
effectors and binding ligands, resulting in an increase 
in pancreatic cancer invasiveness and a cancer-
favored microenvironment. Recent advance in gly
coproteomics, glycomics and other chemical biology 
techniques have been employed to better understand 
the complex mechanism of glycosylation events and 
how they orchestrate molecular activities in genomics, 
proteomics and metabolomics implicated in pancreatic 
adenocarcinoma. A variety of strategies have been 
demonstrated targeting protein glycosylation and 
polysaccharides for diagnostic and therapeutic deve
lopment. 
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Core tip: Protein glycosylation plays an important role in 
pancreatic tumorigenesis. Malignance induced changes 
in protein glycosylation can profoundly impact the 
function of a protein in multiple ways. One approach 
for developing better diagnostic and therapeutic 
strategies in pancreatic cancer involves targeting 
cancer-associated aberrant glycosylation. This review 
discusses the recent discoveries in glycoproteomics 
study of pancreatic cancer.
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INTRODUCTION
Pancreatic cancer is one of the most deadly cancers, in 
part because detection of pancreatic cancer is difficult 
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Abstract
Aberrations in protein glycosylation and polysaccha
rides play a pivotal role in pancreatic tumorigenesis, 
influencing cancer progression, metastasis, immuno-
response and chemoresistance. Abnormal expression 
in sugar moieties can impact the function of various 
glycoproteins, including mucins, surface receptors, 
adhesive proteins, proteoglycans, as well as their 
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at its early stages when surgical and other treatments 
are most effective[1,2]. In addition, innate or adapted 
drug-resistance has been a major hurdle in pancreatic 
cancer chemotherapy[3,4]. Malignance induced changes 
in protein glycosylation, such N-glycosylation and 
O-glycosylation, can profoundly impact the function 
of a protein in multiple ways, including protein ma
turation, expression, localization, as well as post-
translational modifications, influencing a wide 
spectrum of glycoproteins and their binding ligands. 
One approach for developing better diagnostic and 
therapeutic strategies in pancreatic cancer involves 
targeting cancer-associated aberrant glycosylation. 
Recent developments of technology in proteomics 
and chemical biology have thus stimulated growing 
interest in elucidating the complex glycosylation events 
involved in pancreatic adenocarcinoma.

PROTEIN GLYCOSYLATION AND ITS 
IMPLICATION IN CANCER
Glycosylation is one of the most complex and common 
forms of protein post-translational modifications[5,6]. 
It plays a pivotal role in many biological processes, 
such as protein folding, cell adhesion and trafficking, 
cell signaling, pathogen recognition and immune 
response[7-11]. Protein glycosylation occurs in the 
endoplasmic reticulum and Golgi apparatus in multiple 
enzymatic steps. As illustrated in Figure 1, the most 
common protein glycosylations are N-linked and 
O-linked glycosylation. N-linked glycans are attached 
to the amide group of asparagine residues in a 
consensus Asn-X-Ser/Thr sequence (X can be any 
amino acid except proline)[12]. O-linked glycans are 
linked to the hydroxyl group on serine or threonine 

residues[13]. One unique subclass of O-glycosylation is 
the phosphorylation-like, reversible O-GlcNAcylation[14]. 
Less common forms of glycosylation include glycosyl
phosphatidylinositol anchors attached to protein 
carboxyl terminus, C-glycosylation that occurs on 
tryptophan residues[15] and S-linked glycosylation 
through a sulfur atom on cysteine or methionine[16].  
In addition to protein glycosylation, proteoglycans and 
hyaluronan are major components of the extracellular 
matrix (ECM), which are implicated in cell proliferation 
and migration.

