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Abstract
Artificial intelligence (AI) using deep-learning (DL) has emerged as a
breakthrough computer technology. By the era of big data, the accumulation of
an enormous number of digital images and medical records drove the need for
the utilization of AI to efficiently deal with these data, which have become
fundamental resources for a machine to learn by itself. Among several DL
models, the convolutional neural network showed outstanding performance in
image analysis. In the field of gastroenterology, physicians handle large amounts
of clinical data and various kinds of image devices such as endoscopy and
ultrasound. AI has been applied in gastroenterology in terms of diagnosis,
prognosis, and image analysis. However, potential inherent selection bias cannot
be excluded in the form of retrospective study. Because overfitting and spectrum
bias (class imbalance) have the possibility of overestimating the accuracy,
external validation using unused datasets for model development, collected in a
way that minimizes the spectrum bias, is mandatory. For robust verification,
prospective studies with adequate inclusion/exclusion criteria, which represent
the target populations, are needed. DL has its own lack of interpretability.
Because interpretability is important in that it can provide safety measures, help
to detect bias, and create social acceptance, further investigations should be
performed.

Key words: Artificial intelligence; Convolutional neural network; Deep-learning;
Computer-assisted; Gastroenterology; Endoscopy

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Artificial intelligence (AI) using deep-learning (DL) has emerged as a
breakthrough computer technology. The convolutional neural network exhibited
outstanding performance in image analysis. AI has been applied in the field of
gastroenterology in terms of diagnosis, prognosis, and image analysis. However,
potential inherent pitfalls of selection bias, overfitting, and spectrum bias (class
imbalance) have the possibility of overestimating the accuracy and generalizing the
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INTRODUCTION
Recently,  artificial  intelligence  (AI)  using  deep-learning  (DL)  has  emerged as  a
breakthrough  computer  technology,  and  numerous  research  studies,  using  AI
applications to identify or differentiate images in various medical fields including
radiology, neurology, orthopedics, pathology, ophthalmology, and gastroenterology,
have  been  published [ 1 ].  However,  AI,  the  display  of  intelligent  behavior
indistinguishable from that of a human being, was already mentioned in the 1950s[2].
Although AI has waxed and waned over the past six decades with seemingly little
improvement, it was constantly applied to the medical field using various models of
machine  learning  (ML)  including  Bayesian  inferences,  decision  trees,  linear
discriminants,  support  vector  machines (SVM),  logistic  regression,  and artificial
neural networks (ANNs).

By the era of big data, the accumulation of enormous digital images and medical
records drove a need for the utilization of AI to efficiently deal with these data, which
also become fundamental resources for the machine to learn by itself. Furthermore,
the evolution of computing power with graphic processing units can overcome the
limitations of traditional ML, particularly overtraining for input data (overfitting).
This led to a revival of AI, especially when using DL technology, a new form of ML.
Among several DL methods, the convolutional neural network (CNN), which consists
of multilayers of ANN with step-by-step minimal processing, showed outstanding
performance in image analysis and has received attention in AI (Figure 1 and Table 1).

In the field of gastroenterology, physicians handle large amounts of clinical data
and various kinds of image devices such as esophagogastroduodenoscopy (EGD),
colonoscopy,  capsule  endoscopy  (CE),  and  ultrasound  equipment.  AI  has  been
applied  in  the  field  of  gastroenterology  when making  a  diagnosis,  predicting  a
prognosis, and analyzing images. Previous studies reported remarkable results of AI
in gastroenterology. The rapid progression of AI demands that gastroenterologists
learn the utility, strengths, and pitfalls of AI. In addition, physicians should prepare
for the changes and effects of AI on real clinical practice in the near future. Hence, in
this review, we aim to (1) briefly introduce an ML technology; (2) summarize an AI
application in the field of gastroenterology, which is divided into two categories
(statistical  analysis  for  recognition  of  diagnosis  or  prediction  of  prognosis,  and
analyze images for patient applications excluding animal studies); and (3) discuss the
challenges for the application and future directions of AI.

ML TECHNOLOGY
Generally, AI is considered as a machine intelligence that has cognitive functions
similar to those of humans including “learning” and “problem solving[3]”. Currently,
ML  is  the  most  common  approach  of  AI.  It  automatically  builds  mathematical
algorithms from given data (known as input training data) and predicts or makes
decisions in uncertain conditions without human instructions (Figure 1A)[4]. In the
medical field, ML methods such as Bayesian networks, linear discriminants, SVMs,
and ANNs have been used[5]. A naïve Bayes classifier that represents the probabilistic
relationship between input and output data is a typical classification model[6]. The
SVM, which was invented by Vladimir N Vapnik and Alexey Ya Chervonenkis in
1963[7],  is  a  discriminative  model  that  uses  a  dividing  hyperplane.  Before  DL
development, SVM showed the best performance for classification and regression,
which were achieved by optimizing a hyperplane with the largest functional margin
(distance from the hyperplane in a high- or infinite-dimensional space to the nearest
training data point of any class)[8].
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Table 1  Artificial intelligence terminology

Artificial intelligence Machine intelligence that has cognitive functions similar to those of humans
such as “learning” and “problem solving.”

