stimulators of T cells has changed, based on 
evidence demonstrating the role of DCs in central and 
peripheral tolerance[65-67]. The overall tolerogenic or 
pathogenic capacity of DCs is dictated by: (1) the DC 
subset involved; (2) the maturation status; and (3) the 
microenvironment[61,68,69]. DC subsets differ on surface 
marker expression, tissue distribution and function. 
Human DCs subsets display a vast array of subsets: 
myeloid, plasmacytoid or follicular DCs and Langerhan’s 
cells[70,71]. It is known that production by inmature DCs of 
indoleamine 2,3-dioxygenase (IDO), which catabolizes 
the essential amino acid L-tryptophan, evokes an 
amino acid deprivation, inhibiting antigen specific T cell 
proliferation while promoting Tregs development and 
tolerance[72,73]. The local microenvironment can have a 
significant impact on the development of DCs. Certain 
locations promote greater numbers of tolerizing DCs 
than others. Liver-derived DC progenitors were more 
suppressive than bone marrow derived DCs[74,75]. In 
vivo development of DCs in driven by hematopoietic 
growth factors c-Kit ligand and Fms-like tyrosine 
kinase 3 (FLT-3)[76-78], and production of granulocyte 
and monocyte colony stimulatory factors (GM-CSF) by 
activated T cells serves as maturation signal for DCs. 
Fully mature DCs produce proinflammatory cytokines 
and upregulate costimulatory molecules[79]. In contrast, 
immature DCs produce tolerogenic cytokine IL-10 and 
lack costimulatory signals for T cell activation.

Although the major mechanism of immune tole­
rance occurs in the thymus, DCs induce peripheral 
tolerance through: (1) deletion of alloantigen specific 
T cells; (2) induction of T cell anergy; (3) immune 
deviation; and (4) generation of regulatory T cells[9]. 
Transplantation of allogenic organs generates high 
frequencies of alloreative T cells, and deletion of donor-
reactive T cells is critical in the induction of transplant 
tolerance. Elimination of donor-reactive T cells by 
DCs could be carried out through either inhibitory 
signaling or production of apoptotic factors[75,80,81]. The 
mechanisms through which immature DCs induce T cell 
anergy are not understood but thought to involve IL-10, 
directly through IL-10 receptor signaling or dependent 
on inducible T-cell costimulator (ICOS) signaling[82,83]. 
Another reason for considering tolerogenic DCs for 
tolerance therapies in transplantation is their ability 
to skew the cytokine profile in the direction of a Th2 

phenotype[84]. DCs induce contrasting states of immunity 
or tolerance based on their maturation and subset. 
Both in vivo and in vitro evidence support the central 
role of IL-12 in the polarization of Th1 lymphocytes. 
Levels of IL-12 fluctuate during the different stages 
of DC development, therefore, DCs can differ in their 
immunogenicity depending on their maturation state. 
Tolerogenic DCs can in part mediate Tregs suppressive 
functions by promoting their development, principally 
by immature DCs[85]. Tolerogenic DCs may not only 
be involved in the induction of Tregs but may also 
play a role in the activation and maintenance of their 
suppressor functions. IDO has been shown to skew 
naive CD4+ T cell development towards the Treg 
lineage[86], and it was dependent on cell-cell contact 
mediated mechanisms[87]. Interestingly, Tregs may also 
promote the development of tolerogenic DCs from DC 
progenitors[88]. 

In this way, tolerogenic DCs are tempting from a 
clinical perspective because of their low capacity for T 
cell stimulatory functions and high capacity for inducing 
tolerogenicity. Tolerogenic DCs differ phenotypically 
and functionally from their mature DC counterparts. 
Downregulation of MHC class Ⅱ[89] and costimulatroy 
molecules as CD40, CD80, CD86 or CD83[90,91] or upre­
gulation of inhibitory factors as B7-H1 or ICOS ligand[92] 
and death inducing ligands as FASL or TRAIL[93,94] on 
the surface of tolerogenic DCs compromises their ability 
to present antigen and activate T cells. In addition 
to contact dependent mechanisms of inhibition, tole­
rogenic DCs secrete effector molecules and regulatory 
cytokines (nitric oxide, heme-oxygenase-1, IL-10), 
thereby extending their suppressive effects[95-97].

