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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most 
common form of chronic liver disease and its incidence 
is increasing worldwide. However, the underlying 
mechanisms leading to the development of NAFLD are 
still not fully understood. Glycosyltransferases (GTs) 
are a diverse class of enzymes involved in catalyzing 
the transfer of one or multiple sugar residues to a wide 
range of acceptor molecules. GTs mediate a wide range 
of functions from structure and storage to signaling, 
and play a key role in many fundamental biological 
processes. Therefore, it is anticipated that GTs have 
a role in the pathogenesis of NAFLD. In this article, 
we present an overview of the basic information on 
NAFLD, particularly GTs and glycosylation modification 
of certain molecules and their association with NAFLD 
pathogenesis. In addition, the effects and mechanisms 
of some GTs in the development of NAFLD are 
summarized.
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Core tip: Nonalcoholic fatty liver disease (NAFLD) is 
characterized by a very complicated process which is 
regulated by a number of protein molecules. Glycosy
lation, one of the most common post-translational 
modifications of proteins in eukaryotic cells, has been 
suggested to play an important role in the pathogenesis 
of NAFLD. As glycosylation is mainly mediated through 
glycosyltransferases (GTs), it seems reasonable to 
speculate that the GTs play an important role in the 
pathogenesis of NAFLD.
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OVERVIEW OF NON-ALCOHOLIC FATTY 
LIVER DISEASE
Fatty liver is characterized by the excess accumulation 
of lipids including triglycerides (TGs) and cholesterol. 
In general, accumulation of lipids up to 5% of the 
liver weight results in the diagnosis of fatty liver 
disease or hepatic steatosis. In addition, if hepatic 
steatosis occurs in patients who do not consume 
alcohol on a daily basis, it is referred to as non-
alcoholic fatty liver disease (NAFLD)[1]. Usually, NAFLD 
is classified as “primary” and “secondary”, depending 
on the underlying etiology. “Primary” NAFLD is 
most common, and is often associated with insulin-
resistance and metabolic syndrome. Obesity, diabetes 
and dyslipidemia are the most common risk factors 
for NAFLD. The term “secondary” NAFLD is currently 
discouraged and the preferred nomenclature is based 
on the known causative factors and the resultant 
pathologies e.g., viral infections, autoimmune diseases, 
endocrine-metabolic disorders, total parenteral 
nutrition and drug-induced fatty liver. Therefore, the 
term “NAFLD” generally refers to “primary” NAFLD. 
The obesity and type 2 diabetes pandemic, and the 
improved management of chronic viral hepatitis have 
resulted in NAFLD being a leading cause of chronic 
liver disease[2-6]. It is estimated that 20% to 30% of 
adults in the United States and Western Europe have 
excess fat accumulation in the liver[7]. The prevalence 
of NAFLD in the general population across Asia 
varies from 5% to 40%[8]. A recent meta-analysis 
showed that the prevalence of NAFLD in China is 
approximately 20%[9]. With the increase in obesity 
and diabetes, the incidence of NAFLD is expected to 
rise worldwide. The prevalence of NAFLD in the United 
States is expected to increase by 50% in 2030[10]. 
Based on current information, NAFLD encompasses a 
spectrum of diseases ranging from simple steatosis, to 
inflammatory steatohepatitis (NASH) with increasing 
levels of fibrosis and ultimately cirrhosis[11,12]. NAFLD 
was initially believed to be a benign illness as its 
progression is quite slow and rarely results in a poor 
outcome. However, results from clinical studies have 
confirmed that NAFLD, if not properly controlled, may 
cause liver-related morbidity and mortality[13]. Cirrhosis 
is a severe disease leading to death[14], and patients 
with NAFLD not only progress to cirrhosis[15], but are 
also susceptible to cardiovascular disease/death, type 
2 diabetes mellitus and diabetic nephropathy[16,17], 
which are dependent on the severity of liver injury[18,19]. 
Moreover, NAFLD has also been shown to increase 

the risk of colorectal cancer[20] and thus, may result in 
an increased overall mortality[21] (Figure 1). Although 
weight loss is believed to be effective in NAFLD 
treatment, adherence to lifestyle interventions is a 
limitation. Various studies have shown that of the 
patients scheduled for NAFLD treatment, only 15% 
achieved weight loss, but regained weight with 
time[22]. Although there is no approved drug therapy 
for NAFLD, many approaches appear to be beneficial, 
such as the use of insulin sensitizers, antioxidants and 
anti-inflammatory agents, and these seem to have 
promising effects in some patients[23,24].

