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Abstract
Glucose metabolism in gastric cancer cells differs 
from that of normal epithelial cells. Upregulated 
aerobic glycolysis (Warburg effect) in gastric cancer 
meeting the demands of cell proliferation is associated 
with genetic mutations, epigenetic modification and 
proteomic alteration. Understanding the mechanisms of 
aerobic glycolysis may contribute to our knowledge of 
gastric carcinogenesis. Metabolomic studies offer novel, 
convenient and practical tools in the search for new 
biomarkers for early detection, diagnosis, prognosis, 
and chemosensitivity prediction of gastric cancer. 
Interfering with the process of glycolysis in cancer 
cells may provide a new and promising therapeutic 
strategy for gastric cancer. In this article, we present 
a brief review of recent studies of glucose metabolism 
in gastric cancer, with primary focus on the clinical 
applications of new biomarkers and their potential 
therapeutic role in gastric cancer.
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Core tip: Increased glucose consumption is a hallmark 
of cancer cells. Studies focusing on glucose metabolism 
provide a new perspective on gastric carcinogenesis 
and a novel approach to exploration of biomarkers and 
therapeutic targets in gastric cancer.
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INTRODUCTION
Gastric cancer is one of the most common cancers 
worldwide and ranks second in cancer-related deaths[1,2]. 
Recent advances in cancer diagnosis and treatment 
have resulted in limited improvement in gastric cancer-
related mortality[3]. Estimates even suggest that gastric 
cancer-related mortality will continue to increase[4]. 
To improve the survival rate, several studies have 
elucidated molecular mechanisms of gastric cancer, 
and identified biomarkers predicting prognosis and 
response to treatment[5,6]. A few biomarkers have 
been used as therapeutic targets for advanced gastric 
cancer[7]. However, the therapeutic results are still 
unsatisfactory, which may be due to multiple genetic 
variations and changes in microenvironment, such 
as altered glucose metabolism promoting gastric 
carcinogenesis.

Several decades ago, alteration of glucose meta-
bolism in cancer cells, termed “Warburg effect”, was 
described. This discovery has revitalized the interest 
in the role of glucose metabolism in oncology since 
the widespread use of 18F-fluorodeoxyglucose (FDG) 
positron emission tomography (PET) to evaluate 
various types of malignant tumors[8]. Compared with 
genomics and proteomics, metabolomics is a recent 
“omic” technique and the last step before phenotype, 
which provides new insight into pathophysiologic 
mechanisms in carcinogenesis. In fact, these biological 
pathways are not independent but co-dependent and 
co-operative in the progress of carcinogenesis.

The high mortality rate of gastric cancer is due 
to delayed diagnosis and lack of effective therapies 
for metastasis. Gastric cancer is generally screened 
using endoscopy and serum carbohydrate antigens, 
such as carcinoembryonic antigen (CEA). Clinical 
application of endoscopy is limited because of its 
relative invasiveness, cost and technical complexity, 
even in high-incidence countries of east Asia[9]. 
Additionally, the current serum biomarkers have 
poor sensitivity and specificity for gastric cancer. 
Therefore, new biomarkers that are non-invasive and 
enable stratification of patients with high sensitivity 
and specificity for screening, diagnosis, prognosis, 
prediction, and monitoring of aggressive and advanced 
gastric cancer are needed. Metabolomics facilitates 
the investigation of these biomarkers via new and 
interesting analytical techniques that enable the 
detection of an array of metabolites in a single assay 
and open new avenues for diagnostics and drug 
discovery. By identifying and targeting the key link 
in altered glucose metabolism, specific and even 
individualized therapeutic strategies for gastric cancer 
may be developed. 

This article will review the recent studies on glucose 
metabolism in gastric cancer and particularly the key 
applications of glucose metabolism in gastric cancer 
surveillance, diagnosis and therapy.

ALTERED GLUCOSE METABOLISM IN 
GASTRIC CANCER
In 1956, Otto Warburg initially observed that cancer 
cells generally undergo glycolysis instead of oxidative 
phosphorylation for energy, compared with non-
neoplastic cells. The metabolic phenomenon is 
well known as aerobic glycolysis or the “Warburg 
effect”[10]. Based on the results of “Warburg effect”, 
increased glucose consumption, increased glycolytic 
activity and the accumulation of lactic acid are critical 
hallmarks of cancer cells[11,12]. Compared with normal 
cells that mainly generate energy via mitochondrial 
oxidative phosphorylation, cancer cells predominantly 
obtain energy via increased glycolysis even under 
aerobic conditions. Converting glucose into lactate 
via glycolysis is inefficient in generating ATP, but it 
produces a large number of intermediate products 
driving cell proliferation. Therefore, increasing glucose 
consumption, leading to anaerobic glycolysis, is 
believed to provide an evolutionary advantage to 
cancer cells[13]. The accumulation of lactic acid causes 
acidic microenvironment, and has a protective effect 
on tumor cells. Lactic acid induces the expression 
of glycolytic enzymes in tumor cells, such as 6-pho-
sphofructokinase1 (PFK1) to enhance the supply 
of ATP, and resist cellular apoptosis and promote 
metastasis[14]. In addition, lactic acid promotes tumor 
angiogenesis, providing a suitable microenvironment 
for tumor development and metastasis.