In vitro propagation of DCs is necessary to gene­
rate the number of DCs required for therapeutic 
applications, due to DCs constituting a small fraction 
of leukocytes. In this way, several techniques have 
been carried out to manipulating DCs for therapeutic 
purposes. Maturation with GM-CSF[92] and tolerogenic 
cytokines, blocking the costimulatory pathway[74,98], 
using immunosupressive drugs as rapamycin[99] or by 
genetic engineering[100,101].

OTHER CELLS: B CELLS, MACROPHAGES 
AND NATURAL KILLER CELLS
B cells not only serve as an effector component of 
an immune response by generating antibodies, but 
they also present antigens to T cells and release 
immune cytokines. They may help to generate and 
expand Tregs as well as diminish antigen-specific T cell 
responses[102,103]. B cells also produce cytokines under 
inflammatory conditions. In particular, B cells produce 
large amounts of the immunosuppressive cytokine 
IL-10, which inhibits and reverses the progression of 
inflammation. Both CD5+ B1 cells and conventional B 
cells have been reported to produce IL-10[104]. These 
findings suggest that B cells may be critical regulators 
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in the process of tolerance induction. Clinical trials in 
renal transplantation revealed a significant increase 
of total B cell numbers and naive B cells in tolerant 
recipients[103,105]. Moreover, tolerant patients also had 
enhanced expression of B cell differentiation and 
activation genes such as TCL1A or VH4-34. It remains 
unknown whether the elevation of B cell numbers was 
a consequence of transplantation tolerance or whether 
the B cells were involved in promoting tolerance.

Other innate cell types exhibit similar features in 
tolerance induction. In certain settings, monocyte/
macrophage can exert potent anti-inflammatory and 
immunosuppressive effects that help maintain peri­
pheral tolerance[106]. The alternative activated M2 
macrophages are capable of secreting anti-inflammatory 
cytokines, such as IL-10 and TGF-β that are involved 
in tapering immune responses and resolution of graft 
inflammation. In fact, some studies demonstrate that 
adoptive transfer of M2 macrophages can ameliorate 
the induction of experimental autoimmune encephalitis 
and prevent autoimmune colitis by inducing and 
expanding Tregs[107]. Additionally, adoptive transfer of 
donor-derived M2 macrophages in a cohort of human 
kidney transplant recipients allowed for significant 
reduction in the use of immunosuppressive drugs. 
Similarly, natural killer (NK) cells also employ different 
mechanisms to promote transplant tolerance. NK cells, 
guided by “missing self recognition”, can eliminate graft-
derived allergenic DCs, thus reducing T cell priming by 
the direct pathway of antigen presentation[108]. Killing 
of donor cells by NKs favours the indirect antigen 
presentation, which is implicated in tolerance induction. 
Also, some NK cells exhibit regulatory function through 
IL-10 dependent mechanisms and contribute to 
tolerance induction by tipping the balance towards 
regulation[109].

The striking dichotomy of innate immune cells in 
transplant settings (rejection vs tolerance) is most 
likely context dependent, representing opposite out­
comes of the immune response to allotranasplants. 
Along this line, NK cells can be tolerogenic, and further 
NK maturation by IL-15 mediates rejection[110]. Like­
wise, M1 macrophages are pro-inflammatory and M2 
macrophages are immunosuppressive. This context-
dependent function of innate pathways and context-
dependent regulation of innate immune cells constitute 
a major challenge in manipulating immune responses 
to allotransplants.