Machine learning Mathematical algorithms which is automatically built from given data
(known as input training data) and predicts or makes decisions in uncertain

conditions without being explicitly programmed

Support vector machines Discriminative classifier formally defined by an optimizing hyperplane with
the largest functional margin

Artificial neural networks Multilayered interconnected network which consists of an input, hidden
connection (between the input and output layer), and output layer

Deep learning Subset of machine learning technique that composed of multiple-layered
neural network algorithms

Convolutional neural networks Specific class of artificial neural networks that consists of (1) convolutional
and pooling layers, which are the two main components to extract distinct

features; and (2) fully connected layers to make an overall classification

Overfitting Modelling error which occurs when a certain learning model tailors itself too
much on the training dataset and predictions are not well generalized to new

datasets

Spectrum bias Systematic error occurs when the dataset used for model development does
not adequately represent or reflect the range of patients who will be applied

in clinical practice (target population)

An ANN is  a  multilayered  interconnected  network  inspired  by  the  neuronal
connections of the human brain. Although the ANN was introduced by McCulloch
and Walter in 1943[9], it was studied in 1957 by Frank Rosenblatt using the concept of
the perceptron[10]. The ANN as a hierarchical structure consists of an input, hidden
connection (between the input and output layer), and output layer. The connection in
the hidden layer has a strength (known as weight) that is used for the learning process
of  the  network  (Figure  1B).  Through  an  appropriate  training  process  (learning
process), the network can adjust the value of the connection weight to optimize the
best result (Figure 1C).

In the 1980s, an ANN with several hidden layers between the input and output
layer was introduced. This was known as a DL (or a deep neural network). Although
the ANN showed remarkable performance in managing nonlinear datasets regarding
diagnosis and prognostic prediction in the medical field, the ANN revealed several
weaknesses as well: a vanishing gradient, overfitting, insufficient computing capacity,
and lack of training data. These weaknesses hampered the advancement of the ANN.
Finally, the recent availability of big data provided sufficient input data for training,
and the rapid progression of computing power allowed researchers to overcome prior
limitations. Among several AI methods, DL received the attention of the public and
has shown excellent performance in the computer vision area using CNNs.

A CNN consists of (1) convolutional and pooling layers, which are the two main
components to extract distinct features; and (2) fully connected layers to make an
overall classification. The input images were filtered to extract specialized features
using  numerous  specific  filters,  and  to  create  multiple  feature  maps.  This
preprocessing operation for filtering is called convolution. A learning process for the
convolution filter to make the best feature maps is essential for success in a CNN.
These feature maps are compressed to smaller sizes by pooling the pixels to capture a
larger field of the image, and these convolutional and pooling layers are iterated
many times. Finally, fully connected layers combine all features and produce the final
outcomes (Figure 1B).

The rapid growth of  the CNN was demonstrated at  the ImageNet Large Scale
Visual Recognition Competition (ILSVRC) in 2012 by Geoffrey Hinton, and several
CNNs  such  as  Inception  from  google  and  ResNet  from  Microsoft  have  shown
excellent performance.  A graphical  summary of AI,  ML, and DL development is
shown in Figure 1.

APPLICATION OF AI IN GASTROENTEROLOGY

Recognition of diagnosis and prediction of prognosis
Although AI in the field of gastroenterology recently focused on image analysis,
several ML models have shown promising results in the recognition of diagnosis and
prediction of prognosis. The ANN is appropriate for dealing with complex datasets to
overcome the drawbacks of traditional linear statistics. In addition, the ANN can
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Figure 1

Figure 1  Schematic graphical summary for artificial intelligence, machine learning and deep learning development. A: Definition of artificial intelligence,
machine learning (ML) and deep learning (DL). B: Comparison of process between classic ML and DL. C: Modes of learning and examples of ML.

stand for the sophisticated interactions between demographic, environmental, and
clinical characteristics.

In terms of diagnosis, Pace et al[11] demonstrated an ANN model in 2005 that made a
diagnosis of gastroesophageal reflux disease using only 45 clinical variables in 159
cases with an accuracy of 100%. Lahner et al[12]  performed a similar pilot study to
recognize atrophic gastritis solely by using clinical and biochemical variables from 350
outpatients by using ANNs and linear discriminant analysis. This study showed great
accuracy.

Regarding the prediction of prognosis, in 1998, Pofahl et al[13] compared an ANN

WJG https://www.wjgnet.com April 14, 2019 Volume 25 Issue 14

Yang YJ et al. AI in gastroenterology

1669



model  to  the  Ranson  criteria  and  the  Acute  Physiologic  and  Chronic  Health
Evaluation (APACHE II) scoring system to predict the length of stay for patients with
acute pancreatitis.  The authors used a backpropagation neural network that was
trained using 156 patients. Although the highest specificity (94%) was observed in the
Ranson  criteria,  the  ANN  model  showed  the  highest  sensitivity  (75%)  when
predicting a length of stay more than 7 d. Similar accuracy was observed for the
Ranson criteria and APACHE II scoring system[13]. In 2003, Das et al[14] used an ANN to
predict the outcomes of acute lower gastrointestinal bleeding using 190 patients. The
authors compared the performance of ANNs to a previously validated scoring system
(BLEED), which revealed a significantly better predictive accuracy of mortality (87%
vs 21%), recurrent bleeding (89% vs 41%), and the need for therapeutic intervention
(96% vs 46%) in the ANN model.