A number of studies have confirmed the asso-
ciation between obesity and gastric cancer[15-19]. An 
et al[20] confirmed the relationship between glucose 
metabolism, diabetes and gastric cancer by observing 
improved glucose metabolism after treatment of 
gastric cancer. A higher fasting serum glucose level 
significantly increased the incidence of gastric cancer 
in Helicobacter pylori (H. pylori)-seropositive patients 
nearly 3.5-4.2 fold[21], suggesting that hyperglycemia 
may be an important cofactor in H. pylori-mediated 
gastric carcinogenesis[22,23]. Song et al[24] used gas 
chromatography/mass spectrometry (GC/MS) to 
analyze the tissue metabolites of gastric cancer 
patients and healthy controls. The GC/MS revealed 
that several intermediate products of aerobic glycolytic 
pathways, such as fumaric acid and alpha-ketoglutaric 
acid increase significantly in cancer tissues than in 
the normal mucosa, suggesting that altered glucose 
metabolism may be an important parameter in 
distinguishing gastric cancer cells from normal cells. 
Similarly, abnormal glucose metabolism was observed 
by other researchers in gastric cancer tissue[25-28]. 

Ikeda et al[29] demonstrated that the serum levels 
of 3-hydroxypropionic acid and pyruvic acid were 
upregulated in gastric cancer. Therefore, abnormal 
glucose metabolism may be related to tumor growth 
involving aggressive cancer cell proliferation, which 
requires a lot of energy, possibly causing altered 
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serum levels of a few intermediate metabolites. 
Serum metabolic profiling has a great potential role in 
identifying gastric cancer and the underlying metabolic 
mechanisms[30].

Chen et al[31] used capillary electrophoresis-mass 
spectrometry based on moving reaction boundary 
(MRB-CE-MS) to investigate the metabolomics of 
gastric cancer patients’ urinary samples to search for 
possible tumor biomarkers. They found that lactic acid 
was remarkably increased, while citric acid, malic acid, 
and succinate were significantly decreased in patients 
with gastric cancer compared with controls, suggesting 
that glycolysis is upregulated while tricarboxylic acid 
cycle is decreased in gastric cancer[31]. The results 
implied that urinary metabolic profiles based on MRB-
CE-MS analysis were useful in clinical diagnosis and 
prognosis of gastric cancer patients, consistent with 
findings from other studies[32-36].

POTENTIAL MECHANISMS RESULTING 
IN ALTERED GLUCOSE METABOLISM IN 
GASTRIC CANCER 
About 80 years after Warburg presented his hypothesis 
on aberrant glucose metabolism in cancer cells, his 
viewpoint has been confirmed using positron emission 
tomography (PET) with the glucose analog tracer in 
clinical oncology. The potential genetic, epigenetic and 
proteomic mechanisms underlying the relationship 
between glucose metabolism and cancer have only 
been partially elucidated. 

Genes and alteration of glucose metabolism 
Carcinogenesis is due to proto-oncogene activation and 
tumor suppressor gene inactivation, which are closely 
associated with glucose metabolism. As a proto-
oncogene, Myc plays an important role in glucose 
metabolism by enhancing the expression of glycolytic 
enzymes including glucose transporter 1 (GLUT1)[37], 
lactate dehydrogenase A (LDHA)[38,39] and pyruvate 
Kinase M2 (PKM2)[40]. Inactivation of p53, a well-known 
tumor suppressor, directly mediates the Warburg 
effect. In many cancers, p53 loss was observed to 
promote glucose flux via glycolytic pathway and 
reduced oxidative phosphorylation[40]. The p53 protein 
increases oxidative phosphorylation and decreases 
glycolysis via downregulation of GLUT1, GLUT3, and 
GLUT4 expression[41] and inactivation of glycolytic 
enzymes, such as phosphoglycerate mutase (PGM)[42]. 
Recently, we studied the role of Klotho, an anti-
oncogene, in gastric cancer and found that restoration 
of Klotho gene expression could remarkably inhibit 
cell proliferation and induce apoptosis in gastric cancer 
cells by downregulating the phosphorylation levels of 
IGF-1R, IRS-1, PI3K, Akt, and mTOR proteins. In the 
process, it may be associated with altered glucose 
metabolism, which requires further research[43].