IMMUNOSUPPRESSIVE DRUGS IN 
TRANSPLANTATION TOLERANCE: 
RAPAMYCIN
CNI, such as tacrolimus and cyclosporine A, have 
become the principal immunosuppressive drug in solid 
organ transplantation[111]. Their use resulted in lower 
rejection rates and improved short-term allograft 
survival rates, although long-term improvements 

have been more difficult to achieve. The main reason 
is that prolonged CNI exposure is associated with 
nephrotoxicity[112], neurotoxicity[113], risk for cancer[114], 
metabolic complications[115], and hypertension[116]. 
Reducing CNI exposure is the main goal to lower these 
adverse events, maintaining immunosuppressive 
efficacy. The inhibitor of mTOR, such as rapamycin and 
its derivate everolimus, are powerful non nephrotoxic 
agents with a different mechanism of action than CNI. 
Meanwhile CNI block the production of proinflammatory 
cytokines leading to inhibition of T-cell activation, 
rapamycin reduce T-cell activation later in the cell cycle 
by blocking growth-factor-mediated cell proliferation 
in the cellular response to alloantigen[10,11], The distinct 
mechanism of action and favorable nephrotoxicity 
profile has led to rapamycin-containing regimens being 
developed with the aim of minimizing, eliminating, or 
avoiding exposure to CNI. mTOR is a protein kinase 
involved in the signal 3 pathway of lymphocyte acti­
vation[117]. More specifically, mTOR belongs to the PI3K 
pathway, which is involved in several fundamental 
cellular functions such as cell growth, proliferation, 
and survival. The mTOR protein interacts with several 
proteins to form two distinct complexes: mTOR 
complex 1 (mTORC1) and 2 (mTORC2)[118]. Rapamycin 
interact with and inhibits mTOR, but only when it is 
part of mTORC1 and not mTORC2[118].

Rapamycin mediates immunosuppressive effects 
through multiple immune cell types and processes. 
Inhibition of mTOR by rapamycin suppresses the 
immune response by preventing cell cycle progression 
from G1 to S phase, thereby blocking proliferation[119]. 
Likewise, rapamycin can promote T-cell anergy 
independently of the inhibition of proliferation even 
in the presence of TCR activation and co-stimulation 
by CD28 and IL-2[120,121]. Other important functions 
of rapamycin in the immune system are related 
to dendritic cells. Rapamycin inhibits the ability of 
dendritic cells to endocytose antigens, to express 
MHC class Ⅱ molecules and to express co-stimulatory 
molecules[122,123], thereby preventing these cells from 
fully maturing into APCs that can strongly stimulate 
T-cells. Furthermore, immature dendritic cells promote 
the expansion of regulatory T-cells thus promoting 
tolerance to the graft[124]. This is explained by the 
observation that the JAK/STAT signaling pathway is 
induced preferentially in regulatory T-cells, whereas 
the PI3K/AKT/mTOR signaling pathway is reduced 
relative to conventional T-cells[125]. In addition, rapa­
mycin induces the expression of high levels of the anti-
apoptotic proteins Bcl-2 and Bcl-xL in regulatory T-cells; 
however, it downregulates the expression of such 
proteins in conventional T-cells[126].

Many studies have confirmed the beneficial effects 
of rapamycin or everolimus on regulatory T-cell biolo­
gy[127-129]. Patients treated with rapamycin before an 
allergenic corneal transplant showed an increased 
percentage of regulatory T-cells after transplanta­
tion[130], these changes were associated with inhibition 
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of graft rejection. In another[128], patients treated with 
everolimus maintained constant levels of CD4+ T-cells 
during the treatment, but patients treated with CNI 
showed a decrease of these cells. Moreover, patients 
treated with everolimus had higher percentage of total 
CD4+ and naïve CD4 T-cells than those treated with 
CNI. With patients receiving IS, maintaining a pool of 
naïve T-cells is of great importance to protect against 
new infective agents. In addition, compared with 
cyclosporine A-treated patients, everolimus-treated 
patients had more regulatory T-cells and regulatory 
T-cells expressing CXCR3, a chemokine receptor that 
is responsible for the migration of T-cells to inflamed 
tissue such as the transplanted liver. Thus, everolimus 
seems to be more effective in preventing rejection by 
allowing regulatory T-cells to exert an effect in situ. 
Cyclosporine A-treated patients did not maintain the 
levels of regulatory T-cells that were present before LT.

