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Abstract
AIM
To evaluate the prognostic power of different molecular 
data in liver cancer.

METHODS
Cox regression screen and least absolute shrinkage and 
selection operator were performed to select significant 
prognostic variables. Then the concordance index was 
calculated to evaluate the prognostic power. For the com
bination data, based on the clinical cox model, molecular 
features that better fit the model were combined to 
calculate the concordance index. Prognostic models were 
built based on the arithmetic summation of the significant 
variables. Kaplan-Meier survival curve and log-rank test 
were performed to compare the survival difference. Then 
a heatmap was constructed and gene set enrichment 
analysis was performed for pathway analysis.
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RESULTS
The mRNA data were the most informative prognostic 
variables in all kinds of omics data in liver cancer, with 
the highest concordance index (C-index) of 0.61. For the 
copy number variation, methylation and miRNA data, 
the combination of molecular data with clinical data 
could significantly boost the prediction accuracy of the 
molecular data alone (P  < 0.05). On the other hand, the 
combination of clinical data with methylation, miRNA 
and mRNA data could significantly boost the prediction 
accuracy of the clinical data itself (P  < 0.05). Based on 
the significant prognostic variables, different prognostic 
models were built. In addition, the heatmap analysis, 
survival analysis, and gene set enrichment analysis vali
dated the practicability of the prognostic models.

CONCLUSION
In all kinds of omics data in liver cancer, the mRNA data 
might be the most informative prognostic variable. The 
combination of clinical data with molecular data might be 
the future direction for cancer prognosis and prediction.

Key words: Liver cancer; Prognosis; Molecular marker; 
Evaluation; C-index

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The Cancer Genome Atlas (TCGA) is funded by 
the National Institute of Health to describe the genomic 
alterations across cancer types. Several months after the 
publication of liver cancer TCGA, we systemically eval
uated the prognostic power of different omics data of liver 
cancer. We found that in all kinds of omics data in liver 
cancer, the mRNA data might be the most informative 
prognostic variable. The combination of clinical data with 
molecular data might be the future direction for cancer 
prognosis and prediction.

Song YZ, Li X, Li W, Wang Z, Li K, Xie FL, Zhang F. Integrated 
genomic analysis for prediction of survival for patients with liver 
cancer using The Cancer Genome Atlas. World J Gastroenterol 
2018; 24(28): 3145-3154  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v24/i28/3145.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i28.3145

INTRODUCTION
Liver cancer is the fourth most common digestive cancer, 
with the second highest cancer mortality rate world­
wide[1,2]. Every year, there are approximately 750,000 
new cases, and most of these patients died of liver 
cancer[2]. Due to tumor heterogeneity and patients’ 
physical status, the prognosis of liver cancer varied 
across different patients, with the average 5-year survival 
rate of 26%[2].

Prognostic markers can help make better clinical deci­
sion by selecting patients who respond well to some spe­

cific treatment. Currently, there are several commonly 
used clinical markers for liver cancer, such as alpha-
fetoprotein (AFP), patient age, tumor stage and some 
scoring systems[3,4]. In addition, some genetic biomarkers 
are emerging as novel indicators in cancer diagnosis and 
prognosis, such as GPC3, DKK1, S100A4, S100A14, 
SOX6, SUOX, xCT, GRK6, et al[5,6]. 

The Cancer Genome Atlas (TCGA) is funded by the 
National Institute of Health (NIH) to describe the genomic 
alterations across different cancer types[7]. It provides 
tremendous amount of “omics” data, including mRNA 
sequencing data, miRNA sequencing data, reverse phase 
protein arrays data, copy number change data and DNA 
sequencing data. In 2017, the comprehensive genomic 
characteristics of liver cancer have also been analyzed[8]. 
It included unsupervised clustering of five molecular plat­
forms to identify the hepatocellular carcinoma patients 
associated with poor prognosis.

However, there is no consensus on the predictive 
power of these indicators, especially the molecular 
markers. Therefore, by utilizing the TCGA data, we 
aimed to evaluate the prognostic power of liver cancer 
by molecular markers, and also to assess the predictive 
power of liver cancer by combining molecular markers 
and clinical data.