Enzymatic changes in glucose metabolism of cancer 
cells
The family of glucose transporters (Gluts), which 
control the glucose transport across the plasma 
into the cytosol, play a critical role in glucose meta-
bolism[44-46]. Increasing evidence shows that Gluts, 
especially the class Ⅰ Gluts (1-4), play an key role in 
cancer glucose metabolism and cancer progression, 
such as in lung tumor[47], breast cancer[48], and bladder 
cancer[49]. Recently, Shimada et al[50] reported that 
Glut-3 and Glut-1 expression were positive in benign 
gastric schwannoma with a high FDG uptake, but 
Glut-2 and Glut-4 expression were negative. 18F-FDG 
uptake in primary gastric lymphoma is also related 
to GLUT1 expression[51]. Alakus et al[52] investigated 
GLUT-1 expression in 35 patients with gastric cancer, 
who underwent FDG-PET, and suggested that FDG 
uptake in gastric cancer is associated with GLUT-1 
expression and that low FDG uptake in signet-ring cell 
carcinoma is due to the low expression of GLUT-1 in 
this histological subtype. Yamada et al[53] also observed 
that GLUT-1 expression occurred from an early cancer 
stage and was the most influential factor underlying 
the degree of FDG uptake in gastric carcinoma. FDG 
uptake correlated with GLUT-1 expression, responding 
to glucose metabolism, may serve as a prognostic 
biomarker of gastric cancer[53]. However, the study of 
Takebayashi et al[54] showed no connection between 
FDG standardized uptake value (SUV) and GLUT-1 
expression in gastric cancer. Currently, evidence on the 
role of Gluts in glucose metabolism in gastric cancer is 
still limited.

Several other glycolytic enzymes, including glucose-
6-phosphate dehydrogenase (G6PD)[55], hexokinase 
(HK)-Ⅱ[56,57] and pyruvate kinase M2 (PKM2)[58,59] , have 
been confirmed to participate in the carcinogenesis 
and predict the progression of gastric cancer. G6PD is 
involved in the normal processing of carbohydrates by 
converting glucose into ribose-5-phosphate, which is 
the first key step in glycolysis. Overexpression of G6PD 
in gastric cancer tissues is significantly correlated with 
progression of gastric cancer. Increasing G6PD levels in 
gastric cancer may enhance the level of NAPDH which 
protects cells from DNA damage induced by reactive 
oxygen species (ROS)[55]. Hexokinases catalyze the first 
phosphorylation step of glycosis, to produce glucose-
6-phosphate. HK-Ⅱ is upregulated in many human 
cancers associated with enhanced aerobic glycolysis, 
the Warburg effect. HK-Ⅱ was overexpressed in gastric 
cancer with worse prognosis[57]. Unlike HK-I that is 
predominant in gastric polyps and normal mucosa, a 
significant elevation of HK-Ⅱ was found in gastric cancer, 
Changes in the hexokinases isoenzymes composition 
in gastric mucosa with intestinal metaplasia were 
expressed to a lesser degree but with similar likelihood 
of cancer[60]. HK-Ⅱ, as a component of survival signaling 
nexus, integrates glucose metabolism and cell survival 
through Akt/mTOR pathways. It can positively regulate 
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glucose homeostasis. Insulin is also implicated in 
cellular activation and angiogenesis mediated by 
the activation of signaling of the insulin receptor 
(IR), insulin growth factor (IGF)-1, IGF2 and the 
IGF-1R[74,75]. Increased IGF signaling is associated 
with many cancers[74-76]. In addition, downregulation 
of the IGF-1 receptor expression and reduced 
signaling have been found to inhibit tumor growth[77]. 
Increasing IGF-I expression was observed in gastric 
tumors progressing from benign proliferative lesions 
to malignant lesions[78]. IGF-I can induce epithelial-
to-mesenchymal transition (EMT) which is involved in 
the metastasis of numerous cancers, by activating a 
PI3K/Akt-GSK-3β-ZEB2 signaling pathway in gastric 
cancer BGC-823 cells[79]. Li et al[76] and Min et al[80] 
found that IGF-IR signaling promoted tumor growth 
in gastric cancer. IGF-1R blockade reduced gastric 
tumor growth in vivo and in vitro by inhibiting both 
angiogenesis and lymphangiogenesis, attributed to 
the decreasing activity of both protein kinase B (Akt) 
and mitogen-activated protein kinase (MAPK). IGF-1R 
expression in gastric cancer was correlated with lymph 
node metastasis, poor prognosis and high histological 
malignancy grade, and may play an important role 
in tumor growth and metastasis via the lymphatic 
pathway[81]. 

PI3K-Akt-mTOR pathway: The PI3K-Akt-mTOR 
pathway is currently a widely studied intracellular 
signaling pathway. It is directly associated with cellular 
quiescence, proliferation, cancer, and longevity. Recent 
studies showed that the PI3K-Akt-mTOR pathway 
was activated in gastric cancer and activation of the 
pathway was correlated with metastasis, poor prognosis 
and lower survival in gastric cancer[82,83]. In addition, 
activation of this pathway promoted glycolysis and 
inhibited autophagy[84]. Akt expression directly increases 
the surface translocation of glucose transporters 
and enhances aerobic glycolysis by prompting HK-Ⅱ 
binding to voltage-dependent anion channel. (VDAC) 
at the outer mitochondrial membrane[85]. PI3K/Akt 
also increased fatty acid synthesis in cancer cells by 
suppressing mitochondrial acid fatty oxidation and 
promoting a metabolic phenotype supporting cancer 
cell growth and proliferation in the absence of glucose 
by oxidizing fatty acid[86]. Upregulation of the PI3K-Akt-
mTOR pathway and increased glucose consumption via 
glycolysis offer evolutionary advantages to cancer cells 
in normoxia as well as hypoxia. 