The results of other studies of mice treated with 
rapamycin have suggested that antigen-specific T-cells 
responding to a pathogen express CD62L, which is 
associated with the development of a memory pheno­
type, whereas antigen-specific T-cells responding to a 
graft do not express this marker[131]. Thus, minimizing 
the generation of memory cells by treatment with an 
mTORi could decrease graft rejection responses, and 
indirectly promote an environment where tolerance 
could be established.

IDENTIFYING TOLERANT PATIENTS: A 
BIOMARKER SIGNATURE
A significant number of patients may become opera

tionally tolerant after LT[6]; however, identifying tolerant 
patients before drug withdrawal is the purpose. Thus, 
researchers have focused on identifying biomarkers 
of tolerance that would aid the clinician in detecting 
tolerant individuals and help to elucidate molecular 
mechanisms of tolerance and provide therapeutic 
targets[132] (Table 1).

At the beginning, the studies performed to identify 
biomarkers of tolerance in LT employed immuno­
phenotyping by flow cytometry and gene expression 
profiling of blood samples[40,42,43,133,134]. These studies 
were made in a retrospective and cross-sectional 
fashion, where operationally tolerant recipients defined 
as patients with stable graft function after IS withdrawal 
were compared to recipients under maintenance IS 
who suffered a rejection episode during drug weaning 
process (non-tolerant patients). Mazariegos et al[134] 
demonstrated a significant increase in the ratio of 
peripheral blood monocytoid dendritic cells (mDC) 
to plasmacytoid dendritic cell (pDC) precursors in 
tolerant patients compared to healthy controls and 
those on maintenance IS. In other reports, tolerant 
patients exhibited increased numbers of Tregs, and an 
increase in the vδ1/vδ2 T-cell subset ratio[133,135]. One 
of these groups showed, in their cohort of pediatric 
liver transplant recipients, that the γδT cell signature 
previously noted in peripheral blood mononuclear 
cells (PBMC) also characterized intragraft analysis and 
also showed significant accumulation of Treg in liver 
allograft biopsy samples of tolerant vs non-tolerant 
recipients[133]. These findings were corroborated 
recently in an adult cohort of tolerant subjects who 
underwent prospective withdrawal of IS[136].
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Table 1  Biomarkers of tolerance in liver transplantation

Biomarker Description Study before or during 
IS withdrawal

Ref.

Dendritic cells
   pCD/mCD ratio Tolerant patients have elevated pDC/mDC ratio. No differences between tolerant 

patients vs healthy controls
No [134,150]

   mDCs/pCD ratio Elevated mDC/pCD associated with late rejection No [151]
   PD-L1/CD86 ratio Elevated PD-L1/CD86 expression on DCs in tolerant patients No [152]
   DC HLA-G expression Elevated on mDC No [153]
T cells
   Regulatory T cells Increase of peripheral CD4+CD25high cells and RNA FoxP3 over time during 

weaning
Yes [40,43,44,133]

Increase in T regs in liver biopsy of tolerant patients
   Natural killer Increase in Tolerant patients Yes [154]
Soluble factors
   Serum HLA-G Normal or elevated serum HLA-G levels associated to normal liver No [155-157]
   Anti-donor antibodies Absent in tolerant patients No [150]
Cell proliferation
   Phytohemagglutinin SI SI < 20 and > 10 yr since LT 100% tolerance Yes [158]
Genetic profile
   Cytokine gene 
   polymorphism

Low TNF-alpha and high/intermediate IL-10 production in OT No [159]

   Gene transcripts Enriched from NK, CD4+CD25+ FoxP3+, γδTCR+ and δ1TCR+ No [42,43,160]
   Genes related to iron 
   homeostasis in liver graft

Enriched in tolerant patients (CDHR2, MIF, PEBP1, SOCS1, TRF) Yes [140]

