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Abstract
AIM
To investigate the effects of hydrogen-rich water (HRW) 
treatment on prevention of ethanol (EtOH)-induced 
early fatty liver in mice.

METHODS
In vitro  reduction of hydrogen peroxide by HRW was 
determined with a chemiluminescence system. Female 
mice were randomly divided into five groups: control, 
EtOH, EtOH + silymarin, EtOH + HRW and EtOH + 
silymarin + HRW. Each group was fed a Lieber-DeCarli 
liquid diet containing EtOH or isocaloric maltose dextrin 
(control diet). Silymarin was used as a positive control 
to compare HRW efficacy against chronic EtOH-induced 
hepatotoxicity. HRW was freshly prepared and given at 
a dosage of 1.2 mL/mouse trice daily. Blood and liver 
tissue were collected after chronic-binge liquid-diet 
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feeding for 12 wk.

RESULTS
The in vitro  study showed that HRW directly scavenged 
hydrogen peroxide. The in vivo  study showed that 
HRW increased expression of acyl ghrelin, which 
was correlated with food intake. HRW treatment 
significantly reduced EtOH-induced increases in serum 
alanine aminotransferase, aspartate aminotransferase, 
triglycerol and total cholesterol levels, hepatic 
lipid accumulation and inflammatory cytokines, 
including tumor necrosis factor-alpha (TNF-α) and 
interleukin (IL)-6. HRW attenuated malondialdehyde 
level, restored glutathione depletion and increased 
superoxide dismutase, glutathione peroxidase and 
catalase activities in the liver. Moreover, HRW reduced 
TNF-α and IL-6 levels but increased IL-10 and IL-22 
levels.

CONCLUSION
HRW protects against chronic EtOH-induced liver 
injury, possibly by inducing acyl ghrelin to suppress the 
pro-inflammatory cytokines TNF-α and IL-6 and induce 
IL-10 and IL-22, thus activating antioxidant enzymes 
against oxidative stress.

Key words: Hydrogen; Chronic plus binge EtOH feeding; 
Antioxidant; Protective cytokine; Acyl ghrelin; Female 
mice

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Hydrogen-rich water (HRW), a safe and 
effective antioxidant with minimal side effects, is used 
in preventive and clinical applications. Few studies have 
investigated the effects of hydrogen on early alcoholic 
liver disease. The present study evaluated the potential 
protective effects of HRW against chronic ethanol 
(EtOH)-induced early liver injury and the underlying 
mechanisms in female mice after chronic-plus-binge 
EtOH feeding. HRW pretreatment protected against 
mild EtOH-induced liver injury, possibly by inducing acyl 
ghrelin to suppress tumor necrosis factor-alpha and 
interleukin (IL)-6 and induce IL-10 and IL-22, thereby 
activating antioxidant enzymes against oxidative stress. 
These results suggest that HRW helps prevent and 
treat EtOH-induced early liver injury.

Lin CP, Chuang WC, Lu FJ, Chen CY. Anti-oxidant and anti-
inflammatory effects of hydrogen-rich water alleviate ethanol-
induced fatty liver in mice. World J Gastroenterol 2017; 
23(27): 4920-4934  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v23/i27/4920.htm  DOI: http://dx.doi.
org/10.3748/wjg.v23.i27.4920

INTRODUCTION
Sustained excessive alcohol consumption results in 

a spectrum of liver injury, from hepatic steatosis to 
hepatitis, fibrosis and cirrhosis, which can ultimately 
lead to hepatocellular carcinoma[1-4]. Among heavy 
drinkers, the incidence of hepatic steatosis is about 
95%. Risk factors potentially associated with alcoholic 
liver disease (ALD) include sex, obesity, dietary factors, 
smoking and non-sex-linked genetic factors. Among 
humans and rodents, females are more susceptible 
to ALD, even if they consume less alcohol than males. 
This may be attributable to lower gastric alcohol dehy-
drogenase activity, lower distributed volume of alcohol 
and estrogen, which has a substantial effect on 
alcohol-induced hepatotoxicity[5-7].

ALD pathogenesis is mediated by increased 
steatosis, inflammatory factors, oxidative stress 
and immune responses. Ethanol (EtOH) impairs 
antioxidant defenses and mitochondrial functions 
and may trigger a burst of reactive oxygen species 
(ROS), thus resulting in hepatotoxicity, steatosis, 
inflammation and fibrosis[1,2]. ROS can also induce 
hepatocellular responses strongly associated with 
Kupffer cell activation, which increases inflammatory 
response and leads to liver injury. Moreover, activated 
Kupffer cells release ROS and cytokines that are crucial 
in activating hepatic stellate cells (HSCs) and inducing the 
pro-fibrogenic pathway[1,2]. 

Previous studies reported that oxidative stress 
and sensitization to endotoxins contributing to EtOH-
induced liver injury are associated with release of pro-
inflammatory mediators, promotion of lipid peroxidation 
and impaired hepatic antioxidant defense[1,2,8]. 
Activation of pro-inflammatory cytokines, particularly 
nitric oxide synthase, cyclooxygenase 2, transcription 
factor nuclear factor-κB, tumor necrosis factor-
alpha (TNF-α) and interleukin (IL)-6 is crucial in ALD 
progression, which leads to hepatocellular injury and 
death[1-3,6,9]. 

IL-22, a novel hepatoprotective factor, is a member 
of the IL-10 family of cytokines and appears to be an 
important effector molecule of activated T cells and 
natural killer cells. The main biological roles of IL-22 
are to promote innate immunity, improve regeneration 
and protect against damage[10]. Evidence from several 
studies suggests that IL-22 - through antioxidant and 
anti-apoptotic pathways - exerts protective effects 
against hepatic injury induced by concanavalin A[11], 
carbon tetrachloride (CCl4)[12] and EtOH[3]. Ghrelin, a 
28-amino acid peptide produced in gastric mucosa, 
acts in the hypothalamus to promote appetite and 
inhibit sympathetic activity, thus increasing food 
intake while lowering metabolic rate[13,14]. Recent 
studies suggest that ghrelin has various biological 
functions, including anti-oxidation, anti-inflammation, anti-
autoimmunity and promotion of vascular health[13-16].