In general, the regulation of glucose metabolism 
in carcinogenesis is a multi-factor, multi-step process. 
In their review, Smolková et al[87] presented the wave 
hypothesis of metabolic regulation during carcinogenesis, 
which consisted of four waves. First, the fundamental 
reprogramming of gene expression or initiation by stem 
cells establishes the conditions conducive to cancer 
cell proliferation. Second, subsequent responses to 
microenvironmental conditions cause a typical Warburg 

glucose starvation-induced autophagy through TORC1 
inhibition[61]. Pyruvate kinase M2 (PKM2) is another 
glycolytic enzyme, which controls the final rate-limiting 
step of glycolysis by catalyzing the dephosphorylation 
of phosphoenolpyruvate (PEP) to pyruvate and is 
overexpressed in many human cancers[62]. Recent 
studies have indicated that PKM2 was overexpressed 
in gastric cancer and associated with tumor size, 
depth of invasion and lymph node metastasis[59,63]. The 
knockdown of PKM2 partially affected the stability of 
NF-kB subunit p65 in gastric cancer cells, suggesting 
that post-translational regulation of p65 by PKM2 
may be a plausible mechanism correlated with cell 
proliferation[64]. Another study demonstrated that the 
PKM2 expression, E-cadherin expression, and ERK1/2 
phosphorylation were correlated with each other in 
gastric cancer cells, which suggested an important 
connection between PKM2 and E-cadherin in the 
motility and invasion of gastric cancer cell stimulated by 
EGFR[65].

Signaling pathways involved in glycolysis
Hypoxia-inducible factor pathway: One of the 
common explanations for enhanced glycolysis in cancer 
cells is cancer tissue hypoxia, attributed to the rapid 
growth of cancer cells[66]. Hypoxia is now recognized as 
a key factor in carcinogenesis, and Hypoxia-inducible 
factor (HIF)-1 is a critical transcription factor of the HIF 
pathway involved in both sensing and responding to 
changes in cellular oxygen, which aids in the survival 
of cells in hypoxic microenvironment[67,68]. Increasing 
evidence shows that HIF-1 and HIF pathway may 
mediate gastric carcinogenesis. Generally HIF-1 is 
not or minimally expressed in the normal gastric 
mucosa from patients with gastric cancer, peptic ulcer 
or dyspepsia[69,70]. Recently, Lin et al[71] conducted a 
systematic review of the literature and meta-analysis 
to investigate the role of HIF-1α in gastric cancer. 
Of the nine studies including 1103 subjects, HIF-1α 
positive expression was observed in half the patients 
and always indicated poor prognosis for patients with 
gastric cancer. Activation of the Ras-MAPK signal 
transduction pathway and PI3K-AKT-mTOR signaling, 
and loss of tumor suppressor proteins, such as PTEN 
and p53, elevated HIF-1α expression. HIF-1α directly 
stimulates glycolysis by activating the expression 
of glucose transporters and several key glycolytic 
enzymes, such as HK, PKM2 and LDH-A. The HIF-1α-
dependent pathway increases glycolysis and inhibits 
mitochondrial O2 consumption, then promoting tumor 
cell survival[72,73].

Insulin signaling pathway: Another important 
signaling pathway involved in glucose metabolism 
is insulin signaling pathway. Suppressing glucose 
production in the liver and enhancing glucose uptake 
in the insulin-sensitive tissues of the human body is 
well known as the classic action of insulin mediating 
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effect. Third, aglycemia and nutrient shortage due to 
rapid cell growth during malignancy, stimulate gluta-
minolysis, which may influence restoration of suppressed 
mitochondrial biogenesis, leading to oxidative pho-
sphorylation (OXPHOS)-dependent cancer cells. The 
fourth wave of gene reprogramming entails retrograde 
signaling from revitalized mitochondria.

CLINICAL APPLICATION OF ALTERED 
GLUCOSE METABOLISM IN GASTRIC 
CANCER
Role of glucose metabolism in gastric cancer imaging
Based on the increased glucose uptake in cancer cells, 
PET/CT scan can reflect cancer cell glucose metabolism 
using 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) as 
a tracer and has been widely used in the diagnosis 
and monitoring of human cancers. 18F-FDG is the 
most commonly used radiolabeled glucose analog in 
clinical practice. Currently, gastroscopic biopsy and 
histopathological examination are the gold standard 
of diagnosis of gastric cancer. In recent years, PET/CT, 
integrating images from FDG-PET with CT, have been 
used to detect gastric cancer. Compared with contrast-
enhanced CT (CECT) and endoscopic ultrasonography, 
PET/CT does not offer the advantages of sensitivity 
and accuracy, and therefore, FDG-PET/CT scans are 
not indicated in routine staging of gastric cancer[88]. 
Nevertheless, due to its high specificity, PET/CT is 
useful when CECT findings were equivocal and in the 
detection of distant lymph node metastasis[89].