MATERIALS AND METHODS
Data collection and processing
The clinical data and level 3 molecular data, including 
copy number variation (CNV), methylation, mRNA, 
miRNA and protein data of the liver cancer patients were 
downloaded from the TCGA repository (http://gdac.
broadinstitute.org/). For the clinical data, we included 
the patient age and tumor stage, which were the easiest 
accessible information. For the CNV data, we adopted the 
Affymetrix genome-wide human SNP array 6.0 platform 
to detect the copy number variation. After we got the 
level 3 segmentation file of the copy number data, the 
GISTIC version 2.0.22 was executed to detect significant 
regions of amplification and deletion. For the methylation 
data, the Illumina DNA methylation 450 platform level 3 
data was utilized. With respect to the mRNA and miRNA 
data, the Illumina HiSeq mRNASeq and Illumina HiSeq 
miRNASeq level 3 data were adopted. For the protein 
data, we applied the reverse phase protein array (RPPA) 
data platform.

Concordance index calculation
To evaluate the prognostic power among different 
omics data, we built a core set of samples. The patients 
in the core sample set were able to provide complete 
information from clinical data and different molecular 
platforms, including CNV, methylation, mRNA, miRNA 
and protein data. The concordance index (c-index) 
was calculated according to the method suggested by 
Yuan et al[9]. Briefly, training group patients (80% of 
total patients) and testing group patients (20% of total 
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patients) were randomly divided from the core set for 
100 times. Then the cox regression screen was applied 
to the training group with the R package “survival”, in 
order to select significant prognostic variables. To better 
converge the training model, least absolute shrinkage 
and selection operator (LASSO) was performed with the 
R package “glmnet”. Then the produced models were 
applied to the testing group for prediction. The C-index 
was calculated 100 times with the R package “survcomp”. 
The Wilcoxon test was utilized to calculate the P value (P 
< 0.05 as significant). For the combination data of clinical 
information and molecular features, clinical variables that 
were prognostic significant were used to build the cox 
model. Molecular features that better fit the model were 
then combined to build a new cox model. Similarly, the 
c-index was then calculated (Figure 1).

Establishment of prognostic model and survival 
analysis
To establish the prognostic models, we performed the 
cox regression analysis and LASSO for all the cancer 
patients (including both training group and testing group) 
with complete data. After the significant prognostic 
variables were identified, we selected the significant 
variables to build the scoring model. To simplify the pro­
cess and make it easier to apply in clinic, if the variable 
value in one patient was higher than the median value, 
we deemed it to be positive, with the score 1 or -1. 
Otherwise, the score was 0. The score of 1 or -1 was 
determined by the corresponding coefficient in the cox 

regression analysis. If the coefficient was positive, the 
score was 1. If the coefficient was negative, the score 
was -1. Normally, the higher the score was, the higher 
the risk of poor prognosis. When we divided the patients 
into the high risk group and low risk group based on 
the prognostic score, the Kaplan-Meier survival curve 
was performed to evaluate the overall survival. At the 
same time, the log-rank test was applied to evaluate the 
survival difference.

Heatmap construction and gene set enrichment analysis
With respect to the gene expression analysis, the R 
package “limma” was utilized to detect the differentially 
expressed genes. Afterwards, the top 100 highly 
expressed genes and top 100 lowly expressed genes 
were selected to build the heatmap using the R package 
“gplots”. For the pathway analysis, we performed gene 
set enrichment analysis (GSEA) proposed by the Broad 
Institute (http://broadinstitute.org/gsea/downloads.
jsp), with the gene sets downloaded from the MSigDB 
collections (software.broadinstitute.org/gsea/msigdb/
collections.jsp). 

RESULTS
Characteristics of the TCGA samples and molecular 
platform information
Data of the liver cancer patients were downloaded from 
the TCGA repository (http://gdac.broadinstitute.org/). 
The platform information and sample size for each data 
type are shown in Table 1. The mean age of the liver 
cancer patients was 59 years old. They were 68% male 
and 32% female. In all of the included patients, 50% 
were in stage Ⅰ, 25% were in stage Ⅱ, 24% were in 
stage Ⅲ, and the other 1% were in stage Ⅳ. To evaluate 
the prognostic power among the different omics data, 
we also built a core sample set of 171 patients, which 
only included patients with complete data of all five 
omics platforms, namely, copy number variation (CNV), 
methylation, mRNA, miRNA and protein level.