Most secretory and membrane-bound proteins 
produced by mammalian cells contain covalently 
linked sugar chains with diverse structures. The 
glycosylation form and density of glycans on a 
protein can be altered significantly in association with 
changes in cellular pathways and processes resulted 
from diseases, such as malignancy. In fact, altered 
glycosylation patterns have long been recognized as 
hallmarks in epithelial cancer[17-22], including pancreatic 
ductal adenocarcinoma (PDAC), which accounts 
for about 90% of pancreatic cancer. Glycosylation 
abnormalities can be characterized by one or both of 
the following changes: (1) composition and structural 
alterations of glycan; and (2) change in the density 
of glycosylation at protein sites (hyper, hypo or neo-
glycosylation). Ultimately, malignant transforma
tion is usually associated with one or both of these 
types of glycosylation alterations, leading to the 
expressional and functional changes of tumor-specific 
glycoproteins. Malignancy associated glycosylation 
abnormalities can influence cancer cell proliferation, 
invasion and viability, as well as interactions with 
tumor micro environment. Disruption or inhibition of 
glycosylation and carbohydrate-dependent cellular 
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pathways may represent potential modalities for 
cancer therapies[23,24]. Receptor tyrosine kinases 
(RTKs), which are transmembrane glycoproteins 
that play important roles in malignancy and drug 
resistance, have been targets of anti-cancer drug 
development for various malignancies, including 
pancreatic adenocarcinoma[25,26]. In addition, many 
of the current blood-based tumor markers are gly
coproteins, including CA 19-9 for pancreatic cancer, 
CA 125 for ovarian cancer, CA 15-3 for breast cancer, 
and CA 242 for gastrointestinal cancer. CA 19-9, which 
detects the epitope of sialyl Lewis (a) on mucins and 
other adhesive molecules such as carcinoembryonic 
antigen[27-29], is widely used for monitoring the clinical 
course of pancreatic cancer patients[30]. To date, 
while implication of aberrant protein glycosylation in 
malignancy has been well recognized[21,31], limited 
information is available describing the site specific 
glycoproteome changes associated with pancreatic 
cancer.

GLYCOPROTEOMICS METHODS
A number of proteomics studies in pancreatic cancer 
have been reported[32-39]. As a subfield of proteomics, 
glycoproteomics uniquely focuses on analyzing glycosy
lated proteins to reveal glycoproteome alterations 
associated with pancreatic cancer. The major challenge 
for a comprehensive glycoproteomics analysis in a 
clinical sample arises from the biological intricacy 
within the molecule of a glycoprotein, including the 
variety in glycan composition and structure, as well 
as the complex linkage to the corresponding protein. 
Mass spectrometry has been the most effective and 
versatile instrument platform for both glycan and 
protein analysis. Although various sample preparation 
strategies may be applied to collect glycoproteins 
or glycans from different biological specimens, 
a glycoproteomics pipeline typically consists of 
glyco-enrichment, MS analysis and bioinformatics 
interpretation. The technical details of global analysis 
of glycoprotein can be found in a number of reviews 
on the subject of glycomics (analysis of glycans)[40-43] 
and glycoproteomics (analysis of glycoproteins and 