Several factors influence the visibility of PET/CT 
in gastric carcinoma. PET/CT imaging is based on 
increased glucose metabolism in gastric cancer. FDG 
avidity depends on tumor histologic subtype. Low FDG 
uptake is more often seen in diffuse type histology 
(mucinous, signet ring and poorly differentiated) 
compared with the intestinal subtype, which depends 
on GLUT-1 expression. The low GLUT-1 expression may 
be lead to low FDG uptake in signet-ring cell carcinoma 
of gastric cancer[52,53]. The maximum standardized 
uptake value [SUV(max)] of PET/CT is significantly 
correlated with tumor size, and lower FDG uptake is 
often found in early gastric carcinoma which is likely 
due to less total cancer cells in the primary lesions[53,54]. 
The motility and physiological uptake of 18F-FDG in 
the stomach also influence the accuracy of PET/CT 
in diagnosis of gastric cancer. Stomach distension to 
increase gastric volume with water or milk can reduce 
physiological gastric FDG uptake, display the lesions 
more clearly and significantly improve the diagnostic 
accuracy[90,91].

Although PET/CT is not recommended in the 
primary detection of gastric cancer due to its poor 
sensitivity, FDG-PET shows better results in the 
evaluation of biological aggressiveness and/ or patient 
prognosis in gastric cancer[92,93]. 18F-FDG uptake is an 
independent and significant prognostic indicator of 

tumor recurrence in gastric cancer. Lee et al[92] also 
investigated the role of 18F-FDG PET in gastric cancer 
prognosis based on histopathological subtypes and 
found that patients with negative 18F-FDG tumor 
uptake showed better recurrence-free survival than 
those with positive 18F-FDG tumor uptake in the 
subgroup of patients with gastric adenocarcinoma, 
while the opposite findings were obtained in the 
subgroup patients with signet-ring cell carcinoma and 
mucinous adenocarcinoma.

A higher SUVmax of 18F-FDG PET/CT was linked to 
the presence of microsatellite instability (MSI) in gastric 
cancer[94]. Gastric cancers with MSI tend to show 
less lymph node metastasis and manifest favorable 
prognosis[95]. The high SUVmax of 18F-FDG PET/CT 
showed poor prognosis in gastric cancer. The SUVmax 
more than 3.8 indicated increasingly aggressive 
behavior, elevated postoperative recurrence and 
shorter relapse-free survival in gastric signet-ring cell 
carcinoma[96]. The degree of 18F-FDG uptake in gastric 
cancer predicts histologically positive lymph nodes 
and non-curative surgery. The sensitivity, specificity 
and accuracy of the diagnosis of metastatic lymph 
node were 73.5%, 74.5% and 74.1%, respectively, 
using the SUVmax cutoff of 3.75 or greater. When the 
SUVmax was defined as 4.35 or more for metastatic 
lymph nodes to predict non-curative surgery, the 
sensitivity and specificity were 58.8% and 91.6%, 
respectively, which were higher than those obtained 
with CT scan. Therefore, pretreatment PET/CT may be 
helpful in optimizing surgical strategy[96]. 

Postoperative routine follow-up of gastric cancer 
is important to the surveillance of recurrence. The 
conventional follow-up using computed tomography 
(CT) and endoscopy, cannot frequently detect re-
currence before symptom development. PET/CT shows 
good specificity for asymptomatic advanced gastric 
cancer and provides useful information for the clinical 
management of patients with suspected gastric cancer 
recurrence[97]. However, prudence should be exercised 
with the incidental findings of PET/CT, most of which 
were benign with additional investigations associated 
with high cost[98].

Despite adequate surgery with radical lympha-
denectomy, the prognosis of advanced gastric cancer is 
still poor. Since the early 1990s, neoadjuvant therapy 
gained importance for the treatment of locally advanced 
or initially unresectable GC[99]. Currently, measurement 
of changes in morphology using different imaging 
modalities is still the main approach to evaluate the 
response to neoadjuvant therapy. However, alterations 
in glucose metabolism always precede changes in 
morphological changes. The response to neoadjuvant 
therapy initially manifests in altered glucose uptake, 
demonstrated with 18F-FDG PET. In fact, a dual modality 
PET-CT has been recommended for early assessment 
of therapeutic response in GIST patients treated with 
imatinib[100]. In gastric cancer, changes in FDP uptake 
occur early during the course of neoadjuvant therapy, 
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which is significantly related with histopathological 
responses, and a complete metabolic response in 
FDP-PET always suggest favorable prognosis[101]. It 
is still a challenge to distinguish the complete histopa-
thological remission after neoadjuvant therapy by 
PET/CT. Different histologic subtypes may interfere with 
the evaluation of PET/CT and the best time to undergo 
post-treatment PET/CT is still unclear.