Sato et al[15] presented an ANN model in 2005 to predict 1-year and 5-year survival
using 418 esophageal cancer patients. This ANN model showed improved accuracy
compared to the conventional linear discriminant analysis model.

Recently, the number of input training data items for ANNs was increased from
hundreds to thousands of patients. Rotondano et al[16] compared the Rockall score to a
supervised ANN model to predict the mortality of nonvariceal upper gastrointestinal
bleeding using 2380 patients. This approach showed superior sensitivity (83.8% vs
71.4%),  specificity  (97.5% vs  52.0%),  accuracy  (96.8% vs  52.9%),  and  area  under
receiver operating characteristic (AUROC) of the predictive performance (0.95 vs 0.67)
in the ANN model to those in the complete Rockall score.

Takayama et al[17]  established an ANN model for the prediction of prognosis in
patients with ulcerative colitis after cytoapheresis therapy and achieved a sensitivity
and specificity for the need of an operation of 96% and 97%, respectively. Hardalaç et
al[18] established an ANN model to predict mucosal healing by azathioprine therapy in
patients  with  inflammatory  bowel  disease  (IBD)  and  achieved  79.1%  correct
classifications. Peng et al[19] used an ANN model to predict the frequency of the onset,
relapse, and severity of IBD. The researchers achieved an average accuracy to predict
the frequency of onset and severity of IBD but a high accuracy in predicting the
frequency of relapse of IBD (mean square error = 0.009, mean absolute percentage
error = 17.1%).

SVMs have been used to analyze data and recognize patterns in classification
analyses. Recently, Ichimasa et al[20]  analyzed 45 clinicopathological factors in 690
endoscopically  resected  T1  colorectal  cancer  patients  to  predict  lymph  node
metastasis using a SVM. This approach showed superior performance (sensitivity
100%, specificity 66%, accuracy 69%) compared to those of American (sensitivity
100%, specificity 44%, accuracy 49%), European (sensitivity 100%, specificity 0%,
accuracy 9%), and Japanese (sensitivity 100%, specificity 0%, accuracy 9%) guidelines.
A  prediction  model  using  a  SVM  model  reduced  the  amount  of  unnecessary
additional surgery (77%) when misdiagnosing lymph node metastasis than those of a
prediction model using American (85%), European (91%), and Japanese guidelines
(91%).  Yang  et  al[21]  constructed  an  SVM-based  model  using  clinicopathological
features and 23 immunologic markers from 483 patients who underwent curative
surgery for esophageal squamous cell carcinoma. This study revealed reasonable
performance in identifying high-risk patients with postoperative distant metastasis
[sensitivity 56.6%, specificity 97.7%, positive predictive value (PPV) 95.6%, negative
predictive value (NPV) 72.3%, and overall accuracy 78.7%] (Table 2).

Analysis of images
Although  endoscopic  screening  programs  have  reduced  the  mortality  from
gastrointestinal malignancies, they are still the leading cause of death worldwide and
remain a global economic burden. To enhance the detection rate of gastrointestinal
neoplasms  and  optimize  the  treatment  strategies,  a  high-quality  endoscopic
examination for the recognition of gastrointestinal  neoplasms and classifications
between benign and malignant lesions are essential for the gastroenterologist. Thus,
gastroenterologists are interested in the applications of AI, especially when using
CNNs and SVMs for image analysis. Furthermore, AI has been increasingly adopted
in terms of non-neoplastic gastrointestinal diseases including infection, inflammation,
or hemorrhage.

Upper gastrointestinal field: Takiyama et al[22] constructed a CNN model that could
recognize the anatomical location of EGD images with AUROCs of 1.00 for the larynx
and esophagus, and 0.99 for the stomach and duodenum. This CNN model could also
recognize specific anatomical locations within the stomach, with AUROCs of 0.99 for
the upper, middle, and lower stomach.

To assist in the discrimination of early neoplastic lesions in Barrett’s esophagus,
van  der  Sommen et  al[23]  developed  an  automated  algorithm to  include  specific
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Table 2  Summary of clinical studies using artificial intelligence for recognition of diagnosis and prediction of prognosis

Ref. Published year Aim of study Design of study Number of
subjects Type of AI Input variables

(number/type) Outcomes

Pace et al[11] 2005 Diagnosis of
gastroesophageal

reflux disease

Retrospective 159 patients (10
times cross
validation)

“backpropagation
” ANN

101/clinical
variables

Accuracy: 100%

Lahner et al[12] 2005 Recognition of
atrophic corpus

gastritis

Retrospective 350 patients
(subdivided

several times into
training and test

set equally)

ANN 37 to 3 /clinical
and biochemical

variables
(experiment 1 to

5)

Accuracy: 96.6%,
98.8%, 98.4%,

91.3% and 97.7%
(experiment 1-5,

respectively)

Pofahl et al[13] 1998 Prediction of
length of stay for

patients with
acute pancreatitis

Retrospective 195 patients
(training set: 156,

test set: 39)

“backpropagation
” ANN

71/clinical
variables

Sensitivity: 75 %
(for prediction of
a length of stay
more than 7 d)

Das et al[14] 2003 Prediction of
outcomes in acute

lower
gastrointestinal

bleeding

Prospective 190 patients
(training set: 120,

internal
validation set: 70,

external
validation set:

142)