NAFLD PATHOGENESIS 
The pathogenesis of NAFLD has not been completely 
elucidated[25,26]. Based on available information, various 
researchers have proposed different hypotheses 
over time. The major hypotheses are as follows: (1) 
In 1998, Day et al[27] first proposed the “two-hit” 
hypothesis for the pathogenesis of NAFLD. The first hit 
represents the accumulation of lipids in hepatocytes 
and the induction of insulin resistance which is the 
key pathogenic factor for the development of hepatic 
steatosis. The second hit leads to hepatocyte injury, 
inflammation and fibrosis. Factors initiating the 
second hit are oxidative stress and subsequent lipid 
peroxidation, proinflammatory cytokines, adipokines 
and mitochondrial dysfunction; (2) In 2008, Jou et al[28] 
suggested the “three-hit” hypothesis. The first hit also 
involves the accumulation of lipids by the mechanisms 
described above. The second hit involves the initiation 
of an inflammatory response and cell death, while the 
third hit results in defective repair and the induction 
of a regenerative response by the proliferation and 
differentiation of hepatocyte progenitors; (3) In 
2009, Polyzos et al[29] provided the “multi-hit process” 
hypothesis. The initial hit leads to the development 
of simple steatosis which subsequently renders 
hepatocytes susceptible to a variety of additional hits, 
eventually leading to NASH. These additional hits 
appear to be genetic or environmental perturbations 
leading to liver cell inflammation and necrosis with 
activation of the fibrogenic cascade. This results in 
the development of fibrosis or even cirrhosis in a 
minority of NAFLD patients. Insulin resistance (IR) and 
subsequent hyperinsulinemia are key pathogenetic 
factors in both simple steatosis and its subsequent 
progression to NASH; and (4) In 2010, Tilg et al[30] 
proposed the “multiple parallel hits” hypothesis for 
NAFLD and it has attracted wide attention from 
the research community. This hypothesis reflects 
more precisely the current knowledge of NASH[20,31]. 
According to this hypothesis, many parallel hits are 
derived from the gut and/or the adipose tissue that 
promote liver inflammation. Endoplasmic reticulum 
(ER) stress and its related signaling networks, 
adipocytokines/cytokines, and innate immunity are 
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emerging as central pathways that regulate key 
features of NASH[32]. Although genetic factors play a 
minor role in the current obesity epidemic, they may 
offer explanations for a more progressive disease 
course in NAFLD[33]. Adipose tissue-derived factors 
include adipocytokines such as adiponectin and leptin, 
certain proinflammatory cytokines such as tumor 
necrosis factor α (TNF-α) or interleukin 6 (IL-6), and 
others such as the death receptor Fas, while gut-
derived factors include endotoxin, microbiota, and 
various nutrients such as trans-fatty acids, fructose, 
and arylhydrocarbon receptor ligands. In addition, 
other proposed hypotheses are similar to the “multi-hit” 
hypothesis and four-step model[34,35].

MECHANISMS OF HEPATIC FAT 
ACCUMULATION
NAFLD is characterized by excess fat accumulation 
in the liver[36], which arises from an imbalance 
between fat acquisition and removal (Figure 2). TGs 
are composed of three fatty acids (FAs) coupled to a 
glycerol backbone via an ester bond. The fatty acids 
used for hepatic TGs formation are derived from three 
sources; (1) adipose tissue; (2) de novo lipogenesis 
(DNL); and (3) dietary sources[37]. Approximately 
60% of liver FAs are derived from adipose tissue, 
25% are from DNL, and 15% are from the diet[38]. FAs 
can be stored as lipid droplets within hepatocytes or 
secreted into the blood as very low-density lipoprotein 
(VLDL). However, they can also be channeled towards 
the β-oxidation pathway in mitochondria. Therefore, 
excess hepatic lipid accumulation can be caused by 
the following four different metabolic perturbations: 
(1) an increase in free fatty acid (FFA) uptake derived 
from the circulation due to increased lipolysis from 