DC: Dendritic cell; mDC: Monocytoid dendritic cell; LT: Liver transplantation; pDC: plasmacytoid dendritic cell; SI: Stimulation index.
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While both peripheral blood immune cell pheno­
typing and cross-platform gene expression profiling 
showed tolerance to be associated with increases 
in B-cell-related transcripts, and in some reports, a 
skewing towards transitional and naïve B-cell reper
toires[137,138], biomarkers associated with liver allograft 
tolerance are predominantly related to natural killer 
cells and γδT cells in blood, and genes related to 
iron homeostasis in the graft. Robust highly specific 
gene signatures have been developed as biomarkers 
associated with liver allograft tolerance[139]. The 
group of Martinez-Llordella et al[43] was the first to 
use microarray technology for the gene expression 
profiling of PBMC from operationally tolerant liver 
transplant recipients. They compared in a retrospective 
cross-sectional study gene expression profiles in the 
peripheral blood of tolerant and non-tolerant liver 
transplant recipients with healthy controls. They found 
that clinically tolerant patients could be identified not 
only by a signature of genes encoding several cell 
surface receptors expressed by NK, CD8+ and γδT cells 
as well as proteins involved in halting cell proliferation, 
but also by the expansion of CD4+CD25+Foxp3+ 
natural regulatory T cells (nTregs) and γδ TCR+ 
(especially vδ1 TCR+) T cells in the peripheral 
blood. This genomic and immunological footprint of 
operational tolerance was subsequently validated in 
an independent cohort of 23 additional recipients[42]. 
Our group reported one of the first prospective IS 
withdrawal studies analyzing the expression of FOXP3 
in peripheral blood Tregs during withdrawal of IS in 
liver transplant recipients receiving cyclosporine A[44]. 
An increase in the frequency of CD4+CD25high cells 
was observed when IS was withdrawn in tolerant liver 
transplant recipients. Any significant difference in this 
population of cells was not observed in the non-tolerant 
group. In addition, tolerant patients exhibited an 
increase in FOXP3 mRNA expression of peripheral blood 
mononuclear cells before complete IS withdrawal that 
continued even when IS therapy was stopped. 

More recently, Bohne et al[140] reported the results 
of the first prospective IS withdrawal trial in liver 
transplant recipients including blood and liver tissue 
transcriptional biomarker studies. In that study, 98 
liver recipients completed the trial: 57 experienced 
rejection and 41 were successfully weaned. Sequential 
blood and/or liver tissue samples from 75 recipients 
were analyzed with whole-genome microarrays and 
quantitative polymerase chain reaction. While PBMC 
gene analysis again corroborated the enrichment of 
natural killer and γδT cell transcripts, additionally, before 
initiation of drug withdrawal, operationally tolerant and 
non-tolerant groups differed in the intragraft expression 
of genes related to iron metabolism; tolerant patients 
also had higher serum levels of hepcidin and ferritin as 
well as increased iron deposition within hepatocytes. 
More important is the fact that certain hepatic tissue 
gene expression patterns had a high predictive value 
of the outcome of IS withdrawal in an independent 

set of patients. These results suggest a critical role for 
iron metabolism in the regulation of human intragraft 
alloimmune responses and provide a set of biomarkers 
to enroll the liver transplant patients into drug weaning 
trials with higher probability of success[140]. 

MicroRNAs (miRNAs) constitute a key regulatory 
component of immune system development and 
function. In a recent study, Vitalone et al[141] found in a 
rat experimental model of LT an increased expression of 
miR-142-5p and miR-181a in liver tissue and proposed 
that these miRNAs represented 2 potential biomarkers 
associated with tolerance. This study demonstrated 
the need for ongoing evaluation to delineate the role of 
individual miRNAs within the context of larger patient 
cohorts.

Recently, several promising biomarkers have been 
identified for determining patient alloreactivity and 
tolerance. A consensus document that aims to help 
tailor IS has been developed by the Biomarker Working 
Group of the International Association of Therapeutic 
Drug Monitoring and Clinical Toxicology[142].