ANN 26/clinical
variables

Accuracy
(external

validation set):
97% for death,

93% for, recurrent
bleeding, 94% for

need for
intervention

Sato et al[15] 2005 Prediction of 1-
year and 5-year

survival of
esophageal cancer

Retrospective 418 patients
(training-:

validation-: test
set = 53%: 27%:

20%)

ANN 199/
clinicopathologic,

biologic, and
genetic variables

AUROC for 1
year- and 5 year

survival
prediction: 0.883

and 0.884,
respectively

Rotondano et
al[16]

2011 Prediction of
mortality in
nonvariceal

upper
gastrointestinal

bleeding

Prospective,
multicenter

2380 patients (5 ×
2 cross-

validation)

ANN 68/clinical
variables

Accuracy: 96.8%,
AUROC: 0.95,

sensitivity: 83.8%,
specificity: 97.5%,

Takayama et
al[17]

2015 Prediction of
prognosis in

ulcerative colitis
after

cytoapheresis
therapy

Retrospective 90 patients
(training set: 54,

test set: 36)

ANN 13/clinical
variables

Sensitivity: 96.0%,
specificity: 97.0%

Hardalaç et al[18] 2015 Prediction of
mucosal healing
by azathioprine
therapy in IBD

Retrospective 129 patients
(training set: 103,
validation set: 13,

test set: 13)

“feed-forward
back-

propagation” and
“cascade-

forward” ANN

6/clinical
variables

Total correct
classification rate:

79.1%

Peng et al[19] 2015 Prediction of
frequency of

onset, relapse,
and severity of

IBD

Retrospective 569 UC and 332
CD patients

(training set: data
from 2003-2010,
validation set:
data in 2011)

ANN 5/meteorological
data

Accuracy in
predicting the
frequency of

relapse of IBD
(mean square
error = 0.009,

mean absolute
percentage error

= 17.1%)

Ichimasa et al[20] 2018 Prediction of
lymph node

metastasis, thus
minimizing the

need for
additional

surgery in T1
colorectal cancer

Retrospective 690 patients
(training set: 590,

validation set:
100)

SVM 45/
Clinicopathologic

al variables

Accuracy: 69%,
sensitivity: 100%,
specificity: 66%

Yang et al[21] 2013 Prediction of
postoperative

distant metastasis
in esophageal
squamous cell

carcinoma

Retrospective 483 patients
(training set: 319,

validation set:
164)

SVM 30/7
clinicopathologica
l variables and 23
immunomarkers

Accuracy: 78.7%
sensitivity: 56.6%,
specificity: 97.7%,
PPV: 95.6%, NPV:

72.3%

AI: Artificial intelligence; ANN: Artificial neural network; AUROC: Area under receiver operating characteristic; IBD: Inflammatory bowel disease; UC:
Ulcerative colitis; CD: Crohn’s disease; SVM: Support vector machine; PPV: Positive predictive value; NPV: Negative predictive value.
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textures, color filters, and ML from 100 endoscopic images. This algorithm reasonably
detected  early  neoplastic  lesions  in  a  per-image  analysis  with  a  sensitivity  and
specificity of  83%. In 2017,  the same group investigated a model  to improve the
detection rate of early neoplastic lesions in Barrett’s esophagus by using 60 ex vivo
volumetric  laser  endomicroscopy  images.  This  novel  computer  model  showed
optimal performance compared with a clinical  volumetric  laser  endomicroscopy
prediction score with a sensitivity of 90% and specificity of 93%[24].

Several  studies  evaluated  the  ML  model  using  specialized  endoscopy  to
differentiate neoplastic/dysplastic and non-neoplastic lesions. Kodashima et al[25]

showed that  computer-based analysis  can easily identify malignant tissue at  the
cellular  level  using  endocytoscopic  images,  which  enables  the  microscopic
visualization of  the  mucosal  surface.  In  2015,  Shin et  al[26]  reported on an image
analysis  model  to  detect  esophageal  squamous  dysplasia  using  high-resolution
microendoscopy (HRME). The sensitivity and specificity of this model were 87% and
97%, respectively. During the following year, Quang et al[27]  from the same study
group evolved this model, which was incorporated in tablet-interfaced HRME with
full  automation  for  real-time analysis.  As  a  result,  the  model  reduced the  costs
compared to previous laptop-interfaced HRME and showed good diagnostic yields of
esophageal squamous cell carcinoma with a sensitivity and specificity of 95% and
91%, respectively. However, there was a limitation for the application of this model
owing to the unavailability of specialized endoscopy.

Finally,  Horie  et  al[28]  demonstrated  the  utility  of  AI  using  CNNs  to  make  a
diagnosis of esophageal cancer. This was trained with 8428 conventional endoscopic
images including white-light images (WLIs) and narrow-band images (NBIs). This
CNN model detected esophageal cancer with a sensitivity of 95% and could identify
all small cancers of < 10 mm. This model also distinguished superficial esophageal
cancer from advanced cancer with an accuracy of 98%.

Helicobacter pylori (H. pylori) infection is the most important risk factor of peptic
ulcers and gastric cancer. Several researchers challenged AI to aid the endoscopic
diagnosis of H. pylori infections. In 2004, Huang et al[29] investigated the predictability
of H. pylori infection by refined feature selection with a neural network using related
gastric histologic features in endoscopic images. This model was trained and analyzed
with 84 image parameters from 30 patients. The sensitivity and specificity for the
detection of H. pylori infection were 85.4% and 90.9%, respectively. In addition, the
accuracy of this model for identifying gastric atrophy, intestinal metaplasia,  and
predicting the severity of H. pylori-related gastric inflammation was higher than 80%.