adipose tissue and/or from the diet in the form of 
chylomicrons; (2) increased DNL; (3) reduced FA 
oxidation; and (4) reduced lipid export in the form 
of VLDL[39]. Rodent studies have shown that the 
mechanisms leading to excess accumulation of hepatic 
TGs are mainly associated with an increased supply 
of FFAs from peripheral adipose tissue to the liver and 
an enhanced de novo lipid synthesis via the lipogenic 
pathway[40]. Conversely, their disposal from the liver 
via β-oxidation and VLDL export are moderately 
affected[41]. Particularly in humans, obesity increases 
TNF-α production in adipocytes, facilitates adipocyte 
IR, and increases lipolysis rate. Thus, the circulating 
pool of FFAs is increased in obese individuals and 
thus accounts for the majority of the liver TGs in 
NAFLD. DNL refers to the synthesis of endogenous 
FAs in hepatocytes. During this process, glucose is 
converted to acetyl-CoA by glycolysis and the oxidation 
of pyruvate. Acetyl-CoA carboxylase then converts 
acetyl-CoA into malonyl-CoA and finally, FA synthase 
catalyzes the formation of palmitic acid from malonyl-
CoA and acetyl-CoA. The rate of DNL is regulated 
primarily at the transcriptional level[42]. Several nuclear 
transcription factors are involved such as liver X 
receptors, sterol regulatory element-binding protein-
1c (SREBP-1c), and carbohydrate-responsive element 
binding protein (ChREBP). SREBP-1c can regulate 
more than 32 genes involved in lipid biosynthesis and 
transport[43]. IR may promote DNL by stimulation of 
hyperinsulinemia to SREBP-1c[44]. Dietary fats taken up 
in the intestine are packaged into TG-rich chylomicrons 
and delivered to the systemic circulation. About 80% 
of the TG components in chylomicrons are unloaded in 
adipose and muscle tissues. The remaining 20% are 
transported to the liver through the hepatic artery[45]. 
As a result, the FAs derived from dietary fats account 
for the minority of circulating FFAs in NAFLD.
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Figure 1  Manifestations of non-alcoholic fatty liver disease. NAFLD: Non-alcoholic fatty liver disease.
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domains, although the transmembrane segment for a 
long time was considered to be the key determinant 
for GTs localization. The acceptor specificity may be 
regulated by the stem segment in vivo, although its 
role in enzyme activity is still unclear. The N-terminal 
domain is an important feature in acceptor binding. 
The significant variation in C-terminal β-strands 
and/or loops contributes to acceptor specificity and 
region specificity[57]. There are different classification 
systems for GTs: (1) GTs are primarily classified 
according to the type of sugar they transfer; (2) 
Based on sequence similarities of amino acids (CAZy 
database, http://www.cazy.org/), GTs are divided 
into 97 families. The vast majority of these sequences 
(more than 90%) are uncharacterized open-reading 
frames[58]; (3) X-ray structural studies have revealed 
that there are 105 GT structures in the Protein Data 
Bank, representing 36 of the 89 CAZy GT families[59], 
most of which adopt one of two predominant structural 
folds: GT-A and GT-B fold[60]. The GT-A fold consists 
of a single α/β/α-sandwich form that resembles a 
Rossmann fold. The central β-sheet is flanked by a 
smaller one, and the association of both creates the 
active site. A general feature of all the enzymes with 
GT-A fold is the presence of a common motif, such 
as the DXD motif[61,62]. The DXD motif anchors the 
pyrophosphate moiety of the sugar-nucleotide donor 
via a divalent cation, such that the location of the 
sugar donor on the fold is conserved. The GT-B fold 