Because of its effective scavenging of ROS, 
molecular hydrogen (H2) has potent systemic antio-
xidant activity[17,18]. Approaches to administering H2 
include inhalation, injection, oral administration and 
immersion. Oral administration of H2-rich water (HRW) 
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was easier, safer and more economical as a means 
to protect against oxidative stress-induced injury in 
multiple animal models of human diseases. H2 was 
successfully used in a number of in vivo studies of 
hepatic injury, which examined conditions such as 
ischemia reperfusion injury, obstructive jaundice, acute 
hepatic failure and nonalcoholic steatohepatitis[19-25]. 

Our previous research indicated that electrolyzed 
reduced water and silica hydride, which contains H2, 
ameliorated CCl4-induced hepatotoxicity in mice by 
enhancing antioxidant enzyme activity and reducing 
lipid oxidation[26,27]. Additionally, consumption of more 
than 20 mL/kg per day of HRW had no observable 
adverse effects, which suggests a 60-kg human could 
safely drink at least 1.2 L/d of HRW[28]. Thus, HRW 
could be used in preventive and clinical applications 
as a safe and effective antioxidant with minimal side 
effects[17-21,23,28-31]. Recent clinical studies found that 
HRW reduced oxidative stress in persons with chronic 
hepatitis B[32] and metabolic syndrome[31].

The effects of H2 on chronic EtOH-induced liver 
injury are not well understood. The Lieber-DeCarli 
liquid diet has been extensively used as the typical 
approach to establish a chronic-plus-binge EtOH 
feeding model that mimics some of the molecular 
and histological features of mild, early-stage human 
ALD[3,33,34]. This model induces mild steatosis and 
elevations in serum alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) in C57BL/6 
mice. The elevations are much more severe than those 
seen in mice on chronic EtOH or single EtOH gavage 
alone diets. This study investigated the potential 
protective effects of HRW against chronic EtOH-
induced early-stage liver injury and the underlying 
mechanisms of such effects in female mice after 
chronic-plus-binge EtOH feeding.

MATERIALS AND METHODS
Production of H2-rich water
HRW was prepared by inducing a chemical reaction 
between metallic magnesium and water [Mg + 2H2O/
Mg(OH)2 + H2][35]. The Daily Inner T505 Hydrogenerator 
apparatus (Unitiva Applied Materials Corp., Taipei, 
Taiwan) was used to generate HRW. Briefly, to produce 
HRW, a metallic magnesium stick (T505, 175 g Mg 
Chips) containing 99.99% pure metallic magnesium in 
a polypropylene and ceramic container was placed in 
distilled water with a flow rate set at 400 mL/min. The 
resulting H2 content was 500-600 parts per billion (ppb). 
HRW was freshly prepared and immediately diluted 
to pre-specified concentrations for use in vitro and in 
vivo.

Characterization of H2-rich water
HRW was analyzed by multiple devices. To analyze 
H2 content and oxidation-reduction potential (ORP), 
HRW was freshly prepared in a capped vial and 
immediately measured with a dissolved H2 portable 

meter (ENH-1000; Trustlex Co., Ltd, Tokyo, Japan) and 
ORP portable meter (MP220; Mettler Toledo, Zurich, 
Switzerland). Analysis of free radical scavenging 
activity was performed by modifying previously 
described methods[35,36]. In brief, a mixture of 0.1 
mL of H2O2 solution (97 mmol/L in distilled water) 
and 0.4 mL of sample was loaded in the stainless 
steel container of a chemiluminescence analysis 
system (CLA-2100; Tohoku Electronic Co., Ltd, 
Sendai, Japan) for 60 s. Next, 0.1 mL of luminol 
solution (3 mmol/L in phosphate-buffered saline, 
pH 7.4) was immediately injected into the dark 
chamber of the chemiluminescence analyzer. Then, 
chemiluminescence intensity was continuously recorded 
for 120 s. Scavenging activity (%) was defined as 
[(Sum1 - Sum2)/Sum1] × 100%.

Animals
All procedures involving animals were reviewed by 
the Institutional Animal Care and Use Committee of 
Chung-Shan Medical University Experimental Animal 
Center (IACUC approval no. 1745). Female C57BL/6 
mice (age 5 wk) were purchased from BioLasco Taiwan 
(Ilan, Taiwan) and acclimatized to the environment for 
1 wk. All mice were handled under standard laboratory 
conditions (temperature 22 ± 2 ℃, humidity 55% 
± 5% and 12-h light-dark cycle). Then, mice were 
allowed ad libitum access to a controlled Lieber-DeCarli 
diet for 1 wk, to acclimatize to the liquid diet before 
the experiment. The liquid diets provided 1 kcal/mL 
(prepared by Dyets, Inc., Bethlehem, PA, United States), 
in accordance with the Lieber-DeCarli formulation. 
This nutritional diet (containing 41.4 g/L casein, 0.5 
g/L L-cystine, 0.3 g/L DL-methionine, 8.5 g/L corn oil, 
28.4 g/L olive oil, 2.7 g/L safflower oil, 115.2 g/L maltose 
dextrin, 10 g/L cellulose, 8.75 g/L mineral mix, 2.5 g/L 
vitamin mix, 0.53 g/L choline bitartrate and 3 g/L xanthan 
gum) allowed for the prolonged exposure of EtOH in a 
rodent model and allowed for modification to calories 
provided by EtOH[2,3,5,33,34]. 