Recently, two Japanese researchers reported on the application of a CNN to make a
diagnosis of H. pylori infection[30,31]. Itoh et al[31] developed a CNN model to recognize
H. pylori infections by using 596 endoscopic images after the data augmentation of a
prior set of 149 images. This CNN model showed promising results with a sensitivity
and  specificity  of  86.7%  and  86.7%,  respectively.  Shichijo  et  al[30]  compared  the
performance  of  a  CNN to  that  of  23  endoscopists  for  the  diagnosis  of  H.  pylori
infection by using endoscopic images. The CNN model showed superior sensitivity
(88.9%  vs  79.0%),  specificity  (87.4%  vs  83.2%),  accuracy  (87.7%  vs  82.4%),  and
diagnostic time (194 s vs 230 s).

In 2018, a prospective pilot study was conducted for automated diagnosis of H.
pylori infections using image-enhanced endoscopy such as blue laser imaging-bright
and  linked  color  imaging.  The  performance  of  the  developed  AI  model  was
significantly higher with blue laser imaging-bright and linked color imaging training
(AUROCs of 0.96 and 0.95) than WLI imaging training (0.66)[32].

The utility of AI in the diagnosis of gastrointestinal neoplasms was classified into
two main categories:  detection and characterization.  In 2012,  Kubota et  al[33]  first
evaluated a computer-aided pattern recognition system to identify the depth of the
wall invasion of gastric cancer using endoscopic images. They used 902 endoscopic
images and created a backpropagation model after a 10-time cross validation. As a
result, the diagnostic accuracy was 77.2%, 49.1%, 51.0%, and 55.3% for T1-4 staging,
respectively. In particular, the accuracy of T1a (mucosal invasion) and T1b staging
(submucosal invasion) was 68.9% and 63.6%, respectively. Hirasawa et al[34] reported
on the good performance of a CNN-based diagnostic system to detect gastric cancers
in endoscopic images. The authors trained the CNN model using 13584 endoscopic
images and tested it with 2296 images. The overall sensitivity was 92.2%. In addition,
the detection rate with a diameter of  6  mm or more was 98.6%, and all  invasive
cancers  were  identified[34].  All  missed  lesions  were  superficially  depressed  and
differentiated-type  intramucosal  cancers  that  were  difficult  to  distinguish  from
gastritis even for experienced endoscopists. However, 69.4% of the lesions that the
CNN diagnosed as gastric cancer were benign, and the most common reasons for
misdiagnosis were gastritis with redness, atrophy, and intestinal metaplasia[34].

Zhu et al[35] further applied a CNN system to discriminate the invasion depth of
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gastric cancer (M/SM1 vs deeper than SM1) using conventional endoscopic images.
They trained a CNN model with 790 images and tested it with another 203 images.
The  CNN  model  showed  high  accuracy  (89.2%)  and  specificity  (95.6%)  when
determining  the  invasion  depth  of  gastric  cancer.  This  result  was  significantly
superior to that of experienced endoscopists. Kanesaka et al[36] studied a computer-
aided  diagnosis  system using  a  SVM to  facilitate  the  use  of  magnifying  NBI  to
distinguish early gastric cancer. The study reported on remarkable potential in terms
of  diagnostic  performance  (accuracy  96.3%,  PPV  98.3%,  sensitivity  96.7%,  and
specificity 95%) and the performance of  area concordance (accuracy 73.8%, PPV
75.3%, sensitivity 65.5%, and specificity 80.8%).

In terms of hepatology, the ultrasound has been challenged for the application of
AI. Gatos et al[37] established a SVM diagnostic model of chronic liver disease using
ultrasound shear wave elastography (70 patients with chronic liver disease and 56
healthy  controls).  The  performance  was  promising,  with  an  accuracy  of  87.3%,
sensitivity of 93.5%, and specificity of 81.2%, although the prospective validation was
not conducted. Kuppili et al[38] established a fatty liver detection and characterization
model using a single-layer feed-forward neural network, and validated this model
with a higher accuracy than the previous SVM-based model. These researchers used
ultrasound images of 63 patients, and the gold standard for labeling for each patient
was the pathologic results of a liver biopsy.

The determination of liver cirrhosis was also challenged with ML technology. Liu et
al[39] developed a CNN model with ultrasound liver capsule images (44 images from
controls and 47 images from patients with cirrhosis), and classified these images using
a  SVM.  The  AUROC  for  the  classification  was  0.951,  although  the  prospective
validation was not conducted.

Lower gastrointestinal field: Among various gastrointestinal fields, the development
of an AI model using colonoscopy has been the most promising area because polyp
detection during colonoscopies is frequent. This provides sufficient sources for AI
training, and a missed colorectal polyp is directly associated with interval colorectal
cancer development.

