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Abstract
Assisted diagnosis using artificial intelligence has been a 
holy grail in medical research for many years, and recent 
developments in computer hardware have enabled the 
narrower area of machine learning to equip clinicians with 
potentially useful tools for computer assisted diagnosis 
(CAD) systems. However, training and assessing a 
computer’s ability to diagnose like a human are complex 
tasks, and successful outcomes depend on various 
factors. We have focused our work on gastrointestinal (GI) 
endoscopy because it is a cornerstone for diagnosis and 
treatment of diseases of the GI tract. About 2.8 million 
luminal GI (esophageal, stomach, colorectal) cancers are 
detected globally every year, and although substantial 
technical improvements in endoscopes have been 
made over the last 10-15 years, a major limitation of 
endoscopic examinations remains operator variation. This 
translates into a substantial inter-observer variation in the 
detection and assessment of mucosal lesions, causing 
among other things an average polyp miss-rate of 20% 
in the colon and thus the subsequent development of 
a number of post-colonoscopy colorectal cancers. CAD 
systems might eliminate this variation and lead to more 
accurate diagnoses. In this editorial, we point out some 
of the current challenges in the development of efficient 
computer-based digital assistants. We give examples of 
proposed tools using various techniques, identify current 
challenges, and give suggestions for the development 
and assessment of future CAD systems.
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Core tip: Assisted diagnosis using artificial intelligence 
and recent developments in computer hardware have 
enabled the narrower area of machine learning to 
equip the endoscopists with potentially powerful tools 
for computer assisted diagnosis systems. The success 
depends on various factors; optimizing algorithms, image 
database quality and size and comparison with existing 
systems.

de Lange T, Halvorsen P, Riegler M. Methodology to develop 
machine learning algorithms to improve performance in 
gastrointestinal endoscopy. World J Gastroenterol 2018; 
24(45): 5057-5062  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v24/i45/5057.htm  DOI: http://dx.doi.
org/10.3748/wjg.v24.i45.5057

INTRODUCTION 
Gastrointestinal (GI) endoscopy is a cornerstone for 
diagnosis and treatment of diseases in the GI tract. 
About 2.8 million luminal GI cancers (esophageal, 
stomach, colorectal) are detected globally every 
year, and many of these might be prevented through 
improved endoscopic performance and systematic high-
quality screening in high incidence areas[1]. These cancers 
represent a substantial health challenge for society with 
a mortality rate of about 65%[2], and colorectal cancer is 
the third most common cause of cancer mortality among 
both women and men[3]. Despite substantial technical 
improvements in endoscopes over the last 10-15 years, 
a major limitation of endoscopic examinations is operator 
variation. This variation depends on operator skill, 
perceptual factors, personality characteristics, knowledge, 
and attitude[4]. This translates into a substantial inter-
observer variation in the detection and assessment of 
mucosal lesions[5,6], leading to an average polyp miss-
rate of 20% in the colon[7]. All of these factors can to 
some extent be alleviated by substantial educational 
efforts, but they cannot be eliminated entirely[8]. Thus, 
developing an automated computer-based support 
system for the detection and characterization of mucosal 
lesions would be an important contribution to eliminating 
the current variation in endoscopists’ performance. 

Artificial intelligence (AI) is the area of computer 
science that aims to create intelligent machines that 
mimic human behavior, and assisted diagnosis using AI 
has been a holy grail in the field of medicine for many 
years. Such machines have long been the realm of 
fiction, but recent developments in computer hardware 
have enabled the narrower field of machine learning to 
develop potentially highly accurate computer assisted 
diagnosis (CAD) systems. At its most basic, machine 

learning is the practice of using algorithms to parse 
data, learn from the data, and then make a prediction, 
and in the medical domain such systems are used to 
detect or classify a disease. Research and development 
of such systems is currently under way in many medical 
domains like retina scans, various cancer screening 
systems, and skin cancer detection[9-11]. However, there 
exist methodological issues that need to be addressed 
both for creating and improving automated diagnosis 
algorithms. 

MACHINE LEARNING IN ENDOSCOPY 
Automated detection of anomalies in the GI tract 
have been proposed for diseases such as Barrett’s 
esophagus, gastric cancer, angiectasia, celiac disease, 
and polyp detection and characterization, and a number 
of methods and algorithms have been tested in recent 
years[12-18]. The methods and algorithms range from 
simpler traditional machine learning methods to more 
recently developed deep learning approaches[19,20].

An example of a simple system is a search-based 
system using various global features in the images[21]. It 
extracts (complex) image features like color histograms 
and textures and feeds these features into a classifier 
for determining whether an object is present or not. For 
example, such a system might determine the presence 
of an object by calculating the distance of the feature 
vector from the vectors in the model. An important 
advantage of systems based on simple methods is that 
they can be easier to understand and their results can 
be easier to explain to medical personnel[22-24]. 