glycosites)[15,44-52]. Figure 2 illustrates the overall 
approaches for MS analysis of glycoproteins. Prior 
to MS acquisition, glyco-enrichment strategies, 
including lectin affinity[53-56], hydrazide chemistry[57-60], 
boronic acid[61], size-exclusion chromatography[62], 
and hydrophilic interaction[63], may be applied to 
enrich glycoproteins from complex biological samples, 
and thus, enhance analytical sensitivity. The direct 
analysis of intact glycopeptides with carbohydrate 
attachments is analytically challenging, but allows 
complementary identification of the peptide backbone 
and the glycan structure in a single measurement, 
providing site-specific glycosylation characterization 
directly. However, this approach is complicated by the 
mixed information obtained from the MS signals from 
the peptide backbone, the carbohydrate group and the 
combinations of both, and therefore, is largely limited 
for analyzing purified glycoproteins or simple systems. 
Alternatively, glycans, especially N-linked glycans, 
can be enzymatically or chemically cleaved from 
proteins or peptides and analyzed separately by MS. 
Using glycan databases and bioinformatics tools, MS 
analysis enables global identification of glycan species 
in a complex biological sample. On the other hand, 
de-glycosylated glycopeptides can also be profiled in 
a global fashion using shotgun proteomics approach 
to identify the amino acid sequence of the backbone 
peptides. The N-glycosylation sites can be precisely 
mapped using the consensus sequence of Asn-X-Ser/
Thr, in which asparagine is converted to aspartic acid 
after PNGase F enzymatic cleavage, which introduces a 
mass difference of 0.9840 Dalton for MS identification. 
By defining the glycan structures and profiling the 
glycoproteins in complex clinical samples, disease 
associated aberrant glycan forms and site-specific 
occupancy on proteins can be revealed. For quantitative 
analysis, additional steps, such as differential stable 
isotope labeling of the sample and controls, may be 
required. Ultimately, to comprehensively address 
disease associated aberrant glycosylation, all the data 
obtained from different aspects of the workflow need 
to be integrated, so that the full extent of glycosylation 
changes with site-specific information can be better 
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cancer associated signal[71]. Although the detection of 
increase level of fucosylated HP alone does not provide 
sufficient accuracy for pancreatic cancer diagnosis, 
it is possible that fucosylated HP might be used as 
an indication of liver metastasis if the biomarker 
undergoes further validation[72,73]. The changes in 
protein fucosylation and sialylation in pancreatic 
cancer were also investigated by analyzing intact 
glycopeptides. Using immunoprecipitation, partial 
deglycosylation and LC MS/MS, one study suggested 
that the core-fucosylation levels at site N396 and 
N1424 in alpha-2-macroglobulin (A2M) were decreased 
in serum of both pancreatic cancer and chronic 
pancreatitis compared to non-diseased controls[74]. 
The investigation of sialylated N-glycopeptide levels 
in sera from pancreatic cancer patients in comparison 
to non-diseased controls and acute pancreatitis 
patients identified 13 glycoforms, mainly from high-
abundant serum proteins, with changes associated 
with pancreatic cancer group[75]. Mucinous cystic 
neoplasms (MCN) and intraductal papillary mucinous 
neoplasms (IPMN) are pancreatic cysts that are subject 
to high risk of malignant transformation. Proteomic 
and glycomic investigation of cyst fluids collected from 
patients with MCN and IPMN led to the identification 
of 80 N-linked glycans, and several hyper-fucosylated 
glycoproteins, including triacylglycerol lipase and 
pancreatic α-amylase[76].

GLYCOPROTEOMICS OF PANCREATIC 
CANCER CELLS AND TISSUES
Known tumor-specific glycoproteins, such as mucins 
and carcinoembryonic antigen-related cell adhesion 
molecules, have been extensively studied for their 
roles in neoplastic progression and metastasis of 
pancreatic cancer[77-81]. The emerging technology 
of glycoproteomics has been recently applied to 
interrogate broader changes of glycoproteome in 
pancreatic cancer cells and tissue. A large number of 
cell surface proteins are transmembrane glycoproteins, 
including many of cell-surface receptors such as RTKs, 
which play pivotal roles in signaling, trafficking and 
cell-cell interactions. These cell-surface receptors, such 
as epithelial growth factor receptor (EGFR), integrins, 
and TGF β receptor (TGFβR) have been important 
targets for anti-cancer therapy, and their glycosylation 
forms impact their functionality[82-85]. Using a biocytin 
hydrazide cell surface capturing technique[86], or 
azido sugar based bioorthogonal chemical reporter 
for metabolic glycan labeling[87] for glycopeptide 
enrichment, studies were carried out to profile N-linked 
glycopeptides derived from surface glycoproteins of 
pancreatic cancer cells using LC MS/MS[88,89]. The 
studies indicated the overexpression of CD109[88] and 
ecto-50-nucleotidase[89] in pancreatic cancer cells and 
tissues. Using multi-lectin affinity chromatography 

revealed. 