Prognostic power of clinical data and different types of 
molecular data
The concordance index (C-index) calculated from clinical 
data and each type of molecular data are shown in 
Figure 2. The average C-index of clinical data, CNV, 
methylation, miRNA, mRNA and protein was 0.56, 0.51, 
0.57, 0.58, 0.61 and 0.57, respectively. For the molecular 
data alone, the mRNA data seemed to be the most 
informative predictors among all molecular data, with the 
highest C-index of 0.61. The C-index calculated from the 
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CNV Methylation mRNA miRNA Protein

Platform information SNP_6 450K HiSeq HiSeq RPPA
Sample size 371 377 371 372 184

Table 1  Characteristics of the Cancer Genome Atlas samples and molecular platform information

CNV: Copy number variation.

CNA methylation mRNA miRNA RPPA

Cox and LASSO screen

significant prognostic variables

C-index was calculated Prognostic power

Molecular data Combination data Prognostic Model

Evaluation

Survival Heatmap Pathway

Figure 1  Statistical process (algorithm). Cox regression screen and least 
absolute shrinkage and selection operator (LASSO) were performed to select 
significant prognostic variables. Then the concordance index (C-index) was 
calculated to evaluate the prognostic power. Prognostic models were built 
based on the arithmetic summation of the significant variables. Kaplan-Meier 
survival curve and log-rank test were performed to compare the survival 
difference. Then the heatmap was constructed and gene set enrichment 
analysis was performed for pathway analysis.
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a similar method to the copy number variation model, 
we built the prognostic model based on the methylation 
data (Figure 4A). Patients with different survival could be 
distinguished by the prognostic model, as shown in the 
Kaplan-Meier survival curve (Figure 4B). With respect 
to the mechanisms leading to the different outcomes, 
limma and GSEA were performed to show the different 
gene expression pattern and enriched pathways between 
the high risk patients and low risk patients (Figure 4C 
and D). The E2F targets, G2M checkpoint, Myc targets 
V1, spermatogenesis and PI3K/AKT/mTOR pathway 
signaling were among the top five enriched pathways in 
the high risk group of patients (Figure 4D).

Establishment of the prognostic model based on the 
miRNA data
In the establishment of the miRNA model, there were 
372 patients with complete miRNA data and clinical data 
in the analysis. The cox regression and LASSO were 
performed to screen the significant prognostic miRNAs. 
Results showed that miR-3690, miR-561 and miR-621 
were independent prognostic factors for the liver cancer 
patients. Based on these three markers, the prognostic 
model was built, as shown in Figure 5A. Depending on 
the scores calculated from the miRNA model, the patients 
were divided into the high risk group and low risk group. 
As shown in the Kaplan-Meier survival curve, there was 
a significant survival difference between these two group 
patients (Figure 5B). According to the heatmap, it shows 
distinct gene expression patterns between these group 
patients (Figure 5C). In addition, GSEA showed that 
WNT/beta-catenin, G2M checkpoint, allograft rejection, 
mitotic spindle, and inflammatory response were among 
the top five enriched pathways in the high risk group 
patients (Figure 5D).

Establishment of the prognostic model based on the 
mRNA data
In this section, we included 371 patients with complete 
mRNA data and clinical data to build the prognostic 

combination of clinical data and molecular data was 0.55, 
0.59, 0.61, 0.62 and 0.56 for the CNV, methylation, 
miRNA, mRNA and protein data, respectively. In the 
CNV, methylation and miRNA data, the combination of 
molecular data with clinical data could significantly boost 
the prediction accuracy of the molecular data alone (P 
< 0.05). On the other hand, the combination of clinical 
data with methylation, miRNA and mRNA data could 
significantly boost the prediction accuracy of the clinical 
data itself (P < 0.05).

Establishment of the prognostic model based on the 
copy number data
To establish the prognostic model based on the copy 
number data, we included all 371 patients with complete 
copy number variation data and clinical data. After the 
cox regression screen and LASSO, the 10p15.1 and 
15q26.3 were identified to be the independent prognostic 
factors for the liver cancer. Afterwards, the prognostic 
model based on the significant copy number variation 
was built, which was able to divide the patients into the 
high risk group and low risk group (Figure 3A). Kaplan-
Meier survival curve showed that there was significant 
difference with respect to the overall survival between 
these two group patients (Figure 3B). Afterwards, the 
limma and GSEA were performed to evaluate the dif­
ferent gene expression and pathways between these two 
groups. The heatmap showed that there was a distinct 
gene expression pattern between the high risk group and 
low risk group (Figure 3C). The GSEA showed that the 
spermatogenesis, WNT/beta-catenin, E2F targets, mitotic 
spindle and G2M checkpoint were the top five enriched 
pathways in the high risk group patients (Figure 3D).