PET/CT is a powerful, noninvasive metabolic 
imaging modality for detecting many human tumors. 
However, detection of gastric cancer by PET/CT may 
seem less than ideal, because FDP uptake is strongly 
related to tumor size and histopathological subtype[102]. 
In order to improve the sensitivity and specificity of 
PET/CT in evaluating gastric cancer, other tracers 
target more specific biological processes, such as proli-
feration (18F-3′-fluoro-3′-deoxy-L-thymidine; 18F-FLT), 
tumor hypoxia (18F-fluoromisonidazol; 18F-FMISO) and 
phospholipid metabolism (radioactively labeled choline 
derivates)[103-105]. 18F-FLT, as a substrate for thymidine 
kinase 1, is a new PET tracer with the potential ability 
to accumulate in proliferating tissues and malignant 
tumors[106]. A higher accumulation of 18F-FLT was 
reported in gastric cancer than in normal gastric 
mucosa. 18F-FLT uptake is significantly correlated with 
gastric cancer differentiation and cellular density[107]. 
18F-FLT PET was more sensitive than 18F-FDG PET in 
imaging gastric cancer, especially in tumors frequently 
presenting with or without low 18F-FDG uptake, 
and may improve early evaluation of response to 
neoadjuvant treatment[103]. However, F-FLT PET/CT 
imaging is not recommended for pre-treatment 
assessment of metastatic gastric cancer as it does 
not show significant advantages in evaluating liver 
and bone metastases, compared with 18F-FDG PET/CT 
imaging[108]. 

Role of glucose metabolites in gastric cancer screening 
and diagnosis 
Currently, gastroscopy still represents the gold 
standard for diagnosis of gastric cancer. Despite its 
uncomfortable and invasive features, gastroscopy 
is widely used in the surveillance, early screening 
and follow-up of gastric cancer. Over the past few 
years, several tumor serum biomarkers have been 
used as novel non-invasive tools for early diagnosis 
of gastric cancer. However, due to low specificity and 
sensitivity, current serum biomarkers such as CEA and 
carbohydrate antigens are not as effective as other 
screening methods. 

Recently, serum and urine metabolomic studies 
of gastric cancer based on the use of highly sensitive 
detection techniques may present a novel opportunity 
to seek potential new biomarkers for early screening 
of asymptomatic gastric cancer and its follow-up. 
Metabolomics is defined as a quantitative description 
of all endogenous low-molecular-weight components 
(< 1 kDa) in a biological sample, such as tissue, urine 

or plasma, and aims to diagnose various diseases 
by analyzing the data[109]. The small molecule 
endogenous metabolites are mainly composed of the 
intermediate products produced by the four metabolic 
cycles, which include the glucose metabolism, lipid 
metabolism, amino acid metabolism and nucleic 
acid metabolism, in which glucose metabolism is the 
core (Figure 1)[110]. The intermediate metabolites are 
important in biological systems and are promising 
candidates for understand disease phenotypes[111]. 
Metabolomic studies, comparing the metabolite profiles 
of cancer cells vs normal cells, offer an opportunity 
to identify the changes in metabolic pathways, which 
prompt carcinogenesis. Compared with genomics, 
transcriptomics and proteomics, metabolomics provides 
terminal molecular data of the biological system which 
may be an effective way to elucidate the phenotypic 
changes associated with cancer. Recently, metabolomic 
studies have been successfully conducted in gastric 
cancer[24-36] and other human cancers[112-115].