Mice in the present study were assigned to 5 
groups (n = 8-10 each), as follows: (1) control group 
- mice receiving a controlled liquid diet and gavaged 
with distilled water; (2) EtOH group-mice receiving 
5% EtOH (v/v) containing a liquid diet and gavaged 
with distilled water; (3) EtOH + silymarin group-mice 
receiving an EtOH diet and gavaged with silymarin 
(200 mg/kg); (4) EtOH + HRW group-mice receiving 
an EtOH diet and gavaged with HRW; and (5) EtOH + 
silymarin (200 mg/kg) + HRW group-mice receiving 
an EtOH diet and gavaged with silymarin and HRW.

Experimental design
Chronic and binge EtOH feeding was carried out by 
modifying a previously described protocol[33,34]. Both liquid 
diets were freshly prepared daily. HRW was orally 
administered (500 ppb, 1.2 mL/mouse) thrice daily 
for 13 continuous weeks. After 1-wk pretreatment 
with HRW, all mice (except for the control group) 
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was dissolved in phosphate-buffered saline containing 
1% Triton X-100. TG and TC content were measured 
with a commercial kit (Randox Laboratories Ltd).

Measurement of cytokine profiles in liver tissue and 
serum
For measurement of cytokine profiles, 100 mg of liver 
tissue was homogenized on ice with RIPA buffer (50 
mmol/L Tris,150 mmol/L NaCl,1% Triton, 5 mmol/
L EDTA, 0.5% sodium deoxycholate, 0.1% SDS) 
containing protease inhibitor. After centrifugation (12000 
× g, 10 min, 4 ℃), TNF-α and IL-6 content in serum 
supernatant was determined with ELISA kits (Enzo 
Life Science Inc., Farmingdale, NY, United States), 
according to the manufacturer’s protocols. Tissue 
values were normalized to tissue wet weight. Serum 
IL-10 and IL-22 levels were determined with ELISA 
kits (Elabscience, Hubei, China), according to the 
manufacturer’s protocols.

Measurement of hepatic antioxidant enzymes and lipid 
peroxidation
Livers were homogenized on ice with Tris-HCl (5 mmol/L, 
pH 7.4) containing 2 mmol/L EDTA. After centrifugation 
(10000 × g, 10 min, 4 ℃), the supernatant was 
immediately stored at -80 ℃ for additional antioxidant 
assays. Superoxide dismutase (SOD) and glutathione 
peroxidase (GSH-Px) activities were determined 
by enzymatic assay kits (RANSOD and RANSEL, 
respectively; Randox Laboratories Ltd), according to 
the manufacturer’s protocols. Catalase (CAT) activity 
was determined with the method proposed by Aebi[38]. 
The above antioxidant activities were normalized to 
hepatic total protein. GSH content was determined 
with a colorimetric assay kit (Bioxytech GSH-400; 
OXIS International Inc., Portland, OR, United States), 
according to the manufacturer’s protocol.

Measurement of hepatic lipid peroxidation
Malondialdehyde (MDA) is a marker of lipid pero-
xidation. MDA reaction with thiobarbituric acid was 
determined by the method of Buege et al[39], with some 
modifications. In brief, deproteinized homogenates from 
liver were mixed thoroughly with 0.67% thiobarbituric 
acid in a 50% acetic acid solution and then placed in 
a boiling-water bath for 60 min. The supernatant was 
collected and measured at excitation/emission wave 
lengths of 515 nm and 555 nm in a microplate reader 
(Molecular Devices Flexstation 3; Molecular Devices, 
LLC, Sunnyvale, CA, United States).

Statistical analysis
Measurement data are expressed as mean ± SD 
and differences between groups were analyzed with 
the unpaired t-test. Associations between variables 
were assessed by the Spearman correlation test. 
All statistical analyses were performed using SPSS 
12.0 software (SPSS Inc. IBM, Chicago, IL, United 

underwent a 2-wk acclimation to their modified liquid 
diets; specifically, the EtOH content in the diet was 
graded from 7.2% to 36% of energy composition. 
All mice, including the control diet group, were 
regularly fed their assigned diets ad libitum for 10 
wk. Subsequently, mice in the EtOH groups were 
gavaged with a single dose of EtOH (5 g/kg) and mice 
in the control group were gavaged with an isocaloric 
amount of dextrin maltose in the early morning. Nine 
hour after gavage, the mice were euthanized by CO2 
administration and blood was collected by caudal 
vena cava sampling. The whole liver was excised and 
washed immediately with ice-cold saline, to remove 
residual blood before weighing. The largest right lobe 
of each liver was fixed in 10% buffered formalin for 
histopathological assessment and the remaining tissues 
were immediately frozen at -80 ℃ for subsequent 
analysis.

Measurements of acyl ghrelin concentrations
After collection of whole blood, 4-(2-aminoethyl)benzene 
sulfonyl fluoride (AEBSF) was immediately added to 
achieve a final concentration of 1 mg/mL for 30 min 
at room temperature, after which the sample was 
centrifuged (4 ℃, 2000 × g, 15 min). Next, serum was 
acidified with HCl to a final concentration of 0.1 N and 
samples were frozen at -80 ℃ for further analysis. The 
acyl form of ghrelin was measured in serum by the 
Active Ghrelin Enzyme-Linked Immunosorbent Assay 
(ELISA) Kit (Millipore, MA, United States), according to 
the manufacturer’s protocols.

Measurement of serum biochemistry parameters
To evaluate hepatic injury, levels of ALT, AST, triacy-
lglycerol (TG) and total cholesterol (TC) were measured 
with commercial kits (Randox Laboratories Ltd, Antrim, 
United Kingdom), according to the assay protocol.

Hepatic histopathological assessment
Liver specimens were fixed in 10% neutral buffered 
formalin and embedded in paraffin, using standard 
microtechniques. Then, 4-μm-thick liver sections were 
stained with hematoxylin and eosin and observed with 
a microscope (IX71S8F-2; Olympus, Tokyo, Japan), 
to estimate fatty liver progression in hepatocytes. The 
semi-quantitative histological assessment of hepatic 
damage was graded 0-4, as follows: none (0), slight 
(1), mild (2), moderate (3) and severe (4).