The current state-of-the-art and the most commonly 
used methods are based on deep neural networks. These 
networks work as an interconnected group of nodes, akin 
to the vast network of neurons in the human brain[25]. 
Such networks typically consist of an input and an output 
layer, as well as multiple hidden convolutional, pooling, 
fully connected, and normalization layers. Typically, 
each input image will pass through the layers in order to 
classify an object with probabilistic values between 0 and 
1. There exist several variations of deep neural networks. 
For image and video analysis, convolutional neural 
networks (CNNs) are the most common. CNNs can be 
used to perform either segmentation (the exact marking 
of a finding in the image[26]) or classification (a more 
global point of view on the image, such as a general 
statement like “this image contains a polyp”[22,27,28]). 
Another promising method for image analysis is gene-
rative adversarial networks (GANs). GANs consist of 
two neural networks competing with each other in a 
zero-sum game framework during the training phase. 
The generator network generates new data instances 
using an inverse convolutional network by upsampling 
random noise to an image. The other network, the 
discriminator, takes the generated image and the training 
set and checks for authenticity. This means that the 
discriminator decides whether the data belong to or are 
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classified in the actual training dataset or not. GANs can 
also be defined as conditional GANs that have an image 
as input instead of random noise and that transform this 
image into another image. This can be used to create, 
for example, segmentation masks. An example of a 
GAN-based method is described by Pogorelov et al[22,29]. 
The approach presented in their papers uses conditional 
GANs with a normal image from the colon as input, and 
the algorithm segments the finding in the image. This 
noise segmentation is then cleaned in a post-processing 
step that leads to a clear segmentation. Many of these 
approaches have yielded promising results regarding 
detection accuracy, with some achieving numbers 
above 90%, but many run too slowly to be used in a 
clinically useful system providing real-time feedback. 
Some comparisons of different approaches are given by 
Pogorelov et al[22,26] and Riegler et al[30]. 

IMAGE DATABASE QUALITY 
A sufficient amount of data is vital in machine learning, 
and the creation of algorithms usually relies on large 
databases. This is especially true for deep learning, 
which is currently the standard for image analysis[31]. 
However, the quality of the database is also essential, 
and it is crucial that all the images and videos are 
annotated correctly. The computer learns from analyzing 
the given data, and thus erroneous learning will lead 
to incorrect diagnoses. Therefore, when collecting data 
and making a dataset the recommendations below 
should be followed 

There are variations between observers, and to 
reduce this bias the ground truth assessment should 
involve at least three observers[32]. However, the 
required agreement between the observers and the 
degree of confidence is not known and requires further 
studies. The goal regarding the diagnostic thresholds 
for such a technique is to reach more than 90% 
positive predictive value for correct classification of the 
lesions[33]. 

A potential problem in machine learning is over-
fitting. Many of the datasets show obvious examples 
of medical findings, and the similarity of the different 
images often results in overfitting. Thus, overfitting 
occurs when the learning algorithm learns the data too 
well and therefore also captures the noise of the data, 
e.g., when the model or the algorithm fits the data too 
well, or if the model or algorithm shows low bias but 
high variance. Therefore, too many similar samples 
should be avoided in order to avoid such “overtraining”. 
A diverse dataset is therefore recommended to better 
enable correct disease detection in new data. 

Many datasets are limited in size, and many assess 
their systems using too few samples. Many argue 
that the dataset should be as large as possible[34], but 
others show that machine learning can also work on 
smaller datasets using transfer learning[30,35], which has 
recently found frequent use in the context of medical 

image problems[36,37]. Note that there is no “one size 
fits all” answer. The amount of required training data is 
dependent on many different aspects of the experiment, 
but a general rule of thumb is to have around 1000 
images per class for deep learning applications. In the 
Kvasir dataset[38], at least 1000 images per class are 
provided for different findings. 

One general problem is that several of the existing 
datasets are cumbersome to use in terms of permission, 
for example, several of the listed sets in Table 1[38-44] are 
restricted. To enable subsequent comparisons, it is best 
is to use an open dataset. 

The most important take-away message is that 
clean and complete data are one of the most important 
parts of a good detection system. This means that 
spending the time to create a high-quality database is 
very important and is directly connected to the quality 
of the following steps. 

SYSTEM ASSESSMENT 
Comparing published research is challenging, and an 
increasing number of research communities are targeting 
this problem by creating public available datasets and 
encouraging reproducible experiments. In order to enable 
full comparisons, not only the same datasets should 
be used, but the datasets should also be split between 
training and test sets in an equal way. Furthermore, 
the more information the better, and one should use as 
many of the common metrics as possible as described 
by Pogorelov et al[38]. For detection accuracy, the raw 
numbers for true positives, true negatives, false positives, 
and false negatives are important, and metrics based 
on these like sensitivity (recall), precision, specificity, 
accuracy, Matthews correlation coefficient, and F1 score 
should be calculated. Finally, a metric for processing 
speed in terms of time per image or frame should be 
included, and although this depends on the hardware 
that is used, it gives an indication as to whether the 
system can run in real time. 