Metabolomics approaches in gastric cancer may be 
applied largely in three ways. First, specific metabolites 
responsible for phenotypes associated with cancer-
related mutations should be identified. Second, the 
common metabolites with altered levels in gastric 
cancer cells compared with normal cells, need to 
be found. Third, the response of cancer metabolism 
to environmental changes needs investigation[28,29]. 
Advances in the highly sensitive metabolomic 
methods and data analysis techniques may facilitate 
such applications in a single study[116]. Metabolomic 
profiles may offer a chance to identify the potential 
biomarkers for early diagnosis, prognosis, drug target 
identification and treatment response. Recently, 
several metabolites were suggested as diagnostic and 
prognostic biomarkers for gastric cancer[117,118]. Gastric 
carcinogenesis is a complex phenomenon involving 
multiple epigenetic and genetic factors including 
several genetic, environmental and infectious agents 
causing a cumulative effect in the early stages. The 
model of gastric carcinogenesis is well known and 
includes the following sequential stages: chronic 
atrophic gastritis (CAG), intestinal metaplasia (IM), 
gastric dysplasia (DYS) and finally gastric cancer (GC). 
Plasma metabolomic studies, in which fifteen identified 
metabolites were quantitatively detected, showed 
unique metabolic profiles in the different stages of GC. 
The metabolic phenotype of chronic superficial gastritis 
(CSG) is significantly different from CAG, IM, DYS and 
GC, whose plots clustered closely. A similar metabolic 
pattern was shown in IM and GC[119]. The discriminative 
metabolites characterizing the different stages of 
GC may be widely used in gastric cancer screening 
and early diagnosis combined with endoscopy. As 
previously mentioned, several serum metabolomic 
studies in GC suggested significant metabolic diffe-
rences between cancer and control groups, suggesting 
potential biomarkers for the early diagnosis of GC. 
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Kim et al[33] studied urinary metabolomic biomarkers 
of gastric cancer in mouse models and found the 
presence of significant endogenous metabolic 
differences between tumor-bearing mice and controls. 
The study indicated that trimethylamine oxide 
(TMAO), 3-indoxylsulfate, hippurate, and citrate might 
serve as useful urinary biomarkers for the detection 
of gastric cancer in a mouse model. Jung et al[35] 
demonstrated that metabolomic changes in amino 
acid and lipid metabolism of urine samples resembled 
those in gastric cancer tissue, and were highly 
accurate in predicting gastric cancer with a much 
higher sensitivity than carbohydrate antigen 19-9 
and CEA. Further, 4-hydroxyphenylacetate, alanine, 
phenylacetylglycine, mannitol, glycolate, and arginine 
levels were significantly related to T stage of gastric 
cancer. Compared with serum and urine samples, 
tissue samples require invasive approaches such as 
endoscopy and surgery, which limits their application 
in the screening and early diagnosis of gastric 
cancer. However, identification of new biomarkers 

simultaneously in tissue and serum or urine samples 
is helpful. Tissue metabolic markers in gastric cancer 
were identified by some studies[23,24]

. Integrated the 
recent studies on the profiling of glucose metabolites 
in gastric cancer, lactate and fumarate were recognized 
as the most commonly biomarkers for gastric cancer 
screening and diagnosis[120].

Role of glucose metabolites in gastric cancer prognosis
Recent advances in metabolomics have offered new 
avenues to predict gastric cancer metastasis. Hur et 
al[28] analyzed the levels of Krebs cycle components 
in gastric cancer tissues and found that the levels 
of pyruvic acid, lactic acid and ketone bodies were 
associated with histopathology. In particular, the 
levels of ketone bodies were significantly higher in 
cancer tissues with differentiated tumors than in 
undifferentiated tumors. Wu et al[25] found that the 
levels of phenanthrenol and butanoic acid were signifi-
cantly decreased in invasive cancers (T3/T4) compared 
with non-invasive cancers (T1/T2). Compared with 
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glucose metabolites, amino acid and lipid metabolites 
seem to be more potential in predicting gastric cancer 
prognosis. Using animal models of human gastric 
cancer, Chen et al[121] demonstrated that proline 
and serine metabolism play an important role in 
metastasis, and may be used in predicting gastric 
cancer metastasis and progression. Further, Hu et al[34] 
investigated urinary metabolite profiling to identify 
possible biomarkers in gastric cancer metastasis. They 
found that the levels of alanine, glycerol and L-proline 
were lower and the level of myo-inositol was higher in 
the metastasis group. These urinary metabolites may 
be a potential prognostic biomarker for gastric cancer 
metastasis. 

Role of glucose metabolism in gastric cancer therapy
Predicting drug response: Currently, chemotherapy 
has become a first-line therapy for advanced gastric 
cancer. However, chemotherapy is not the gold 
standard due to its lower effectiveness compared with 
its role in colorectal and breast cancers. Chemoresis-
tance is a major challenge. Recent studies suggested 
that metabolomics may play an important role in 
investigating cellular responses to chemotherapy of 
cancer[122-126]. Morvan et al[124] investigated metabolic 
changes associated with tumor response to chloroethyl 
nitrosourea (CENU), an anticancer agent, in two tumor 
models in vivo and observed the activation of metabolic 
pathways of DNA repair and adaptation to treatment. 
Metabolomics of tumor response to anticancer agents 
may enable identification of metabolic pathways of drug 
efficacy and evaluate the effectiveness of treatment. 
Wang et al[125] assessed metabolomic prediction of 
chemosensitivity in a human xenograft model of gastric 
cancer and determined that a series of endogenous 
metabolites, including 1-acyl-lysophosphatidycholines, 
polyunsaturated fatty acids and their derivatives, 
were predictive of chemosensitivity in gastric cancer. 
Sasada et al[126] conducted a similar metabolomic 
analysis to investigate the intracellular response of 
human gastric cancer cells to 5-fluorouracil (5-FU), 
and showed a dramatic alteration in the number of 
metabolites, especially proline, glutamate and proline 
dehydrogenase (PRODH), in non-5-FU-resistant cancer 
cells during short-term treatment with 5-FU. However, 
the proline and glutamate levels and PRODH mRNA 
expression were less affected in 5-FU-resistant cancer 
cells. In the future, metabolic biomarkers may play 
an important role in evaluating treatment response to 
anticancer drugs.