Measurement of hepatic lipid accumulation
Extraction of hepatic lipids was performed by using 
the method of Folch et al[37], with some modifications. 
Then, 100 mg of liver tissue was homogenized in 
chloroform/methanol (v/v: 1/2). Next, chloroform 
and distilled water (v/v: 1/1) were loaded and mixed 
thoroughly. After centrifugation (1500 × g, 10 min), 
the organic layer was removed, placed in another glass 
tube and dried under nitrogen gas. The dried powder 
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States). When appropriate, P < 0.05 was considered 
statistically significant.

RESULTS 
H2-rich water directly scavenged H2O2 in vitro
To characterize H2 solubility in water, a specific 
electrode was used to detect H2 concentrations in 
freshly prepared HRW. Dissolved H2 concentration 
decreased from the baseline (freshly prepared) 
concentration to undetectable in 10 h (Figure 1A). 
ORP is generally used as a measure of the antioxidant 
activity of a water sample. The present results show 
that HRW had a negative ORP and that ORP became 
positive at the same time that H2 content became 
undetectable in water (Figure 1B). 

H2 markedly reduces ROS. Chemiluminescence 
emission in vitro was used to verify that HRW 
scavenged ROS in the present study. H2O2-generated 
free radicals were significantly and dose-dependently 
decreased by HRW treatment (125-500 ppb; app-
roximately 7.5% to 30% saturation; Figure 1C). ROS 
scavenging ability was converted to the integral of the 
area under the curve. At concentrations of 125, 250 
and 500 ppb, HRW treatment enhanced scavenging 
ability by 19.8%, 38.7% and 52.7%, respectively, 
as compared with the control group (Figure 1D). The 
presence of ROS scavenging ability in vitro suggests 

that HRW has hepatoprotective potential for in vivo 
EtOH-induced oxidative stress.

Effects of H2-rich water on food intake, acyl ghrelin, 
body weight and liver weight in chronic-binge ethanol-
fed C57BL/6J mice
To investigate the hepatoprotective potential of HRW 
in vivo, C57BL/6 mice were subjected to a chronic-
plus-binge EtOH feeding model. Silymarin (200 mg/kg) 
was used as a positive control. The control and EtOH 
groups significantly differed in daily food intake (P < 0.05; 
Figure 2A). Silymarin, HRW and combination treatment 
significantly reversed the hypophagic effect induced by 
EtOH (P < 0.01), which indicates that HRW reversed 
EtOH-induced anorexia. After 12 wk of EtOH exposure, 
serum was collected for analysis of acyl ghrelin. The 
control and EtOH groups significantly differed in acyl 
ghrelin expression (P < 0.001; Figure 2B). Acyl ghrelin 
expression was significantly higher in the HRW and 
combination treatment groups than in the EtOH group 
(P < 0.001). 

During the course of the experiment, body weight 
was lower in the EtOH group than in the control diet 
group (Supplementary Figure 1). Silymarin, HRW and 
combination treatment slightly restored body weight, 
especially from week 4 until week 10. The values 
for relative body weight gain among groups after 
13 wk of feeding were 29%, 26.6% 28.5%, 25.4% 
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and 26.8%, compared to the baseline, respectively 
(Figure 2C). Body weight gain did not significantly differ 
among the groups. After the mice were sacrificed, 
liver tissues were excised and weighed. Liver weight 
significantly differed between the control and EtOH 
groups (P < 0.001), which suggests that EtOH admini-
stration resulted in liver enlargement (Figure 2D). 

Silymarin, HRW and combination treatment (P < 0.05) 
attenuated this EtOH-induced liver enlargement.

Effects of H2-rich water on liver function in chronic-
binge ethanol-fed C57BL/6J mice
ALT and AST activities are biomarkers of liver damage. 
As shown in Table 1, both significantly differed 
between controls and the EtOH group (P < 0.001), 
which indicates that EtOH administration caused 
hepatocellular injury. As compared with the EtOH 
group, ALT and AST levels were 15.8% and 14.8% 
lower, respectively, in the silymarin-treated group 
(P < 0.01 and P < 0.05) and 11.5% and 10.9% lower, 
respectively, in the HRW-treated group (P < 0.05 and 
P > 0.05). Combination treatment reduced ALT and 
AST by 24.2% and 26.7%, respectively (P < 0.001 for 
both). In addition, serum TG and TC levels were higher 
in the EtOH group than in the control diet group (P > 
0.05 and P < 0.001, respectively). As compared with 
the EtOH group, TG and TC levels were 17% and 
10.7% lower, respectively, after silymarin treatment 
(P < 0.05 and P < 0.01) and 13.9% and 10.3% lower, 
respectively, after HRW treatment (P < 0.05 and P < 0.01). 
Combination treatment yielded the greatest decreases; 
as compared with the EtOH group, TG and TC levels 

Group Control EtOH EtOH + Sily EtOH + HRW EtOH + Sily + HRW

ALT, 
U/L

43.4 
± 17.2

159 
± 16.9a

133.9 ± 15.3a,c 140.7 ± 15.5a,c 120.5 ± 19.7a,c

AST, 
U/L

98.4 
± 10.9

291 
± 43.7a

247.7 ± 20a,c 259.3 ± 10.9a          181.6 ± 22.3a,c,e

TG, 
mg/dL

153.1 
± 19.8

165 
± 26.7

136.9 ± 16.8c 142.1 ± 14.7c 122.2 ± 16.4a,c

TC, 
mg/dL

81 
± 15.8

106.3 
± 7.4a

   94.9 ± 4.5a,c 95.4 ± 6.5a,c 87.1 ± 8.3c,e

Table 1  Effects of hydrogen-rich water on the serum 
biochemical parameters and hepatic lipid contents in ethanol- 
fed C57BL/6J mice

Values are expressed as mean ± SD. aP < 0.05 vs control group, cP < 0.05 
vs EtOH group, and eP < 0.05 vs silymarin group. Sily: Silymarin; ALT: 
Alanine aminotransferase; AST: Aspartate aminotransferase; EtOH: 
Ethanol; HRW: Hydrogen-rich water; Sily: Silymarin; TC: Total cholesterol;  
TG: Triacylglycerol.
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were 25.9% and 18.1% lower, respectively (P < 0.001 
for both).