CLINICAL RELEVANCE OF TOLERANCE 
IN LIVER TRANSPLANTATION: DOES 
IMMUNOSUPPRESSION WITHDRAWAL 
REDUCE THE COMPLICATIONS 
RESULTING FROM ITS USE?
Regardless of the progress made in recent years in 
OT, it would be necessary to define in a controlled 
and prospective way different aspects that arise 
as questions from the patient’s bedside: (1) Is it 
possible to withdraw IS in patients with LT? (2) Is 
it dangerous for patients to be subjected to an IS 
withdrawal protocol? (3) Is IS withdrawal beneficial for 
patients? and (4) Is there any parameter that during 
IS withdrawal process allows recognizing the group of 
patients who can be subjected to IS withdrawal? The 
first cases of OT after LT were documented by Starzl 
et al[143] in the early 1990s. Based on the finding that 
11 LT patients had stopped taking IS medication due 
to lack of treatment adherence or post transplant 
lymphoproliferative disease, the authors designed a 
prospective study on intentional withdrawal of IS in 
LT patients and toxicity associated with IS[144]. In 18 
(19%) of the 95 patients included in the study, IS could 
be completely withdrawn without causing alterations 
in liver function up to 2.2 years after inclusion. Since 
then, various studies have been published in which 
complete IS withdrawal in LT patients was attempted 
according to a pre-established protocol. Undoubtedly, 
intentional IS withdrawal protocols in LT without the use 
of presumably tolerogenic treatments are the largest 
in number and were the basis for establishing the 
proof of the concept of OT. Overall, OT was obtained 
in 23% of the patients without tolerogenic protocols, 
all of whom were selected for different reasons; 
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however, they were generally chosen because of 
adverse effects of immunosuppressive medication. The 
strategies investigated up to now, aimed at obtaining 
an IS-free state, are numerous and heterogeneous in 
terms of concept, rationale, patient age, underlying 
LT indications, objectives, type of LT (cadaver or living 
donor),duration of IS withdrawal period, duration of 
follow up, presence or absence of donor cell chimerism, 
tools used to measure tolerance mechanisms, etc. 
Nevertheless, the literature published to date can be 
summarized by maintaining that a permanent state 
of OT can be obtained in some patients undergoing LT 
for non-immunological underlying diseases and that 
those patients who do not achieve OT and experience 
rejection are not exposed to a greater risk of graft loss 
or death.

The first two prospective multicenter monitored 
clinical trials of IS withdrawal in pediatric and adult 
patients with LT have been recently published. The 
study of Benítez et al[145] is the first prospective 
multinational study of IS withdrawal in adults. This 
study included 102 patients out of 500 who were 
initially analyzed after IS withdrawal for a period 
between 6 and 9 mo. The primary goal of this study 
was to define the frequency of operational tolerance 
and the secondary objectives were based on mortality, 
graft loss, severity of rejection episodes, time between 
the start of IS withdrawal and rejection, histological 
liver changes after IS withdrawal, normalization of 
graft dysfunction after rejection onset and possible 
change in the side effects of IS followed by a 36 mo 
monitoring after inclusion in the study. Its main results 
and conclusions were:

A 40.2% (41/102) of patients with treatment 
intention or 41.8% (41/98) of patients by protocol 
compliance achieved OT, which was stable at least for 
49 ± 7.7 mo of follow up.

Not all of the patients analyzed (500) were included 
in the study. Therefore, the applicability of this IS 
withdrawal strategy was only 20.4% (102/500).

The non-tolerant patients (57; 58%) were always 
this way during IS withdrawal and not after finishing 
withdrawal. Concerning these patients, rejection was 
mild or moderate in most of them and only severe in 
5%. In addition, there were not any cases of chronic 
rejection and liver dysfunction was resolved in most 
cases with basal IS restoration or with association of 
low or moderate doses of steroids.

There were not any changes in comorbidities or 
in tolerant and non-tolerant patients after a follow-up 
period of 36 mo.