DISCOVERY OF ABERRANT 
GLYCOSYLATION IN BODILY FLUIDS
Identification and detection of abnormal protein 
glycosylation associated with pancreatic cancer in 
bodily fluids may present meaningful targets for cancer 
detection. A variety of carbohydrates and glycoproteins 
have been investigated for pancreatic cancer detection. 
Currently, CA19-9 is the only clinical biomarker test for 
management of pancreatic cancer[64]. While CA19-9 
is widely used for monitoring the clinical course of 
cancer patients, it does not provide adequate accuracy 
for pancreatic cancer diagnosis and early detection, 
underscoring the importance of obtaining molecular 
details on specific glycosylation events involved in 
neoplastic progression. Mucin (MUC) proteins, including 
MUC1, MUC5AC, and MUC16 are major protein carriers 
of CA 19-9, and play important roles in pancreatic 
cancer tumorigenesis, invasiveness and metastasis, 
in part through their characteristic glycoforms[28,65-67]. 
Changes of MUC1 and MUC5AC in pancreatic cancer 
serum involved distinct glycan alterations, including 
Thomsen-Friedenreich antigen and fucose and Lewis 
antigens[28]. The measurement of CA 19-9 antigen 
on MUC1, MUC5AC and MUC16 individually did not 
improve the performance of cancer detection, owing 
to the biological heterogeneity of the patients in their 
CA 19-9 protein carriers[68]. However, the combined 
measurement of standard CA 19-9 assay and the 
detection of the CA 19-9 antigen on MUC5AC and 
MUC16 did improve the performance of pancreatic 
cancer detection[68].

In addition to CA19-9, other aberrant protein 
glycosylations associated with pancreatic cancer have 
also been investigated in bodily fluids. The glycosylation 
of serum ribonuclease 1 (RNASE1) - another well-
studied pancreas associated protein, showed a 40% 
increase in core fucosylation in pancreatic cancer[69]. 
Using Concanavalin A lectin affinity chromatography for 
N-glycopeptide enrichment and LC MS/MS, one study 
identified 92 individual glycosylation sites and 105 
unique carbohydrate structures in serum, and observed 
increased branching of N-linked oligosaccharides, as 
well as increased protein fucosylation and sialylation in 
the sera from pancreatic cancer patients[70]. Increased 
level of sialyl Lewis X of major serum acute-phase 
proteins, including alpha-1-acid glycoprotein (AGP1 
or ORM1), haptoglobin (HP), fetuin (AHSG), alpha-
1-antitrypsin (SERPINA1) and transferrin (TF) were 
observed in the sera from patients with advanced 
pancreatic cancer and chronic pancreatitis - an 
alteration possibly associated with inflammatory 
response[71]. In addition, the observation of an increase 
in core fucosylation on AGP1 and HP in the serum of 
advanced pancreatic cancer may represent a potential 
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and LC-MS/MS, another study investigated the 
differential glycoproteins associated with pancreatic 
cancer CD24+CD44+ stem-like cells in comparison 
with CD24-CD44+ cells[90]. The study indicated 
that the high expression and high positive rate of 
CD24 was significantly associated with late-stage 
pancreatic adenocarcinomas, while CD13 expression 
and positive rate were negatively associated with 
tumor progression. By manipulating exogenous 
substrate supply, a study reported that increases in 
metabolic flux through the sialic acid pathway could 
dramatically enhance the sialylation of certain N-linked 
glycoproteins to influence cancer cell adhesive and 
mobility properties of SW1990 pancreatic cancer 
cells[91].

Glycoproteomic techniques were also applied to 
investigate the glycoproteome of pancreatic cancer 
tissues. In our study, we observed an overall increase 
in N-glycosylation level on many glycoproteins in 
PDAC tissue in comparison with normal pancreas[92]. 
Supplemental Table 1 summarizes some of the 
glycoproteins with at least one N-glycopeptide 
overexpressed (≥ 2 fold) in pancreatic cancer, 
including many pancreatic cancer associated proteins, 
such as MUC5AC, carcinoembryonic antigen-related 
cell adhesion molecule 5, insulin-like growth factor 
binding protein (IGFBP3), cathepsin D (CTSD), as 
well as a number of CD antigens (including CD44 - 
a marker of pancreatic cancer stem-like cells) and 
integrins. Pathway analysis suggested that increased 
N-glycosylation activities of these proteins were 
implicated in several pancreatic cancer pathways, 
including TGF-β, TNF, and NF-kappa-B[92]. Other 
glycoproteins, such as Thy-1 membrane glycoprotein 
(THY1), which was recently developed into an 
ultrasound molecular imaging marker for pancreatic 
cancer detection[93], was found heavily N-glycosylated 
in pancreatic cancer tissues. Further mapping of 
N-glycosylation sites revealed that the change of 
N-glycosylation level in pancreatic cancer was not 
only protein specific, but also glycosylation site 
specific. Specific N-glycosylation sites within certain 
individual proteins can have significantly altered 
glycosylation occupancy (e.g., a change in glycan 
density) in pancreatic cancer, reflecting the complex 
nature of glycosylation events underlying pancreatic 
tumorigenesis. Notably, the increase of N-glycosylation 
of many of these proteins was also found in chro
nic pancreatitis tissue, supporting the notion that 
pancreatic cancer and chronic pancreatitis share 
many common clinical and molecular features[94-98]. 
It is also noteworthy to mention that in contrast to 
many glycoproteins with increased N-glycosylation, 
pancreatic secretory granule membrane major 
glycoprotein (GP2) - a pancreas specific glycoprotein, 
showed a reduced N-glycosylated level in both cancer 
and chronic pancreatitis tissues. While the global data 
have revealed the aberrant N-glycosylation changes of 
many relevant proteins in pancreatic cancer tissues, 