Effects of H2-rich water on hepatic lipid and inflammatory 
cytokines in chronic-binge ethanol-fed C57BL/6J mice
In normal liver, hepatic cells have well-preserved 
cytoplasm, a prominent nucleolus and portal vein. 
Hepatic steatosis is the most common EtOH-induced 
disorder and is characterized by accumulation of 
abnormal lipid droplets in hepatic cells. After 12 wk 
of EtOH exposure, hepatic TG and TC levels both 
significantly differed between the present control 
and EtOH groups (P < 0.001 for both; Table 2). 
These findings were consistent with the results of a 
histopathological examination of liver sections from the 
EtOH group, which revealed mild, diffuse and multifocal 
fatty change with microvesicular, macrovesicular and 

mixed steatosis (Figure 3A). As compared with the 
EtOH group, hepatic TG and TC levels were 24.5% 
and 16.9% lower, respectively, in the silymarin-treated 
group (P < 0.001 for both; Table 2). 

Histopathological assessment yielded similar 
results. Silymarin treatment significantly attenuated 
EtOH-induced fatty change and macrovesicular 
steatosis (Figure 3B). HRW treatment resulted in 
significant reductions in hepatic TG and TC (10.9% 
and 8.9%; P < 0.01 and P < 0.05, respectively; Table 
2), although there was no significant improvement 
in histopathological characteristics as compared with 
the EtOH group. Combination treatment resulted in 
6% and 11.8% reductions (P < 0.05 and P < 0.01, 
respectively; Table 2).

We investigated the inflammatory profile of EtOH-
induced liver injury. TNF-α and IL-6 levels were 
significantly higher for the EtOH group than for the 
control diet group (P < 0.001 for both; Table 2). As 
compared with the EtOH group, TNF-α and IL-6 levels 
were significantly lower in the silymarin-treated group 
(12% and 34.2% lower, respectively; P < 0.01 and 
P < 0.001). After HRW treatment, TNF-α and IL-6 
levels were 6.4% and 10% lower than those of the 
EtOH group (P < 0.05 and P > 0.05, respectively). 
Combination treatment yielded the best results, with 
reductions of 17.3% and 41.1%, respectively (P 
< 0.001 for both). These results suggest that HRW 
inhibits EtOH-induced lipid accumulation and hepatic 
inflammation in the liver.

Anti-inflammatory effect of H2-rich water on cytokine in 
chronic-binge ethanol-fed C57BL/6J mice
EtOH feeding significantly increased production of 
serum pro-inflammatory cytokines, including TNF-α 

Group Control EtOH EtOH 
+ Sily

EtOH 
+ HRW

EtOH + Sily 
+ HRW

Hepatic TG, 
mg/g tissue

82.4 
± 9.9

120.7 
± 6.8a

91.1 
± 8.8c

107.5 
± 6.6a,c,e

113.5 
± 7.3a,c,e

Hepatic TC, 
mg/g tissue

18.1 
± 2.4

41.4 
± 3.1a

34.4 
± 2.8a,c

38.0 
± 2.6a,c,e

36.5 
± 2.1a,c

Hepatic 
TNF-α, 
pg/mg tissue

29.0 
± 3.0

45.1 
± 3.4a

39.7 
± 2.5a,c

42.0 
± 2.4a,c

37.3 
± 3.8a,c

Hepatic IL-6, 
pg/mg tissue

10.7 
± 1.2

19.0 
± 1.2a

12.5 
± 2.3a,c

17.1 
± 2.5a,e

11.2 
± 2.7c

Table 2  Effects of hydrogen-rich water on the hepatic lipid 
and cytokine contents in ethanol- fed C57BL/6J mice

Values are expressed as mean ± SD. aP < 0.05 vs control group, cP < 0.05 
vs EtOH group, and eP < 0.05 vs silymarin group. EtOH: Ethanol; HRW: 
Hydrogen-rich water; IL-6: Interleukin 6; Sily: Silymarin; TC: Total 
cholesterol; TG: triacylglycerol; TNF-α: Tumor necrosis factor-alpha.

Lin CP et al . HRW in EtOH-induced fatty liver

Figure 3  Histopathological alterations of livers treated with chronic-binge ethanol-fed C57BL/6J mice. Livers showed fatty change with micro- mixed macro-
vesicles and were graded as mild in the EtOH (A), slight in the EtOH + silymarin (B), mild in the EtOH + HRW (C) and EtOH + silymarin + HRW (D) groups. H and E 
stain, 400 ×. Black arrow indicates the micro-vesicles and green arrow indicates the macro-vesicles. EtOH: Ethanol; HRW: Hydrogen-rich water.
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and IL-6, as compared with the control diet group 
(Figure 3). TNF-α level was significantly reduced by 
silymarin, HRW and combination treatment (P < 0.001, 
P < 0.05 and P < 0.001, respectively; Figure 4A). 
In addition, IL-6 level was significantly reduced by 
silymarin, HRW and combination treatment (P < 0.001; 
Figure 4B). Moreover, levels of anti-inflammatory 
cytokines, including IL-10 and IL-22, were significantly 
lower in the EtOH group than in the control diet group. 
IL-10 level was significantly increased by silymarin, 
HRW and combination treatment (P < 0.001; Figure 
4C). IL-22 level was also increased by silymarin, HRW 
and combination treatment (P > 0.05, P < 0.01 and P < 
0.001, respectively; Figure 4D). In sum, these results 
suggest that HRW inhibits pro-inflammatory mediators 
and induces anti-inflammatory mediators in EtOH-
induced liver injury.