BASIC INFORMATION OF 
GLYCOSYLTRANSFERASES 
Glycosyltransferases (GTs) are a diverse class of 
enzymes encompassing 1% to 2% of all sequenced 
genomes[46]. They catalyze the transfer of one or 
multiple sugar residues to a wide range of acceptor 
molecules such as lipids, proteins, hormones, 
secondary metabolites, and oligosaccharides[47,48], 
and mediate a wide range of functions from structure 
and storage to signaling[49]. Thus, they play a key role 
in many fundamental biological processes including 
cell signaling, cellular adhesion, carcinogenesis, and 
cell wall biosynthesis in human pathogens[50-52]. GTs 
are present in both prokaryotes and eukaryotes. In 
eukaryotes, the majority of GTs exist as membrane 
proteins of the Golgi apparatus. The newly synthesized 
GTs are transported from the ER to the Golgi via 
COPⅡ-transport vesicles[53,54]. All the Golgi-localized 
enzymes share the common topology of type Ⅱ 
membrane proteins, consisting of a short N-terminal 
cytoplasmic domain, a single transmembrane segment 
and a stem region of variable length followed by a large 
C-terminal catalytic domain[55,56]. The length and amino 
acid composition of catalytic domains are relatively 
well conserved and the variations in protein sizes are 
generally attributed to differences in the length of the 
stem region. In general, robust localization of Golgi 
enzymes relies on the contribution from each of these 
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consists of two separate Rossmann domains with a 
connecting linker region and a catalytic site located 
between the domains. There is an excellent structural 
conservation between protein members of the GT-B 
family, particularly in the C-terminal domain which 
corresponds to the nucleotide-binding domain. A 
third family has recently emerged which comprises 
a bacterial sialyltransferase belonging to the GT42 
family[63]. This protein displays a fold similar to the 
GT-A, but with some differences, thus it can be 
considered a new fold; and (4) Based on the outcome 
of the reaction, GTs are classified into two types, 
either inverting or retaining. Inverting GTs most likely 
follow a single displacement mechanism, wherein 
the acceptor induces a nucleophilic attack at carbon 
C-1 of the sugar donor somewhat analogous to the 
mechanism of inverting glycosidases. Retaining GTs 
do not operate via a two-step mechanism involving 
the formation of a glycosyl-enzyme intermediate 
analogous to glycosidases. Instead, an internal return 
SNi-like mechanism has been proposed, in which the 
departure of the leaving group and nucleophilic attack 
occur in a concerted, but asynchronous manner on the 
same face of the glycoside.

GLYCOSYLATION OF MOLECULES 
INVOLVED IN THE PATHOGENESIS OF 
NAFLD
Glycosylation is one of the most common post-
translational modifications of proteins in eukaryotic 
cells[64,65]. Recent studies have indicated that numerous 
protein molecules undergoing glycosylation are 
involved in the pathogenesis of NAFLD. 

Apolipoprotein B 
The major function of VLDL is to transport endogenous 
TGs from the hepatocytes to the extrahepatic tissue. 
Apolipoprotein B (ApoB)-100, a large secretory 
glycoprotein with 4536 amino acid residues, is an 
important component of VLDL[66]. It has 19 potential 
glycosylation sites (Asn-X-Ser/Thr), and 16 of them 
have been reported to be glycosylated[67,68]. Ihara et 
al[69] reported that N-acetylglucosaminyltransferase Ⅲ 
(GnT-Ⅲ) is linked to the glycosylation of ApoB-100 in 
hepatocytes. Chylomicrons transport TGs from the gut 
to the periphery via intestinal lymph and the systemic 
circulation. ApoB-48 is a truncated segment of 
ApoB-100 and is homologous to the initial 2151 amino 
acids of ApoB-100. Studies have also confirmed that 
ApoB-48 can be modified by glycosylation[70,71]. 

Fatty acid translocase
Fatty acid uptake into the liver contributes to the 
steady balance of hepatic TGs in the liver, as well 
as the pathogenesis of NAFLD. The cellular capacity 
for fatty acid uptake depends on the numbers and 

activities of transporter proteins on the sinusoidal 
plasma membrane of the hepatocytes. Fatty acid 
translocase is a transporter protein, and is heavily 
modified post-translationally by N-linked glycosylation. 
The 10 putative glycosylation sites located in the large 
extracellular loop of the protein have been identified[72]. 