Targeting glucose metabolism in gastric cancer therapy
Enhanced glucose metabolism via aerobic glycolysis 
followed by lactic acid fermentation plays a predo-
minant role in rapid energy (ATP) synthesis. However, 
generation of large number of metabolites contributes 
to an acidic micro-environment conducive to cancer 
proliferation. Therapeutically targeting cancer cell 

metabolism such as glucose metabolism is more 
convenient and associated with fewer side effects 
compared with the other biologic systems since cellular 
metabolic pathways represent the terminus of systems 
biology and control the other systems genetically.

Ketogenic diets consist of high fat, with moderate-
to-low protein content, and very low carbohydrates. 
It reduced tumor growth and improved survival 
in a mouse model of malignant gastric cancer[127]. 
Furthermore, ketogenic diets have been suggested to 
increase the effects of radiochemotherapy in non-small 
cell lung cancer xenograft models[128]. Recent studies 
revealed that ketogenic diets act as adjuvant cancer 
therapy via mechanisms that increased oxidative stress 
and inhibited glucose metabolism via lipid metabolism.

Metformin, a first-line anti-diabetic drug, inhibited 
proliferation and induced apoptosis in cancer cells. 
Metformin decreased mitochondrial respiration chain 
activity and ATP production and induced the activation 
of LKB1-AMPK, causing the inhibition of Raptor-
mTOR complex[129,130]. High glucose concentrations 
reduced the effectiveness of metformin on cancer 
cell proliferation and failure to maintain glucose 
homeostasis may promote aggressive breast cancer 
phenotype [129]. 

Tanshinone ⅡA, a diterpene quinone extracted 
from the plant Danshen, has been recently reported 
as an effective adjunctive reagent in the treatment 
of gastric cancer[131]. Lin et al[132] confirmed that TIIA 
treatment inhibited cell growth and the proliferation of 
gastric cancer by suppressing glucose metabolism in 
cancer cells. Another study conducted by Bhattacharya 
et al[133] revealed that hypoglycemia and enhanced 
glycolysis increased resistance to chemotherapy in 
gastric cancer.

Another very promising strategy is to design gastric 
cancer-specific and even individualized inhibitors of all 
the steps of the glycolytic pathway via metabolomics 
studies. Granchi et al[134] reviewed recent advances 
of new bioactive molecules which disturb cancer 
glycolysis. Different kinds of small molecules that 
inhibit all the steps of the glycolytic pathway have 
been identified, such as hexokinase Ⅱ (HKⅡ), 
2-deoxy-D-glucose and 3-bromopyruvate (3-BrPA), 
which were accepted as cancer therapeutic targets 
in several studies. Similar potential and promising 
therapy for gastric cancer was described by Ngo 
et al[135] (Figure 2). Hexokinase Ⅱ is a key factor 
catalyzing the first step of glycolysis, which consists 
of the transfer of glucose to glucose-6-phosphate[136]. 
HKII is accepted as a very potential and attractive 
anticancer target. 2-deoxy-D-glucose, a glucose 
analogue, binds and inhibits HKⅡ, resulting in cellular 
ATP depletion, cell cycle suppression and cell death[137]. 
3-BrPA, an alkylating agent and glycolysis inhibitor and 
designated as an orphan drug by FDA for liver cancer, 
has been identified to hinder glucose metabolism by 
inhibiting HKⅡ[138]. In addition, 3-BrPA inactivated the 
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glyceraldehydes-3-phosphate dehydrogenase (GAPDH) 
by GAPDH pyruvylation, leading to anti-glycolytic and 
antitumoral effects and mediating cancer cell death[139].

Generally, most of the current glycolytic inhibitors 
showed only moderate efficacy when used as single 
agents, but in some cases demonstrated high potential 
when combined with other therapies. Currently, few 
therapeutic studies target gastric cancer metabolism. It 
is anticipated that further research will investigate the 
role of cancer-specific glycolytic inhibitors to develop 
effective therapeutic regimens for gastric cancer.

CONCLUSION
Altered glucose metabolism is a hallmark of gastric 
cancer, which provides new insights into gastric 
carcinogenesis and identification of biomarkers 
targeting specific metabolic aspects of gastric cancer. 
However, several hurdles remain before altered glucose 
metabolism is clinically used in the diagnosis and 
treatment of gastric cancer. The use of 18F-FDG PET is 
an exception. However, a major clinical application of 
metabolomics requires creation of spectral databases 
of metabolites of the normal population, similar to the 

cancer genomic and proteomic databases. Further, the 
metabolites consist of a large group of small-molecule 
intermediates, which are too large for analysis using 
currently available technology. Another challenge is 
related to identification of cancer-specific biomarkers 
for gastric cancer, since metabolites may be considered 
as potential biomarkers for a range of cancers. It is 
anticipated that further research will focus on these 
aspects and promote the clinical application of glucose 
metabolism in gastric cancer in the not-too-distant 
future.
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