Hepatic antioxidant effects of H2-rich water on activities 
of related antioxidant enzymes and lipid oxidation in 
chronic-binge ethanol-fed C57BL/6J mice
EtOH-induced free radical oxidative stress is a hallmark 
of liver disease. Thus, we tested the hypothesis that 
HRW decreases oxidative neuronal stress by means of 

anti-ROS activity. The activities of hepatic antioxidant 
enzymes, including SOD, CAT, GSH-Px and GSH, 
in the EtOH group were significantly lower than in 
the control diet group (Figure 5). In addition, these 
activities were significantly promoted by silymarin and 
HRW. Moreover, significantly higher levels of hepatic 
antioxidant enzymes were observed in mice that 
received combined treatment with silymarin and HRW.

MDA concentration was used as a marker of 
oxidative stress. MDA level in hepatic tissue was 
significantly higher in the EtOH group than in the 
control diet group (P < 0.001). In addition, MDA was 
significantly lower in the silymarin group (P < 0.01) and 
HRW group (P < 0.05) than in the EtOH group. The 
strongest beneficial effect was seen in the combined 
treatment group. These findings suggest that HRW 
promotes antioxidant capacity and reduces lipid 
peroxidation, thus improving antioxidant defense.

Relationship of acyl ghrelin with inflammatory and 
oxidative markers
Spearman correlation analysis was used to evaluate 
associations of HRW-induced alterations in acyl ghrelin 
with anti-inflammatory and antioxidant markers. Acyl 
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Figure 4  Anti-inflammatory effect of hydrogen-rich water on cytokines in chronic-binge ethanol-fed C57BL/6J mice. A and B: The levels of (A) TNF-α and (B) 
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ghrelin concentration was inversely correlated with the 
following pro-inflammatory and oxidative markers: 
serum TNF-α (ρ = -0.455, P > 0.05), serum IL-6 
(ρ = -0.636, P < 0.01) and hepatic MDA (ρ = -0.542, 
P < 0.05). In contrast, acyl ghrelin was positively 
correlated with serum IL-10 (ρ = 0.811, P < 0.001; 
Figure 6A), serum IL-22 (ρ = 0.797, P < 0.001; 
Figure 6B), hepatic SOD (ρ = 0.539, P < 0.05), hepatic 
CAT (ρ = 0.814, P < 0.001; Figure 6C), hepatic GSH-Px (ρ 

= 0.679, P < 0.01; Figure 6D), hepatic MDA (ρ = 0.542, 
P < 0.05) and hepatic GSH (ρ = 0.478, P > 0.05). 
HRW-induced changes in IL-10 and IL-22 resulted in 
inverse correlations with TNF-α (ρ = -0.304, P > 0.05 
and ρ = -0.508, P < 0.05, respectively) and serum 
IL-6 (ρ = -0.623, P < 0.01 and ρ = -0.703, P < 0.01) 
and positive correlations with hepatic SOD (ρ = 0.385, 
P > 0.05 and ρ = 0.630, P < 0.01, respectively), 
hepatic CAT (ρ = 0.659, P < 0.01 and ρ = 0.723, P < 
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Figure 5  Antioxidative effect of hydrogen-rich water on activities of related antioxidant enzymes and lipid oxidation product in chronic-binge ethanol-
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0.01, respectively) and hepatic GSH-Px (ρ = 0.711, P 
< 0.01 and ρ = 0.809, P < 0.001, respectively). These 
findings indicate that HRW-induced alterations in acyl 
ghrelin and the hepatoprotective cytokines IL-10 and 
IL-22 were associated with inflammatory and oxidative 
responses.

DISCUSSION
ALD not only causes lipopolysaccharide, which activates 
HSCs, but also affects synthesis and absorption of 
protein and vitamins, which leads to malnutrition, a 
secondary factor in hepatocyte damage. The mutual 
effects of these events eventually result in hepatic fat 
infiltration, inflammation, necrosis and cirrhosis[1,2,8]. If 
these conditions are not treated, the inevitable fibrosis 
and cirrhosis of the liver can result in numerous 
complications and death. Hence, there is a need 
for safe and effective agents that prevent or treat 
ALD. Future research should therefore investigate 
suppression and blockage of any of the steps that 
culminate in hepatic injury.

This study investigated whether HRW, alone or 
combined with silymarin, was beneficial for early-stage 
EtOH-induced liver injury in female mice. We found 
that HRW directly scavenged H2O2 in vitro. Our in vivo 
study showed that HRW pretreatment significantly 

attenuated increases in serum ALT, AST, TG and TC 
and hepatic lipid accumulation, which were induced by 
EtOH feeding. Ghrelin expression was higher after HRW 
treatment and was correlated with restoration of food 
intake and inflammatory cytokines, including TNF-α 
and IL-6, which were induced by EtOH feeding. HRW 
also attenuated MDA level, restored GSH depletion 
and increased SOD, GSH-Px and CAT activities in liver. 
Moreover, HRW reduced TNF-α and IL-6 levels and 
increased IL-10 and IL-22 levels. These results support 
the hypothesis that HRW has important antioxidant 
and anti-inflammatory effects in alcohol-related 
disease in mice. Previous studies reported that HRW 
treatment for 6 wk or 10 wk significantly attenuated 
oxidative stress and had the potential to improve liver 
function in patients with chronic hepatitis B[32] and 
metabolic syndrome[31], respectively. Therefore, HRW 
might be effective for prevention and clinical treatment 
of ALD such as steatosis, steatohepatitis and cirrhosis.