the orchestrated glycosylation mechanism underlying 
pancreatic tumorigenesis, immune response and 
pancreatic functional changes, remains poorly 
understood and warrant further investigation. 

MUCIN GLYCOSYLATION
Mucins are high molecular weight glycoproteins 
produced by various epithelial cells, and have 21 
family members. The mucins are heavily glycosylated 
in O- and N-linked glycosylation and implicated 
in PDAC through their characteristic glycoforms 
influencing tumorigenicity, invasiveness, metastasis 
and drug resistance. Mucins have been extensively 
studied in PDAC, and showed various expressional 
and glycosylation changes not only in pancreatic 
carcinoma, but also in pancreatic intraepithelial 
neoplasia (PanIN), IPMN and MCN[66,67,99]. Several 
mucins, including MUC1, MUC4, MUC5AC and MUC16, 
are frequently upregulated in PDAC. Mucin core protein 
expression and the differential localization in PDAC and 
its precursor lesions have been well documented in the 
literature[66,67,100-103]. In addition, mucin glycoforms also 
play an important role in modulating their functionality 
in tumorigenesis as well as cancer cell interaction 
with the tumor microenvironment. In fact, the glycan 
component can make up more than 50% of the 
molecular weight of a mucin glycoprotein. 

The glycosylation of cancer associated mucins 
is largely associated with Tn antigen, sialyl Tn and 
fucosylated core 1 structures, forming the so-called 
tumor-associated antigens[104]. Altered glycoforms of 
MUC1, MUC4 and MUC5AC were observed early in 
pancreatic cancer progression (PanINs) to late stage 
metastatic disease[105]. The elevation of fucosylated 
core structures, fucose and Lewis antigen have 
frequently been detected on MUC1 and MUC5AC in 
the blood from patients with pancreatic cancer[28]. 
Additionally, MUC16 and its sialofucosylated 
structures were reported overexpressed in pancreatic 
cancer cell and acted as a functional ligand for E- 
and L-selectin to enhance cancer cell metastatic 
spread[106]. By stimulating pancreatic cancer cells 
with pro-inflammatory conditions, such as oxidative 
stress and cytokines, mucin glycosylation can be 
significantly altered in specific pancreatic cancer cell 
lines, suggesting a possible molecular link between 
inflammation, glycosylation alteration and adaptive 
responses of those pancreatic cancer cells[107]. Efforts 
have also been made to use proteomic approaches 
to prolife mucins in cyst fluids to enhance the discri
mination of malignant pancreatic cyst lesions from 
those that are benign[108].