Establishment of the prognostic model based on the 
methylation data
There were 377 patients with complete methylation data 
and clinical data that were included in the methylation 
model. With cox screen and LASSO, REL and MCM2 
were shown to be independent prognostic factors. With 
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model. After the cox regression screen and LASSO, 
CCDC21, GTF3C2, and DBF4 were selected to build 
the prognostic model, which divided the patients into 
the high risk group and low risk group based on each 
patient’s prognostic score (Figure 6A). According to the 
Kaplan-Meier survival curve and log-rank test, there 
was significant survival difference between these two 
patient groups (Figure 6B). The heatmap showing dif­
ferent expression patterns of these two group patients 
is shown in Figure 6C. With respect to the gene set 
enrichment analysis, the E2F targets, G2M checkpoint, 
spermatogenesis, mitotic spindle, and Myc targets v1 
were significantly enriched in the high risk group patients 
(Figure 6D).

DISCUSSION
Several months after the publication of liver cancer 
TCGA, we systemically evaluated the prognostic power 
of different omics data of liver cancer[8]. We also explored 
whether additive prognostic power could be gained by 
the combination of molecular data with clinical data. In 

addition, based on the significant prognostic variables 
identified from the cox regression and LASSO analysis in 
different omics data, we also built the prognostic models.

In the evaluation of different omics data, we did not 
include the mutation data from DNA sequencing plat­
form, since the mutation gene and hot-spot mutation 
site varied a lot among different patients, and it is difficult 
to divide the patients into a high risk group and low risk 
group. In addition, it might also need some complicated 
bioinformatical algorithm to evaluate the prognostic 
power.

Our results showed that the mRNA data alone 
seemed to be the most informative prognostic variable 
(C-index = 0.61) among all the molecular platforms. 
Consistently, by analyzing breast cancer, glioblastoma 
multiforme, myeloid leukemia and lung squamous cell 
carcinoma data, Zhao demonstrated that molecular 
variables evaluated at the transcription level could reflect 
patient survival more effectively than those evaluated 
at the DNA/epigenetic level. There have been several 
studies focusing on the mRNA prognostic models of liver 
cancer. For example, Chen et al[10] combined three mRNA 
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Figure 3  Establishment of prognostic model based on the copy number data. A: The high risk group and low risk group based on the prognostic score. The 
patients with the score of 1 were considered as high risk, and patients with the score of 0 and -1 were considered as low risk; B: The Kaplan-Meier survival curves 
of the high risk group and low risk group, which showed that there was significant difference of survival between the high risk patients and low risk patients; C: 
The heatmap showing the different gene expression patterns of the high risk group and low risk group. It showed that the gene expression patterns of high risk 
group and low risk group were obviously distinct; D: The top enriched pathways in the high risk group, as indicated by gene set enrichment analysis. It showed that 
spermatogenesis, WNT/beta-catenin, E2F targets, mitotic spindle and G2M checkpoint were the top five enriched pathways in the high risk group patients.
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markers to build the prognostic model and demonstrated 
it to be useful. Nault et al[11] built a 5-gene score asso­
ciated with overall survival of liver cancer patients after 
resection. Zhang et al[12] defined a hepatic stellate cell 
122-gene signature to identify liver cancer patients with 
poor prognosis. Although with lower prognostic power, 
some prognostic models based on the CNV, methylation, 
miRNA and protein data have also widely attracted atten­
tion[13-16]. 

Boulesteix et al[17] claimed that little attention was 
paid to the assessment of the added prognostic power of 
a molecular signature, given that the clinical predictors 
or an established model were available. Thus in this 
study, we showed that the combination of molecular 
data with clinical data could significantly boost the predic­
tion accuracy of the molecular data alone in the CNV, 
methylation and miRNA data. On the other hand, the 
combination of clinical data with methylation, miRNA and 
mRNA data could significantly boost the prediction accu­
racy of the clinical data itself. Consistently, Yuan et al[9] 

summarized that incorporating molecular features with 
clinical data yielded significantly increased predictions 
(FDR < 0.05) for kidney cancer, glioblastoma multiforme 
and ovarian cancer, but the quantitative gains were lim­
ited. Some complicated bioinformatical algorithms might 
be needed to further improve the prognostic power of 
the combination data.