ChREBP 
ChREBP is involved in the transcriptional activation 
of genes encoding the aforementioned rate-limiting 
enzymes in lipogenesis, and has been associated with 
increased DNL in NAFLD[73]. Guinez et al[74] reported 
that ChREBP interacts with O-GlcNAcylation transferase 
and is subjected to O-GlcNAcylation in liver cells which 
in turn stabilizes it and enhances its transcriptional 
activity toward its target glycolytic and lipogenic genes 
when combined with an active glucose flux in vivo. 

Fas
Hepatocyte apoptosis is the most common and well-
characterized cell death pathway. Hepatic apoptosis is 
also confirmed to be a pathologic hallmark of NASH[75]. 
Alkhouri et al[76] reported that there was an increased 
sensitivity to Fas-mediated hepatocyte apoptosis in a 
dietary model of NAFLD, when mice were fed a high-
fat diet. In addition, liver tissue samples from NASH 
patients displayed high expression of Fas protein, 
suggesting that it plays a role in the development of 
NASH. Fas is a glycosylated protein, and undergoes 
glycosylation in its extracellular domain during 
NASH[77,78]. 

Adiponectin
Adiponectin is an insulin-sensitizing adipocytokine 
that has multiple beneficial effects in obesity-related 
NAFLD[79]. The collagenous region of adiponectin, 
produced in vitro, contains four conserved lysines 
that are both hydroxylated and glycosylated with a 
glucosylgalactosyl moiety[80]. In addition, bovine and 
mouse plasma adiponectin contains sialic acid, possibly 
on O-linked glycans[81]. 

EFFECT AND MECHANISM OF GTs ON 
THE DEVELOPMENT OF NAFLD
In recent years, a number of studies have demonstrated 
the role of some GTs in the development of NAFLD and 
their different mechanisms of action.

GnT-Ⅲ
GnT-Ⅲ is a key enzyme in N-glycan biosynthesis, 
encoded by the Mgat3 gene[82], and is a mammalian 
Golgi-resident GT. It catalyzes the attachment of the 
bisecting GlcNAc residue to β-1, 4 mannose in the 
core structure of N-linked oligosaccharides[83]. Bisected 
N-glycans are involved in physiological and pathological 
processes through the functional regulation of their 

2487 February 28, 2016|Volume 22|Issue 8|WJG|www.wjgnet.com

Zhan YT et al . Non-alcoholic fatty liver disease



carrier proteins[84,85]. Human GnT-Ⅱ contains 531 
amino acids and possesses a domain structure identical 
to GTs[86]. The structure includes a short N-terminal 
cytoplasmic tail, a transmembrane region of 16-20 
amino acids (as predicted by hydropathy plots), a stem 
region (or neck region), and a long C-terminal catalytic 
domain[87]. Ihara et al[69] found that the livers of GnT-
Ⅲ transgenic mice contained abundant lipid droplets 
accompanied by ballooning degeneration. Although the 
levels of immunoreactive ApoB were increased, the 
ApoB-100 was specifically decreased to undetectable 
levels in the serum of these transgenic mice. These 
results strongly suggest that aberrant glycosylation of 
ApoB activated by GnT-Ⅲ inhibits the ApoB assembly 
itself and further blocks the synthesis and secretion of 
VLDL, which in turn leads to an accumulation of TGs 
within the liver.