In tolerant patients, there was an increase of lobular 
inflammation beginning one year after IS withdrawal, 
not observed three years after such withdrawal.

One of the most important findings of this study is 
that the best tolerance predictor after LT is time. It is 
still more striking to notice that 79.2% of those who 
had had their graft for 10.6 years or more achieved 
IS withdrawal, indicating a propensity to develop 

tolerance over time. Nevertheless, the probability of 
tolerance was zero in patients with less than 6 years 
from LT and who were under the age of 49.

The results of this study demonstrate the real 
possibility of withdrawing immunosuppressive drugs 
in a higher proportion of patients with LT than the 
previously known of 20%, especially the more time has 
passed after the transplantation. The study has some 
limitations that the authors themselves acknowledge, 
as the possible bias because of the strict selection 
criteria that result in low applicability of this strategy. 
Furthermore, the lack of clinical benefit in terms of 
improvement of the side effects of IS requires a closer 
monitoring to study if it occurs. The findings of this 
study are consistent with the other large prospective 
study carried out in 20 pediatric transplant patients 
with parental living donor[146]. In this study, 60% of 
patients reached OT and these patients had been 
transplanted longer (median, 100.6 mo) than those 
non-tolerant patients (median, 73 mo). In addition, 
the study confirms a higher rate of OT in pediatric 
patients than in adults, as previously demonstrated.

The first two questions posed are clearly answered, 
both by Benítez et al[145], and by Feng et al[147], and it 
can be asserted that OT is possible and frequent the 
more time passes from LT and it is not particularly 
dangerous when done in a controlled way. Nevertheless, 
a longer follow up is necessary, since sometimes 
rejection can occur several years after IS withdrawal. 
However, it is more difficult to answer the question 
about whether IS withdrawal is beneficial for the 
patient, since neither study showed benefits.

A major focus of IS reduction or withdrawal 
has been the long-term effects. Few of the studies 
performed so far have provided a detailed analysis 
of the impact of IS withdrawal on pre-existing compli­
cations derived from the long-term administration 
of immunosuppressive drugs and the side effects 
associated with them (Table 2). In only one study 
the aim was to evaluate the feasibility of gradual 
withdrawal of IS in liver transplant recipients and 
to examine the impact of IS withdrawal on renal 
function and cardiovascular risk factors[148]. In this 
study, IS withdrawal was safely achieved in selected 
liver transplant patients and improved not only kidney 
function but also other CyA-associated side effects such 
as hypercholesterolemia, hyperuricemia, hypertension 
and diabetes control. However, longer follow-up periods 
are needed to confirm the benefits of IS withdrawal in 
liver transplant patients and to observe whether there 
are problems with chronic rejection after complete 
withdrawal of immunosuppressive drugs. Only one 
study has examined the effect of IS withdrawal in 
hepatitis C virus-positive recipients[146]. This study 
showed improvement in fibrosis after withdrawal, 
similar to that observed with successful post-LT 
interferon therapy. However, this preliminary study has 
not been replicated, and a follow-up study almost 3 
years later did not show any histological differences. 
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In this study, tolerant individuals were euglycemic 
and more intolerant individuals developed new onset 
diabetes that required specific treatment. Finally, 
significantly more intolerant patients were suffering 
from either cardiovascular or infectious diseases. 
Yoshitomi et al[149] found that grafts from operationally 
tolerant living donor LT recipients exhibited more 
fibrosis, ductular reactions, and decreased luminal 
diameter of bile ducts as compared to patients under IS 
treatment, and that these abnormalities improved after 
reintroduction of low-dose IS. However, these data 
should be cautiously interpreted due to the substantial 
difference in post transplantation time between the two 
groups.