With respect to the prognostic models based on dif­
ferent omics data, we did not include the protein model, 
since no significant prognostic variable passed through 
the cox screen and LASSO analysis. We suppose that 
one reason is the relative sample size of the patients with 
protein data. The other reason is due to the complexity 
of the proteome data. In the copy number model, 
the 10p15.1 and 15q26.3 were included in our study. 
Previous studies showed that a telomerase repressor 
gene might be located on 10p15.1, thus relating it to 
the prognosis of liver cancer[18]. Meanwhile, genomic 
copy number variations of 15q26.3 were deemed to be 
predictive markers for the systemic recurrence of breast 
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Figure 4  Establishment of the prognostic model based on the methylation data. A: The high risk group and low risk group based on the prognostic score. The 
patients with the score of 0 were considered as high risk, and patients with the score of -1 and -2 were considered as low risk; B: The Kaplan-Meier survival curves 
of the high risk group and low risk group, which showed that there was a significant difference of survival between the high risk patients and low risk patients; C: The 
heatmap showing the different gene expression patterns of the high risk group and low risk group. It showed that the gene expression patterns of high risk group and 
low risk group were obviously distinct; D: The top enriched pathways in the high risk group, as indicated by the gene set enrichment analysis. It showed that the E2F 
targets, G2M checkpoint, Myc targets V1, spermatogenesis and PI3K/AKT/mTOR pathway signaling were among the top five enriched pathways in the high risk group 
of patients.
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cancer[19]. 
In the analysis of methylation data, REL and MCM2 

were demonstrated to be independent prognostic factors. 
Previous studies showed that REL was involved in apop­
tosis, inflammation, immune response, and oncogenic 
processes. Constitutive activation of the Rel/NF-κB path­
way could lead to oncogenesis by driving proliferation, 
enhancing cell survival, or promoting angiogenesis or 
metastasis[20]. There were also studies reporting that 
MCM2 was closely related to tumor grade and overall 
survival in renal cancer[21]. However, this is the first study 
to demonstrate the methylation of these two markers as 
prognostic factors in liver cancer.

miRNA alterations were reported to participate in the 
initiation and progression of human cancer[22]. In our 
study, miR-3690, miR-561, and miR-621 were included 
in the prognostic model. This is the first time that we 
identified miR-3690 as the prognostic variable in cancer 
prognosis. On the other hand, Qian et al[23] reported that 
miR-561 inhibited cellular proliferation and invasion by 

targeting c-Myc in gastric cancer. MiR-621 was supposed 
to sensitize breast cancer to chemotherapy by inhibiting 
FBXO11 and increasing p53 activity[24]. Thus, it was not 
difficult to comprehend that they were all involved in the 
prognosis of liver cancer.

With respect to the mRNA model, CCDC21, GTF3C2 
and DBF4 were demonstrated to be independent 
prognostic factors in liver cancer. CCD21, also called 
Cep85, is an antagonist of Nek2A that suppresses cen­
trosome disjunction[25]. GTF3C2 is essential for RNA 
polymerase Ⅲ-mediated transcription. Until now, there 
are few studies relating CCD21 and GTF3C2 to cancer 
progression or prognosis. With respect to DBF4, the 
CDC7-DBF4 kinase, which was correlated with p53 inacti­
vation, was reported to be overexpressed in multiple 
cancers[26]. Thus, it is the first study to correlate these 
markers with patient survival in liver cancer.