In the present study, a Lieber-DeCarli EtOH 
liquid diet was used to induce early ALD in female 
mice. This model closely reproduces the drinking 
behaviors of humans and the pathogenetic features 
of ALD[3,5,33,34]. The present mice fed an EtOH diet for 
12 wk exhibited mild hepatic damage, as indicated 
by significant elevations in serum ALT and AST, 
hepatic TG and TC, which agreed with the findings 
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of previous studies[3,33]. These effects were abolished 
by HRW pretreatment, particularly in combination 
with silymarin treatment. HRW prevented progression 
of nonalcoholic steatohepatitis[19,40] and metabolic 
syndrome in previous studies which suggests that 
anti-fatty liver benefits are regulated by fatty acid 
and steroid metabolism through the peroxisome 
proliferator-activated receptor α (PPARα) signaling 
pathway[30]. Our results also indicate that prevention of 
ALD by HRW is partially mediated by lipid metabolism.

Acyl ghrelin acts within the hypothalamus to 
promote appetite and inhibit sympathetic activity, 
which increases food intake while lowering metabolic 
rate[13,14]. Our findings indicate that, as compared with 
a control liquid diet, an EtOH-containing liquid diet 
significantly decreases dietary intake and acyl ghrelin 
level, which suggests that EtOH affects appetite. 
This finding is consistent with the loss of appetite 
seen in long-term heavy drinkers. Silymarin, HRW 
and combination treatment significantly reversed 
the hypophagic effect of EtOH, indicating that HRW 
reversal of EtOH-induced anorexia may be mediated by 
restoration of acyl ghrelin levels. EtOH administration 
also altered liver weight but not body weight. This 
suggests that EtOH impairs body composition by 
means of liver enlargement and sarcopenia[41], which 
can be improved by HRW pretreatment. HRW might 
therefore reverse EtOH-induced effects on acyl ghrelin, 
which stimulate energy expenditure, thus resulting 
in loss of muscle mass and hypophagia. A previous 
study reported that ghrelin has a hepatoprotective role 
in nonalcoholic fatty liver[9]. In addition, after HRW 
treatment, acyl ghrelin had a neuroprotective effect in 
Parkinson’s disease[42]. 

Acyl ghrelin and des-acyl ghrelin are both active 
signaling molecules; however, a limitation of the 
present study is that we did not measure des-acyl 
ghrelin. Measurement of the total ghrelin is not a 
surrogate for analysis of acyl ghrelin[13,43]. A recent 
study found that des-acyl ghrelin specifically binds 
to and acts on a subset of arcuate nucleus cells in a 
ghrelin receptor-independent manner and antagonizes 
the orexigenic effects of peripherally administered 
acyl ghrelin[44]. Furthermore, in a lethal rat model of 
burn trauma, survival was significantly better after 
resuscitation with saline containing des-acyl ghrelin 
than after resuscitation with saline alone[45].

ALD pathogenetic mechanisms are involved in 
increased steatosis, oxidative stress, inflammatory 
factors and immune response. EtOH-induced liver 
steatosis due to ROS accumulation and bacterial 
endotoxin leakage from damaged intestine triggers 
an inflammatory response[1-3,5,8,33]. TNF-α and IL-6 
are widely considered to be the most important pro-
inflammatory cytokines in ALD. In addition, pro-
inflammatory cytokines and adipokines inhibit muscle-
mass formation and promote fat-mass accumulation, a 
state that is associated with sarcopenia and obesity[41]. 
In the present study, HRW pretreatment reduced 

hepatic and systemic production of inflammatory 
mediators induced by EtOH feeding. Thus, HRW had a 
protective effect against early ALD. 

The anti-inflammatory cytokine IL-10 protects 
against hepatic damage caused by viruses, alcohol 
and dietary autoimmunity[46]. IL-10 inhibited activation 
of HSCs and had antifibrogenic effects in rodents[47]. 
IL-22 is a survival factor for hepatocytes and prevents 
and repairs liver injury by enhancing pro-growth 
pathways via STAT3 activation. A previous study 
revealed that treatment with IL-22 protein contributed 
to liver regeneration in mice with concanavalin 
A-induced hepatitis after hepatectomy, which suggests 
that IL-22 acts as a protective cytokine that attenuates 
liver injury[11]. In the present study, levels of both 
anti-inflammatory cytokines were higher after HRW 
pretreatment than in the EtOH feeding group, which 
suggests that HRW pretreatment protects against 
chronic EtOH-induced liver injury and sarcopenia by 
suppressing the pro-inflammatory cytokines TNF-α 
and IL-6 and inducing the anti-inflammatory cytokines 
IL-10 and IL-22.

Oxidative stress is induced by overproduction of 
ROS, including superoxide anion, hydroxyl radical and 
H2O2 and has a key role in ALD pathogenesis. EtOH 
consumption leads to excessive ROS, which results 
in lipid peroxidation and membrane damage, as well 
as depletion of mitochondrial reduced GSH and its 
final precursor in liver[1,2]. Antioxidant enzymes such 
as SOD, CAT and GSH-Px protect against oxidative 
damage: SOD converts superoxide anion into H2O2 and 
GSH-Px and CAT metabolize H2O2 to H2O. The balance 
between ROS and antioxidant enzymes is an important 
mechanism in preventing EtOH-induced oxidative 
damage. Therefore, antioxidant therapy is a potential 
strategy to improve outcomes in ALD. 

In the present study, we found that EtOH decreased 
activities of hepatic SOD, CAT, GSH-Px and GSH and 
increased hepatic lipid oxidation, which is consistent 
with the findings of previous studies that used the 
chronic-plus-binge model[3]. These changes may be 
attributable to oxidative inactivation of enzymes by 
ROS accumulation. Our results suggest that HRW 
pretreatment abolished ROS induced by EtOH, resulting 
in enhanced antioxidant effects. This hypothesis is 
supported by the present in vitro studies (Figure 1C 
and D) and evidence from previous studies, which 
indicates that H2 directly reduces ROS[17,35]. Similar 
antioxidant phenomena were observed in many 
oxidative stress-related diseases, especially CCl4-, 
endotoxin-, acetaminophen- and ischemia/reperfusion-
induced hepatic injuries in rodents[21-27,32,40]. A number 
of studies reported that H2 reduces oxidative stress 
not only directly but also indirectly, by regulating 
anti-oxidative signal transduction, including nuclear 
factor erythroid 2-related factor 2 (Nrf-2) and sirtuin 
1 (Sirt1)[14,18,20,35]. Antioxidants regulated by Nrf-2 via 
an antioxidant response element-driven mechanism 
include SOD, GSH-Px, CAT, heme oxygenase-1 (HO-1), 
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peroxiredoxins, etc[48]. Interestingly, our results indicate 
that the antioxidant effects of HRW are similar and/or 
stronger than those of silymarin, indicating that HRW 
pretreatment protects against EtOH-induced oxidative 
stress in EtOH-fed mice.