A limitation of all withdrawal studies is the absence 
of prospectively followed, IS-maintained patients as 
control cohorts. Understanding the true clinical benefits 
of withdrawal rather than comparing long-term out­
comes and IS-related effects in tolerant vs intolerant 
recipients is likely to be more useful when comparing 
such outcomes of intolerant vs IS-maintained or IS- 
minimized patients as control cohorts. The potential 
impact of IS minimization or withdrawal protocols on 
long-term subclinical histological graft damage (e.g., 
idiopathic chronic hepatitis and/or progressive fibrosis) 
also remains to be properly investigated. This is 
relevant considering that most protocol biopsy studies 
have revealed substantial histological abnormalities in 
long-term surviving liver recipients with unremarkable 
liver function tests.

CONCLUSIONS AND FUTURE 
CHALLENGES
The future of LT should be focused on the reduction 
of side effects due to immunosuppressive drugs in 
order to improve quality of life with preservation of 
the viability of the liver graft. Tolerance is a reality in a 
reduced number of patients, so new treatments aimed 
to increase tolerance of the liver allograft have to be 
developed. Cell therapy with ex vivo expanded Tregs 
is currently being tested to induce LT tolerance. The 
effects of mesenchymal stromal cell infusions are also 
being explored, trying to improve preservation injury, 
preventing ischemic cholangiopathy, or facilitating IS 
minimization. While these are very promising studies, 
key issues related to dosing, timing or most appropriate 
adjunctive IS will need to be clarified before large scale 
clinical applications can be considered. Looking into 
the future, conventional immunosuppressive drugs 
will likely remain as principal therapy after LT. Some 
selected patients will not need IS due to induced or 
spontaneously developed tolerance. In the remaining 
recipients, IS will be administrated according to the 
quality of the graft, inflammatory status, or degree of 
cellular or humoral sensitization.

Defining new biomarkers to assess the individual 
immune status of a transplant patient to fine tune the 
immunosuppressive therapy is the key to improve 
graft and patient survival. Many biomarkers have 
not yet been validated in comprehensive prospective 
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Table 2  Impact of immunosuppression withdrawal on preexisting complications in liver transplantation

Author (year) Ref. No. of 
patients

Rational for IS withdrawal Description of impact on 
preexisting complications

Impact on preexisting complications in tolerant 
patients

Mazariegos [144]   95 Chronic IS-related toxicity Yes No changes in renal function or hypertension. 
Higher survey scores of patients well being(1997)

Devlin [2]   18 Chronic IS-related toxicity No -
(1998)
Takatsuki [161]   63 30 PTLD No -
(2001)
Eason [162]   18 Patients who expressed a desire 

to discontinue IS
No -

(2005)
Tryphonopoulos [163] 104 Role of DBMI in IS withdrawal 

in LT
No -

(2005)
Orlando [146]   34 Impact of IS withdrawal on 

HCV disease in LT
Yes Less cardiovascular or infectious diseases

(2008)
Pons [148]   22 Chronic IS-related toxicity Yes Renal function, hypertension, 

hypercholesterolemia, hyperuricemia, 
hypertension and diabetes control improved

(2009)

Feng [147]   20 Chronic IS-related toxicity Yes No changes in comorbidities
(2012)
de la Garza [158]   22 Chronic IS-related toxicity No -
(2013)
Benitez [145] 102 Chronic IS-related toxicity Yes No changes in comorbidities
(2013)

IS: Immunosuppression; PTLD: Post-transplant lymphoproliferative disorder; HCV: Hepatitis C virus; LT: Liver transplantation; DBMI: Donor bone 
marrow infusion.
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clinical trials and the proposed clinical decision limits 
are frequently based on retrospective and single 
center experiences. Molecular profiling is evolving 
at unprecedented rates, as are the bioinformatic 
techniques required to enable the handling of the 
vast data pools generated. Definitive substantiation of 
the clinical utility of any of the discussed biomarkers 
rests on their successful application in prospective, 
randomized trials of biomarker-led IS weaning. 
Lastly, it is becoming evident that a single biomarker 
cannot be able to reflect all the alterations of the 
immune system associated with LT. Therefore, a panel 
of different biomarkers will be needed to properly 
evaluate the immunological suppression and to modify 
immunosuppressive treatment according to patient 
needs.
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