Interestingly, most prognostic variables identified in 
our study seemed to be novel markers in cancer study. 
Probably due to the strict screen procedure, a lot of 
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Figure 5  Establishment of the prognostic model based on the miRNA data. A: The high risk group and low risk group based on the prognostic score. The 
patients with the score of 1 and 2 were considered as high risk, and patients with the score of 0 and -1 were considered as low risk; B: The Kaplan-Meier survival 
curves of the high risk group and low risk group, which showed that there was significant difference of survival between the high risk patients and low risk patients; C: 
The heatmap showing the different gene expression patterns of the high risk group and low risk group. It showed that the gene expression patterns of high risk group 
and low risk group were obviously distinct; D: The top enriched pathways in the high risk group, as indicated by the gene set enrichment analysis. It showed that the 
WNT/beta-catenin, G2M checkpoint, allograft rejection, mitotic spindle, and inflammatory response were among the top five enriched pathways in the high risk group 
patients.
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Figure 6  Establishment of the prognostic model based on the mRNA data. A: The high risk group and low risk group based on the prognostic score. The patients 
with the score of 2 and 3 were considered as high risk, and patients with the score of 0 and 1 were considered as low risk; B: The Kaplan-Meier survival curves of the 
high risk group and low risk group, which showed that there was significant difference of survival between the high risk patients and low risk patients; C: The heatmap 
showing the different gene expression patterns of the high risk group and low risk group. It showed that the gene expression patterns of high risk group and low risk 
group were obviously distinct. D: The top enriched pathways in the high risk group, as indicated by the gene set enrichment analysis. It showed that the E2F targets, 
G2M checkpoint, spermatogenesis, mitotic spindle, and Myc targets V1 were significantly enriched in the high risk group patients.

traditional prognostic markers were ignored, such as 
P53 and FOXM1. However, on the other hand, it also 
demonstrates that our prognostic markers might be 
more robust and more stable after the strict screening 
procedure. In summary, the major goal of our study 
was to evaluate the prognostic power of different omics 
data in liver cancer. For the first time, we showed that 
the mRNA data was the most informative prognostic 
variables in all kinds of omics data in liver cancer. In 
addition, we also revealed that the combination of clinical 
data with molecular data might be the future direction for 
cancer prognosis and prediction. Larger sample size and 
more mature bioinformatic algorithms were needed to 
predict the cancer prognosis more precisely in the future.

ARTICLE HIGHLIGHTS
Research background
Liver cancer is the fourth most common digestive cancer worldwide. Prognostic 
markers can help to make better clinical decision by selecting patients who 
respond well to some specific treatment. Besides traditional clinical markers, 
genetic biomarkers are emerging as novel indicators in cancer diagnosis 

and prognosis. The Cancer Genome Atlas (TCGA) is funded by the National 
Institute of Health (NIH) to describe the genomic alterations across cancer 
types. It provides tremendous amount of “omics” data, including mRNA 
sequencing, miRNA sequencing, reverse phase protein arrays, copy number 
change and DNA sequencing. 

Research motivation
Although there seems to be great potential value of the clinical and genetic 
markers, there is no consensus on the predictive power of these indicators, 
especially the molecular markers.

Research objectives
By utilizing the TCGA data, we aimed to evaluate the prognostic power of liver 
cancer by molecular markers, and also to assess the predictive power of liver 
cancer by combining molecular markers and clinical data.

Research methods
Cox regression screen and least absolute shrinkage and selection operator 
(LASSO) were performed to select significant prognostic variables. Then the 
concordance index was calculated to evaluate the prognostic power. For the 
combination data, based on the clinical cox model, molecular features that better 
fit the model were combined to calculate the concordance index. Prognostic 
models were built based on the arithmetic summation of the significant variables. 
Kaplan-Meier survival curve and log-rank test were performed to compare the 
survival difference. Then the heatmap was constructed and gene set enrichment 
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analysis was performed for pathway analysis.

Research results
The mRNA data was the most informative prognostic variables in all kinds of 
omics data in liver cancer. In the copy number variation (CNV), methylation 
and miRNA data, the combination of molecular data with clinical data could 
significantly boost the prediction accuracy of the molecular data alone. On the 
other hand, the combination of clinical data with methylation, miRNA and mRNA 
data could significantly boost the prediction accuracy of the clinical data itself. 
Based on the significant prognostic variables, several prognostic models were 
built. For the CNV data, score = 10p15.1 - 15q26.3. For the methylation data, 
score = - REL - MCM2. For the miRNA data, score = miR-3690 + miR-561 - 
miR-621. For the mRNA data, score = CCDC21 + GTF3C2 + DBF4.

Research conclusions
In all kinds of omics data in liver cancer, the mRNA data might be the most 
informative prognostic variables. 

Research perspectives
The combination of clinical data with molecular data might be the future direction 
for cancer prognosis and prediction.
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