Acyl ghrelin has anti-inflammatory effects and may 
help mediate autoimmunity. Notably, acyl ghrelin acts 
on monocytes and T lymphocytes to suppress their 
production of TNF-α, IL-1β and IL-6 pro-inflammatory 
cytokines, which can induce anorexia during both 
infection and cancer progression[13,14,43]. Ghrelin 
administration had protective effects against high-fat 
diet-induced liver injury, oxidative stress, inflammation 
and apoptosis in rats, in part through the action of the 
LKB1/AMPK and PI3K/Akt pathways[9]. In the present 
study, HRW-induced alterations in acyl ghrelin were 
strongly associated with inflammatory and oxidative 
responses. This suggests that the hepatoprotective 
effect of HRW in ALD is mediated by acyl ghrelin 
production, which results in anti-inflammatory and 
antioxidant effects. However, future studies should 
investigate if acyl ghrelin directly regulates expression 
of IL-10 and IL-22. 

HRW-induced alterations in IL-10 and IL-22 were 
strongly associated with inflammatory mediators and 
anti-oxidative enzymes. A previous study found that 
IL-10 was an anti-inflammatory cytokine that inhibits 
both secretion of pro-inflammatory cytokines by 
monocytes and/or macrophages and release of free 
oxygen radicals. Recombinant IL-10 blocks release 

of ROS[49]. IL-22 prevents oxidative and endoplasmic 
reticulum stress in mouse and human cells, where 
stress is induced by lipids, inflammatory cytokines or 
environmental ROS via STAT1- and STAT3-mediated 
up-regulation of antioxidant genes and suppression of 
oxidative stress-inducing genes[50].

H2 inhibits secretion of pro-inflammatory cytokines 
such as TNF-α, IL-1β and IL-6, reduces the severity of 
intestinal inflammation and improves repair of intestinal 
cells[51,52]. EtOH-induced gastrointestinal dysfunction is 
caused by abnormalities in Kupffer cells - which result 
in reduced ability to detoxify endotoxins, disruption of 
intestinal barrier function and increased permeability to 
endotoxins and bacteria - and bacterial overgrowth in the 
gut, which leads to excessive generation of endotoxins[8]. 
Unfortunately, the limited sensitivity of the ELISA kit 
prevented us from analyzing endotoxins in the present 
study. However, previous studies reported that H2 
alleviated endotoxin-induced liver injury in rodents 
by reducing inflammation and cell apoptosis[20,22,23]. 
Taken together, the evidence indicates that HRW 
administration helps maintain permeability, mucosal 
structure and barrier function in intestine and improves 
the gastrointestinal microenvironment for bacteria that 
protect against EtOH-induced liver injury.

The response to EtOH ingestion in the present study 
appeared to depend on underlying hypertriglyceridemia 
and hypercholesterolemia and increased accumulation 
of hepatic TG and TC. AMPK has been implicated 
as a major regulator of energy metabolism at the 
cellular and systemic level, which suggests that it has 
a role in physiological regulation of lipid and glucose 
metabolism. Existing evidence indicates that EtOH 
consumption impairs AMPK-mediated regulation of 
fatty acid metabolism and results in facilitation of TG 
and TC accumulation in rodents[4]. By inhibiting AMPK 
and activating the p38-MAPK pathway, acyl ghrelin 
inhibits ROS-induced autophagy and cell death[15]. 
Our previous study revealed that the neuroprotective 
mechanisms of HRW were mediated via up-regulation 
of FoxO3a, which stimulated AMPK in a Sirt1-dependent 
manner[35]. Past and present evidence suggests that 
HRW inhibits hepatic lipid accumulation through 
induction of acyl ghrelin, which activates AMPK sig-
naling after suppressing lipogenesis, inhibiting pro-
inflammatory mediators and inducing hepatoprotective 
cytokines to activate anti-oxidative enzymes. In 
addition, HRW improved EtOH-induced anorexia via 
acyl ghrelin secretion (Figure 7).

Most importantly, use of HRW in combination with 
silymarin in the present study resulted in stronger 
hepatoprotective effects in EtOH-fed mice. These 
findings are consistent with those of our previous 
studies in which electronically produced H2 co-admini-
stered with GSH increased the apoptosis-inducing effect 
in leukemia cells[36]. This finding suggests that HRW 
combination therapy has a beneficial effect. Alcoholic 
patients often develop protein calorie malnutrition, 
which can promote bacterial infection. Nutritional 
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support is recommended for patients with ALD and 
was found to improve liver function in histological 
analyses and to increase survival in short-term 
follow-up studies[2]. HRW administration might help 
improve appetite and treat malnutrition and can thus 
be regarded as an alternative nutritional strategy for 
treatment of patients with ALD.

In conclusion, this study is the first to show that, in 
female mice, HRW protects against early-stage chronic 
EtOH-induced liver injury, possibly by inducing acyl 
ghrelin to suppress the pro-inflammatory cytokines 
TNF-α and IL-6 and activate IL-10 and IL-22, which 
enhance antioxidant enzymes against oxidative stress. 
These findings indicate that long-term consumption of 
HRW is a potential strategy for prevention and clinical 
complementary treatment of ALD.
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Innovations and breakthroughs
The authors investigated the effects of HRW on EtOH-induced early liver injury 
in female mice. The present study concluded that HRW protects against early-
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