We must also emphasize that there is a difference 
in how anomaly detection is defined. In the area of 
computer science, detection per frame or image is 
the standard, but in the medical domain, reporting a 
detection per instance (at least once in a sequence of 
frames of the same finding) is common. If possible, one 
should include both definitions. 

CONCLUSION
Researchers have sought for many years to develop 
efficient AI tools to assist in medical diagnosis. Enabled by 
recent hardware developments, several research groups 
are now working on machine learning-based medical 
systems and have obtained promising results. Thus, we 
have observed a rapid increase in publications related 
to AI in GI endoscopy over the last two years. However, 
as described above, there are still large variations in the 
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7 Lanspa SJ, Lynch HT. Quality indicators for colonoscopy and the 
risk of interval cancer. N Engl J Med 2010; 363: 1371; author reply 
1373 [PMID: 20879889 DOI: 10.1056/NEJMc1006842]

8 Rondonotti E, Soncini M, Girelli CM, Russo A, Ballardini G, 
Bianchi G, Cantù P, Centenara L, Cesari P, Cortelezzi CC, Gozzini 
C, Lupinacci G, Maino M, Mandelli G, Mantovani N, Moneghini 
D, Morandi E, Putignano R, Schalling R, Tatarella M, Vitagliano 
P, Villa F, Zatelli S, Conte D, Masci E, de Franchis R; AIGO, 
SIED and SIGE Lombardia. Can we improve the detection rate 
and interobserver agreement in capsule endoscopy? Dig Liver 
Dis 2012; 44: 1006-1011 [PMID: 22858420 DOI: 10.1016/
j.dld.2012.06.014]

9 Gulshan  V ,  Peng  L ,  Coram M,  S tumpe  MC,  Wu D, 
Narayanaswamy A, Venugopalan S, Widner K, Madams T, 
Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR. 
Development and Validation of a Deep Learning Algorithm for 
Detection of Diabetic Retinopathy in Retinal Fundus Photographs. 
JAMA 2016; 316: 2402-2410 [PMID: 27898976 DOI: 10.1001/
jama.2016.17216]

10 Ciompi F, Chung K, van Riel SJ, Setio AAA, Gerke PK, Jacobs 
C, Scholten ET, Schaefer-Prokop C, Wille MMW, Marchianò 
A, Pastorino U, Prokop M, van Ginneken B. Towards automatic 
pulmonary nodule management in lung cancer screening with deep 
learning. Sci Rep 2017; 7: 46479 [PMID: 28422152 DOI: 10.1038/
srep46479]

11 Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, 
Thrun S. Dermatologist-level classification of skin cancer with 
deep neural networks. Nature 2017; 542: 115-118 [PMID: 
28117445 DOI: 10.1038/nature21056]

12 Swager AF, van der Sommen F, Klomp SR, Zinger S, Meijer 
SL, Schoon EJ, Bergman JJGHM, de With PH, Curvers WL. 
Computer-aided detection of early Barrett’s neoplasia using 
volumetric laser endomicroscopy. Gastrointest Endosc 2017; 86: 
839-846 [PMID: 28322771 DOI: 10.1016/j.gie.2017.03.011]

13 Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, 
Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada T. 
Application of artificial intelligence using a convolutional neural 
network for detecting gastric cancer in endoscopic images. Gastric 
Cancer 2018; 21: 653-660 [PMID: 29335825 DOI: 10.1007/
s10120-018-0793-2]

14 Leenhardt R, Vasseur P, Li C, Saurin JC, Rahmi G, Cholet F, Becq 
A, Marteau P, Histace A, Dray X; CAD-CAP Database Working 
Group. A neural network algorithm for detection of GI angiectasia 
during small-bowel capsule endoscopy. Gastrointest Endosc 2018 
[PMID: 30017868 DOI: 10.1016/j.gie.2018.06.036]

15 Mori Y, Kudo SE, Chiu PW, Singh R, Misawa M, Wakamura 
K, Kudo T, Hayashi T, Katagiri A, Miyachi H, Ishida F, Maeda 

tested datasets, and insufficient metrics are being used. 
In order to enable full comparisons between methods, 
the same datasets should be utilized, and as many of the 
common metrics as possible should be used[38]. Another 
limitation is that the lesion characterization systems 
rely on advanced endoscopic functionality like narrow-
band imaging, endocytoscopy, or volumetric laser 
endomicroscopy, to which most endoscopy units do not 
have access, especially in low-income countries[45]. Still, it 
is not proven that these techniques improve endoscopy 
performance, and validation in live endoscopies is still 
required. Therefore, there is still a long road ahead 
before such systems can be put into practice, and much 
research, development, and clinical testing still needs to 
be performed. To produce the best possible and the most 
comparable results, the recommendations given here 
should be followed. 
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