In terms of polyp detection, Fernandez-Esparrach et al[40] established an automated
computer-vision method using an energy map to detect colonic polyps in 2016. They
used 24 videos containing 31 polyps and showed acceptable performance with a
sensitivity of 70.4% and a specificity of 72.4% for polyp detection (Table 3). Recently,
this  performance  was  improved  with  a  DL application  for  polyp  detection[41,42].
Misawa et al[41] designed a CNN model using 546 short videos from 73 full-length
videos, which were divided into two groups of training data (105 polyp-positive
videos and 306 polyp-negative videos) and test data (50 polyp-positive videos and 85
polyp-negative videos).  The researchers showed the possibility of the automated
detection of colonic polyps in real time, and the sensitivity and specificity were 90.0%
and 63.3%, respectively. Urban et al[42] also used a CNN system to identify colonic
polyps. They used 8641 hand-labeled images and 20 colonoscopy videos in various
combinations as training and test data. The CNN model detected polyps in real time
with an AUROC of  0.991 and an accuracy of  96.4%.  Moreover,  it  assisted in  the
identification of an additional nine polyps compared with expert endoscopists in the
application of test colonoscopy videos.

Although  there  were  many  promising  performances  of  the  automated  polyp
detection models, a prospective validation was not conducted[43-45]. However, Klare et
al[46] performed a prototype software validation under real-time conditions (55 routine
colonoscopies), and the results were comparable between those of endoscopists and
the  established software.  The  endoscopists’  polyp detection  rates  and adenoma
detection rates were 56.4% and 30.9%, respectively, and these rates were 50.9% and
29.1% for the software, respectively). Wang et al[47]  established a DL algorithm by
using data from 1290 patients, and validated this model with 27113 newly collected
colonoscopy images from 1138 patients. This model showed remarkable performance
with a sensitivity of 94.38%, specificity of 95.2%, and AUROC of 0.984 for at least one
polyp detection[47].

For  AI  applications of  polyp characterization,  magnifying endoscopic  images,
which is useful when discriminating pit or vascular patterns, was first adopted to
enhance  the  performance  of  AI.  Tischendort  et  al[48]  developed  an  automated
classification model  of  colorectal  polyps  by magnifying NBI  images  to  evaluate
vascular patterns in 2010. They reported that the overall accurate classification rates
were 91.9% for a consensus decision between the human observers and 90.9% for a
safe  decision  (classifying  polyps  as  neoplastic  in  cases  when  there  was  an
interobserver discrepancy)[48]. In 2011, Gross et al[49] compared the performances of a
computer-based model for the differentiation of small colonic polyps of < 10 mm
using NBI  images.  The expert  endoscopists  and computer-based model  showed
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Table 3  Summary of clinical studies using artificial intelligence in the upper gastrointestinal field

Ref. Published year Aim of study Design of study Number of
subjects Type of AI

Endoscopic or
ultrasoud
modality

Outcomes

Takiyama et al[22] 2018 Recognition of
anatomical

locations of EGD
images

Retrospective Training set:
27335 images

from 1750
patients.

Validation set:
17081 images

from 435 patients

CNN White-light
endoscopy

AUROCs: 1.00 for
the larynx and
esophagus, and

0.99 for the
stomach and
duodenum
recognition

van der Sommen
et al[23]

2016 Discrimination of
early neoplastic

lesions in
Barrett’s

esophagus

Retrospective 100 endoscopic
images from 44
patients (leave-
one-out cross-
validation on a

per-patient basis)

SVM White-light
endoscopy

Sensitivity: 83%,
specificity: 83%

(per-image
analysis)

Swager et al[24] 2017 Identification of
early Barrett’s

esophagus
neoplasia on ex
vivo volumetric

laser
endomicroscopy

images.

Retrospective 60 volumetric
laser

endomicroscopy
images

Combination of
several methods

(SVM,
discriminant

analysis,
AdaBoost,

random forest,
etc)

Ex vivo
volumetric laser
endomicroscopy

Sensitivity: 90%,
specificity: 93%

Kodashima et
al[25]

2007 Discrimination
between normal
and malignant

tissue at the
cellular level in
the esophagus

Prospective ex
vivo pilot

10 patients ImageJ program Endocytoscopy Difference in the
mean ratio of

total nuclei to the
entire selected

field, 6.4 ± 1.9% in
normal tissues

and 25.3 ± 3.8% in
malignant
samples

Shin et al[26] 2015 Diagnosis of
esophageal
squamous
dysplasia

Prospective,
multicenter

375 sites from 177
patients (training
set: 104 sites, test

set: 104 sites,
validation set: 167

sites)

Linear
discriminant

analysis

HRME Sensitivity: 87%,
specificity: 97%

Quang et al[27] 2016 Diagnosis of
esophageal

squamous cell
neoplasia

Retrospective,
multicenter

Same data from
reference number

26

Linear
discriminant

analysis

Tablet-interfaced
HRME

Sensitivity: 95%,
specificity: 91%

Horie et al[28] 2019 Diagnosis of
esophageal cancer

Retrospective Training set: 8428
images from 384
patients. Test set:
1118 images from

97 patients

CNN White-light
endoscopy with

NBI

Sensitivity 98%

Huang et al[29] 2004 Diagnosis of H.
pylori infection

Prospective Training set: 30
patients. Test set:

74 patients

Refined feature
selection with

neural network

White-light
endoscopy

Sensitivity: 85.4%,
specificity: 90.9%

Shichijo et al[30] 2017 Diagnosis of H.
pylori Infection

Retrospective Training set:
CNN1: 32208

images; CNN2:
images classified

according to 8
different locations

in the stomach.
Test set: 11481

images from 397
patients

CNN White-light
endoscopy

Accuracy: 87.7%,
sensitivity: 88.9%,
specificity: 87.4%,
diagnostic time:

194 s.