T-synthase 
T-synthase is the key β3-galactosyltransferase 
essential for the biosynthesis of core 1 O-glycans 
(Galβ1-3GalNAcα1-Ser/Thr) in the glycoproteins of 
animal cells[88]. It was initially purified from rat liver 
and subsequently cloned into the cDNA, and the 
genes for T-synthase were successfully identified 
from Caenorhabditis elegans, mouse, rat and human. 
The cDNA for T-synthase in mammals encodes a 
363-amino acid transmembrane protein with type Ⅱ 
topology[89]. A decrease in the expression of T-synthase 
alters O-glycan elongation and results in the 
production of abnormal and truncated carbohydrate 
structures, eventually leading to exposure of the Tn 
antigen[90]. This has been shown to be associated 
with several human diseases, including cancer, Tn 
syndrome and IgA nephropathy[91]. A recent study 
showed that T-synthase knockout in endothelial and 
hematopoietic cells (EHC T-syn-/-) of pups, resulted 
in the development of fatty liver disease in mice. 
Fu et al[92] reported that immediately after the pups 
began nursing on milk, the liver of postnatal 1 wk EHC 
T-syn-/- mice displayed an abnormal accumulation of 
vacuoles containing TGs, resembling microvesicular 
steatosis in human steatohepatitis. At postnatal 7 
wk, the livers of EHC T-syn-/- mice, had extensive 
steatosis, inflammatory infiltrates, and hepatocyte 
ballooning. EHC T-syn-/- mice that survived beyond 
neonatal development displayed cirrhosis. EHC 
T-syn-/- adult mice were not obese. The lymphatic 
system is essential for the transport of immune cells, 
interstitial fluids, and dietary lipids[93]. Dietary lipids are 
transported in the form of chylomicrons from the small 
intestine to the systemic circulation via the intestinal 
lymphatic vessels and thoracic duct[94]. In EHC T-syn-/- 

mice, due to aberrant intestinal vein and lymphatic 
connections, chylomicrons are directly transported 
to the liver via the portal vein system, which causes 
fatty liver disease. Endothelial O-glycans control the 
separation of blood and lymphatic vessels during 

embryonic and postnatal development by regulating 
podoplanin expression. The abnormal O-glycosylation 
of endothelial podoplanin is sufficient for the 
formation of hybrid vessels and blood/lymphatic 
vessel misconnections. Therefore, the impairment of 
podoplanin expression/function by specific deletion of 
T-synthase may contribute to the aberrant connections 
between intestinal blood and lymphatic vessels.

α1, 6-fucosyltransferase 
α1, 6-fucosyltransferase (FUT8) catalyzes the 
transfer of a fucosyl residue from guanine nucleotide 
diphosphate-β-l-fucose to the innermost GlcNAc of 
an asparagine-linked oligosaccharide[95]. It plays an 
important role in the tumorigenesis of non-small 
cell lung cancer and colon carcinoma[96,97]. Human 
Fut8 gene is located on chromosome 14q23.3, and 
consists of at least nine exons spanning more than 
a 50 kb genomic region, and the coding sequence 
is divided into eight exons[98,99]. FUT8 is a typical 
type Ⅱ membrane protein localized in the Golgi 
apparatus[100]. It consists of 575 amino acids, and 
contains a catalytic domain, an N-terminal coiled-coil 
domain and a C-terminal SH3 domain. The catalytic 
domain was structurally classified as a member of the 
GT-B group of GTs. Wang et al[101] reported that lipid 
droplets in hepatocytes were significantly increased 
in the liver of FUT8 transgenic mice, and these 
lipid droplets were apparently localized within the 
lysosomes. Furthermore, the study showed that liver 
lysosomal acid lipase (LAL) activity was significantly 
lower in these transgenic mice compared to wild-type 
mice, and the level of fucosylated LAL was greater in 
transgenic mice. These results suggested that aberrant 
fucosylation of LAL causes an accumulation of inactive 
LAL in the lysosomes, and results in steatosis in the 
lysosomes of the liver in the case of FUT8 transgenic 
mice.