ECM GLYCOPROTEINS, 
PROTEOGLYCANS AND HYALURONAN
In our proteomic study, we observed a large group of 
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ECM associated proteins overexpressed in pancreatic 
cancer and chronic pancreatitis tissues[97]. Many of 
these proteins are glycoproteins and are involved in 
stellate cell activation and ECM organizational and 
structural changes, which regulate pancreatic fibrosis 
- one of the fundamental histological abnormalities 
observed in pancreatic adenocarcinoma and chronic 
pancreatitis. ECM components, including matrix 
proteins, proteoglycan proteins, galectins and hya
luronan, which interact with each other and form 
supramolecular complexes, are subjected to alterations 
during cancer progression, leading to cancer asso
ciated ECM[109-115]. Abnormal protein glycosylation 
can significantly affect the mechanical properties of 
ECM, enhancing tumor cell migration[110,116]. Studies 
have shown that ECM components associated with 
integrin-ECM axis are highly up-regulated in pancreatic 
cancer[117]. The glycoforms of integrins, such as the 
presence of N-linked oligosaccharides, can regulate 
integrin function, affecting the cell-ECM interactions. In 
pancreatic cancer tissues, we observed increased levels 
of N-glycosylation, not only on several integrins (both 
α and β subunits), but also on ECM adhesion proteins, 
including collagens, fibronectin, vitronectin, and laminin 
(Supplemental Table 1)[92]. These observations warrant  
mechanistic study to better understand how aberrant 
glycosylation of integrins and ECM adhesion ligands 
influence pancreatic cancer migration and malignant 
phenotypes. Galectins and fibulins play a role in 
organization of ECM supramolecular structure, such 
as basement membranes, by forming intramolecular 
bridges, binding to complex carbohydrates and ECM 
adhesive proteins[118-120]. The core protein expression 
and N-glycosylation level of fibulin 1 were both found 
up-regulated in pancreatic cancer tissues[92,97]. Galectin 
1 (LGALS1) is a human extracellular lectin that spe
cifically binds to β-galactoside sugars, including N- 
and O-linked glycans. Galectin 1 was overexpressed 
in the stroma of both pancreatic cancer and PanINs 
lesions[121], and its expression was related to pancreatic 
cancer survival[122,123]. Concurrently, the N-glycosylation 
level of endogenous ligands of galectin-1 in the ECM, 
including fibronectin (FN1), laminins and galectin-3-
binding protein (LGALS3BP), were all up-regulated 
in pancreatic cancer tissue (Supplemental Table 1), 
implying an intensified interaction of galectins and 
their major binding partners in pancreatic cancer[92]. 
Periostin (POSTN), an ECM protein involved in cell 
mobility and neovascularization[124], has both up-
regulated core protein expression and N-glycosylation 
levels in pancreatic cancer tissue[92,97]. Cathepsins are 
proteases that are implicated in cancer invasion by 
degrading ECM, including proteoglycans and collagens. 
We observed up-regulation of both core protein 
expression and N-glycosylation level of cathepsins 
(CTSD, CTSL) (Supplemental Table 1) in pancreatic 
cancer tissue, suggesting its possible functional role in 

pancreatic tumorigenesis[92,94]. 
Proteoglycans are heavily glycosylated proteins 

with serine attached glycosaminoglycans (GAGs), 
such as heparan sulphate and chondroitin sulphate 
(Figure 1). Proteoglycans are an important component 
of ECM and affect multiple biological processes, 
including cell differentiation and proliferation, binding 
to cytokines, growth factors and morphogens. 
During tumorigenesis, the expression and glycosylation 
patterns of proteoglycans change in the stroma 
surrounding cancer, influencing tumor growth and 
neoplastic progression[125]. In proteomics and other 
studies, the increased expression of proteoglycan 
proteins, including lumican, decorin, versican, and 
biglycan, has been observed in pancreatic cancer 
tissues or cells[97,121,126-130]. Since GAGs are large, 
linear polysaccharides, to a certain extent, the 
biological function of proteoglycans can be governed 
by the interaction of the attached GAGs with other 
proteins. Most of proteoglycans also contain N- and 
O-linked glycans. In a quantitative glycoproteomics 
study, N-glycosylation levels of several major ECM 
proteoglycans, including decorin (DCN), biglycan 
(BGN), lumican (LUM), versican (VCAN), and aggrecan 
(ACAN), were found elevated in pancreatic cancer 
tissues (Supplemental Table 1)[92].