Itoh et al[31] 2018 Diagnosis of H.
pylori infection

Prospective Training set: 149
images (596

images through
data

augmentation.
Test set: 30

images

CNN White-light
endoscopy

AUROC: 0.956,
sensitivity: 86.7%,
specificity: 86.7%,
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Nakashima et
al[32]

2018 Diagnosis of H.
pylori infection

Prospective pilot 222 patients
(training set: 162,

test set: 60)

CNN White-light
endoscopy and

image-enhanced
endoscopy, such

as blue laser
imaging-bright

and linked color
imaging

AUROC: 0.96
(blue laser

imaging-bright),
0.95 (linked color

imaging)

Kubota et al[33] 2012 Diagnosis of
depth of invasion
in gastric cancer

Retrospective 902 images (10
times cross
validation)

“backpropagation
” ANN

White-light
endoscopy

Accuracy: 77.2%,
49.1%, 51.0%, and

55.3% for T1-4
staging,

respectively

Hirasawa et al[34] 2018 Detection of
gastric cancers

Retrospective Training set:
13584 images.
Test set: 2296

images.

CNN White-light
endoscopy,

chromoendoscopy,
  NBI

Sensitivity: 92.2%,
detection rate

with a diameter
of 6 mm or more:

98.6%

Zhu et al[35] 2018 Diagnosis of
depth of invasion
in gastric cancer

(mucosa/SM1/de
eper than SM1)

Retrospective Training set: 790
images. Test set:

203 images

CNN White-light
endoscopy

Accuracy: 89.2%,
AUROC: 0.94,

sensitivity: 74.5%,
specificity: 95.6%

Kanesakaet al[36] 2018 Diagnosis of early
gastric cancer

using magnifying
NBI images

Retrospective Training set: 126
images. Test set:

81 images

SVM Magnifying NBI Accuracy: 96.3%,
sensitivity: 96.7%,
specificity: 95%,

PPV: 98.3%,

Gatos et al[37] 2017 Diagnosis of
chronic liver

disease

Retrospective 126 patients (56
healthy controls,
70 with chronic

liver disease

SVM Ultrasound shear
wave

elastography
imaging with a
stiffness value-

clustering

AUROC: 0.87,
highest accuracy:
87.3%, sensitivity:
93.5%, specificity:

81.2%

Kuppili et al[38] 2017 Detection and
characterization

of fatty liver

Prospective 63 patients who
underwent liver
biopsy (10 times
cross validation)

Extreme Learning
Machine to train
single-layer feed-
forward neural

network

Ultrasound liver
images

Accuracy: 96.75%,
AUROC: 0.97

(validation
performance)

Liu et al[39] 2017 Diagnosis of liver
cirrhosis

Retrospective 44 images from
controls and 47

images from
patients with

cirrhosis

SVM Ultrasound liver
capsule images

AUROC: 0.951

AI:  Artificial  intelligence;  EGD:  Esophagogastroduodenoscopy;  CNN:  Convolutional  neural  network;  AUROC:  Area  under  receiver  operating
characteristic; SVM: Support vector machine; HRME: High-resolution microendoscopy; NBI: Narrow band image; H. pylori: Helicobacter pylori; ANN:
Artificial neural network; PPV: Positive predictive value.

comparable diagnostic performance in sensitivity (93.4% vs 95.0%), specificity (91.8%
vs 90.3%), and accuracy (92.7% vs 93.1%)[49].

Takemura et al[50] retrospectively compared the identification of pit patterns of a
computer-based model with shape descriptors such as area, perimeter, fit ellipse, or
circularity  in  reference  to  endoscopic  diagnosis  by  using  magnified  endoscopic
images with crystal violet staining in 2010. The accuracies of the type I, II, IIIL, and IV
pit patterns of colorectal lesions were 100%, 100%, 96.6%, and 96.7%, respectively. In
2012, the authors applied an upgraded version of a computer system via  SVM to
distinguish neoplastic and non-neoplastic lesions by using endoscopic NBI images,
which  showed a  detection  accuracy  of  97.8%[51].  They  further  demonstrated  the
availability of a real-time image recognition system in 2016, and the accuracy between
the  pathologic  results  of  diminutive  polyps  and diagnosis  by  a  real-time image
recognition model was 93.2%[52].

Byrne  et  al[53]  developed  a  CNN  model  for  the  real-time  differentiation  of
diminutive colorectal polyps by using only NBI video frames in 2017. This model
discriminated adenomas from hyperplastic polyps with an accuracy of 94%, and
identified the adenoma with a sensitivity of 98% and a specificity of 83%[53]. Likewise,
Chen et al[54] made a CNN model trained with 2157 images to identify neoplastic or
hyperplastic polyps of < 5 mm with a PPV and NPV of 89.6% and 91.5%, respectively.
In  2017,  Komeda  et  al[55]  reported  on  the  preliminary  data  of  a  CNN  model  to
distinguish adenomas from non-adenomatous polyps. The CNN model was trained
with 1800 conventional endoscopic images with WLI, NBI, and chromoendoscopy,
and the accuracy of a 10-hold cross-validation was 75.1%.