Glycosyltransferase 8 domain containing 2 
As a member of the glycosyltransferase 8 family, 
the human glycosyltransferase 8 domain containing 
2 (Glt8D2) is a 349 amino acid single-pass type 
Ⅱ membrane protein encoded by a gene located 
on chromosome 12q23.3. The first six amino acid 
residues extend to the cytoplasm, residues 7-24 
constitute the transmembrane domain and residues 
25-349 are in the luminal compartments[102]. Moylan et 
al[103] reported that the GLT8D2 gene is up-regulated in 
patients with severe NAFLD. Recently, we have cloned 
the GLT8D2 gene and found that GLT8D2 expression 
increased in fatty liver compared with normal liver in 
rats. Our in vitro study found that GLT8D2 expression 
increased in steatosis HepG2 cells compared with 
normal cells. In addition, further study showed that 
plasmid transfection of GLT8D2 increased the TG 
content, up-regulated ApoB-100 protein, but down-
regulated microsomal triglyceride transfer protein 
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(MTP) in HepG2 cells. MTP has both apoB 100 binding 
and lipid transfer domains[104], and is an essential 
factor for VLDL assembly and secretion. As a result, 
we speculate that the inhibition of MTP expression by 
GLT8D2 may be the major mechanism resulting in 
accumulation of TG in HepG2 cells.

UDP-glucuronosyltransferases 
UDP-glucuronosyltransferases (UGTs) are glycoproteins 
localized in the ER which catalyze the conjugation of 
a wide variety of lipophilic aglycon substrates with 
glucuronic acid using UDP-glucuronic acid as the sugar 
donor[105]. The human UGTs are membrane proteins 
with approximately 530 amino acids, of which the first 
25 residues of the signal sequence are removed after 
the transfer of newly synthesized polypeptides to the 
ER. A single transmembrane helix is predicted close 
to the C terminus of the protein, and the membrane 
topology is such that the bulk of the protein is on the 
luminal side of the ER membrane[106]. The mammalian 
UGT gene superfamily currently has 117 members. 
On the basis of amino acid sequence similarity, the 
UGT superfamily is divided into four families, UGT1, 
UGT2, UGT3 and UGT8[107], and further subdivided 
into different subfamilies, respectively. It is well-
known that UGTs are highly expressed in the liver, 
and induced by microsomal enzyme treatment 
through nuclear receptor- and transcription factor-
dependent mechanisms[108,109]. In recent years, it 
was found that the UGT expression is abnormal in 
the liver of NAFLD subjects. Xu et al[110] reported 
that the mRNA expression of some of the UGT 
isoforms was increased in steatotic liver of ob/ob 
mice, and this was accompanied by increased mRNA 
expression of the arylhydrocarbon receptor, constitutive 
androstane receptor, peroxisome proliferator-activated 
receptor-α, pregnane X receptor, nuclear factor-like 
2, and peroxisome proliferator-activated receptor-γ 
coactivator-1α. Zhang et al[111] also confirmed that 
fatty liver in rats on a high-fat diet showed increased 
mRNA and protein expression of UGT, and it was 
further enhanced by the addition of valproic acid. The 
induction of UGTs was accompanied by the increased 
expression of constitutive androstane receptor 
and peroxisome proliferator-activated receptor α. 
However, Hardwick et al[112] found that the expression 
of different UGT isoforms in the liver appears to be 
differentially regulated in human NASH. Hence, the 
role of UGT expression in NAFLD remains unclear. 
In addition, UGT also has a role in glucuronidation, 
which is a major detoxification pathway for exogenous 
compounds and is becoming increasingly important for 
metabolizing approximately 40%-70% of drugs[113]. 
Numerous xenobiotics, including acetaminophen, 
morphine, propofol, chloramphenicol, and nonsteroidal 
anti-inflammatory drugs, as well as environmental 
compounds, are glucuronidated by UGT[114]. Thus, it 
is possible that a UGT abnormality may exacerbate 
the side effects of the above drugs in NAFLD patients. 

Therefore, UGT abnormalities may also play an 
important role in the pathogenesis of NAFLD. 

CONCLUSION
NAFLD is the most highly prevalent chronic liver 
disease, and its detailed mechanism remains 
unclear. TGs, which play an important role in many 
fundamental biological processes, are also confirmed 
to affect the development of NAFLD and play an 
important role in its pathogenesis. In addition, some 
molecules related to the pathogenesis of NAFLD are 
glycosylated and are modified by some GTs. However, 
many questions related to protein glycosylation and 
its role in the development of NAFLD have yet to be 
clarified. The precise mechanism of hepatic steatotic 
injury involving protein glycosylation and consequent 
NAFLD require further detailed investigation. 
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