Hyaluronan is a non sulfated glycosaminoglycan 
that is not covalently attached to proteoglycans and 
can have a very high molecule weight[131]. CD44 and 
receptor for HA-mediated motility are the two main 
receptors for the anchorage of hyaluronan-rich ECM to 
the cell surface[132,133]. Although it has relatively simple 
chemical composition, as one of the major components 
of ECM, hyaluronan is involved in promoting pancreatic 
cancer progression and chemoresistance[132-134]. Aberrant 
production and deposition of hyaluronan provide a 
favorable microenvironment to enhance cancer cell 
proliferation, migration, invasion, angiogenesis, and limit 
the delivery of anti-cancer agents[134-137]. Studies have 
also shown that the interaction between hyaluronan 
and its CD44 receptor is involved in the stemness and 
survival of cancer stem cells[138], and may be relevant 
to pancreatic cancer CD24+CD44+ stem-like cells.

IMPLICATIONS IN ANTI-CANCER DRUG 
DEVELOPMENT 
Protein glycosylation has become a prominent target 
for drug development. One strategy involves dis
ruption of the protein glycosylation process, such as 
inhibition of glycosylation enzymes and hexosamine 
biosynthetic pathway, to reduce pancreatic cancer 
progression and tumor growth[23,24]. Silencing O-GlcNAc 
transferase has shown to inhibit pancreatic cancer 
growth[139]. Inhibition of N-glycosylation can influence 
the maturation and surface expression of RTKs 
(e.g., EGFR, IGF1R), and enhance chemosensitivity 
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of drug-resistant pancreatic cancer cells[82]. Lewis-Y 
carbohydrate antigen is expressed by many epithelial 
cancers, including pancreatic cancer[24,140], and has been 
a target for cancer vaccines and immunoconjugated 
chemotherapy[141,142]. 

Mucins (especially MUC1, MUC4, MUC5AC, MUC16) 
are an important group of glycoproteins in pancreatic 
cancer and have been targeted for therapeutic 
treatment. Multiple efforts have been made to develop 
MUC peptide based vaccination for pancreatic cancer, 
unfortunately with no significant clinical effects[99]. New 
data suggests that it may be important to incorporate 
cancer associated glycoforms in the vaccine design 
so that the specific immunogenic epitopes expressed 
in tumors can be better mimicked[143-145]. Other 
mucin based targeted therapeutic approaches include 
radioimmunoconjugate of MUC1 antibodies and gene 
therapy designed to suppress MUC1 or mucin gene 
promoters[99].

The ECM is consisted of various biopolymers, 
and plays a pivotal role in cancer invasion and meta
stasis. Several anti-cancer therapeutic strategies 
targeting different ECM components have been 
considered, including inhibition of heparanase and 
proteases, anti-integrin therapy, and inhibition of 
GAGs of proteoglycans[146]. In addition, anti-cancer 
therapies targeting hyaluronan metabolic enzymes 
and hyaluronan-CD44 interactions have also been 
investigated[147,148]. In pancreatic cancer, recent studies 
demonstrated that depletion of stromal hyaluronan 
surrounding tumor improved drug delivery and 
significantly enhanced the efficacy of gemcitabine 
treatment[134,137,149].

CONCLUSION
Protein glycosylation is deeply involved in pancreatic 
tumorigenesis. Cancer associated changes in protein 
glycosylation and polysaccharides can profoundly 
affect cellular function and ECM organization, su
pporting tumor growth and metastasis, as well as 
influencing immuno-response and chemoresistance. 
The emerging technologies of glycoproteomics, 
glycomics and other chemical biology approaches 
provide powerful tools to interrogate the complex 
nature of protein glycosylation involved in pancreatic 
cancer. While significant efforts have been made, 
ranging from mechanistic investigation, to biomarker 
discovery and therapeutic development, many aspects 
of how glycosylation events orchestrate changes in 
cancer signaling pathways at the genomic, proteomic 
and metabolomic level to facilitate cancer progression 
remain to be elucidated. To analyze complex clinical 
samples and obtain an in-depth, comprehensive 
understanding of site specific glycosylation changes 
requires a concerted approach drawing from a variety 
of techniques. With the development of molecular 
techniques and bioinformatics, many of the current 

technical obstacles may be transient. Nonetheless, 
many strategies have been demonstrated to target 
protein glycosylation and polysaccharides for diagnostic 
and therapeutic gains in pancreatic cancer. These studies 
have laid foundation and will provide experimental 
guidance for future investigations.
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