WJG https://www.wjgnet.com April 14, 2019 Volume 25 Issue 14

Yang YJ et al. AI in gastroenterology

1675



To enhance the differentiation of polyps, a Japanese study group reported several
articles for AI application with endocytoscopy images, which enables the observation
of nuclei on site, and showed comparable diagnostic results to those of pathologic
examinations. In 2015, these researchers first developed a computer-aided diagnosis
system using endocytoscopy for the discrimination of neoplastic changes in small
polyps. This approach showed a comparable sensitivity (92.0%) and accuracy (89.2%)
with those of expert endoscopists[56]. In 2016, this research team developed a second-
generation model that could (1) evaluate both nuclei and ductal lumens, (2) use an
SVM  instead  of  multivariate  analysis,  (3)  provide  the  confidence  levels  of  the
decisions, and (4) provide a more rapid process of discriminating neoplastic changes
from 0.3 s to 0.2 s. The endocytoscopic microvascular patterns could be effectively
evaluated by staining with dye[57]. These researchers also developed endocytoscopy
with NBI without staining to evaluate microvascular findings. This approach showed
an overall accuracy of 90%[57]. The same group performed a prospective validation of a
real-time computer-aided diagnosis system using endocytoscopy with NBI or stained
images  to  identify  neoplastic  diminutive  polyps.  The  researchers  reported  a
pathologic prediction rate of 98.1%, and the time required to assess one diminutive
polyp was about 35 to 47 s[59].

The application of a computer-aided ultrahigh (approximately 400 ×) magnification
endocytoscopy  system  for  the  diagnosis  of  invasive  colorectal  cancers  was
investigated by Takeda et al[60]. This system was trained with 5543 endocytoscopic
images from 238 lesions and reported a sensitivity of 89.4%, specificity of 98.9%, and
accuracy of 94.1% using 200 test images[60].

For the application of AI in IBD, Maeda et al[61] developed a diagnosis system using
a SVM after refining previous computer-aided endocytoscopy systems[56-58].  They
evaluated the diagnostic performance of this model for the prediction of persistent
histologic  inflammation  in  ulcerative  colitis  patients.  This  model  showed good
performance with a sensitivity of 74%, specificity of 97%, and an accuracy of 91%[61].

Currently,  the  resolution  of  images  is  relatively  low  in  capsule  endoscopy
compared to other digestive endoscopies. Moreover, the interpretation and diagnosis
of capsule endoscopy images highly depends on the reviewer’s ability and effort. It is
also a time-consuming process. Therefore, several conditions were attempted for the
automated diagnosis of  capsule endoscopy images including angioectasia,  celiac
disease, or intestinal hookworms, or for small intestinal motility characterization[62-65].

Leenhardt et al[62] developed a gastrointestinal angiectasia detection model using
semantic segmentation images with a CNN. They used 600 control images and 600
typical angiectasia images to form 4166 small bowel capsule endoscopy videos, which
were divided equally into training and test data sets. The CNN-based model revealed
a high diagnostic performance with a sensitivity of 100%, specificity of 96%, PPV of
96%, and NPV of 100%[62] (Table 4). Zhou et al[63] established a CNN model for the
classification of celiac disease from control with capsule endoscopy clips from six
celiac disease patients and five controls. The researchers achieved 100% sensitivity
and specificity for the test data set. Moreover, the evaluation confidence was related
to the severity level of small bowel mucosal lesions, reflecting the potential for the
quantitative measurement of the existence and degree of pathology throughout the
small intestine[63]. Intestinal hookworms are difficult to find with direct visualization
because they have small tubular structures with a whitish color and semitransparent
features similar to background intestinal mucosa. Moreover, the presence of intestinal
secretory materials makes them difficult to detect. He et al[64] established a CNN model
for the detection of hookworms in capsule endoscopy images. The CNN-based model
showed a reasonable performance with a sensitivity of 84.6%, specificity of 88.6% and
only 15% hookworm images and 11% non-hookworm image were falsely detected.

The interpretation of wireless motility capsule endoscopy is a complex task. Seguí
et al[65]  established a CNN model for small-intestine motility characterization and
achieved a  mean classification accuracy of  96% for  six  intestinal  motility  events
(“turbid”,  “bubbles”,  “clear  blob”,  “wrinkles”,  “wall”,  and,  “undefined”).  This
outperformed the other classifiers by a large margin (a 14% relative performance
increase).

CHALLENGES AND FUTURE DIRECTIONS FOR
APPLICATION OF AI
Although many researchers  have investigated the  utility  of  AI  and have shown
promising results, most studies were designed in retrospective manner: as a case-
control study from a single center, or by using endoscopic images that were chosen
from specific endoscopic modalities unavailable from many institutions. Potential
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Table 4  Summary of clinical studies using artificial intelligence in the lower gastrointestinal field

Ref. Published year Aim of study Design of study Number of
subjects Type of AI Endoscopic

modality Outcomes

Fernandez-
Esparrach et
al[40]

2016 Detection of
colonic polyps

Retrospective 24 videos
containing 31

polyps

Window Median
Depth of Valleys

Accumulation
maps

White-light
colonoscopy

Sensitivity: 70.4%.
Specificity: 72.4%

Misawa et al[41] 2018 Detection of
colonic polyps

Retrospective 546 short videos
(training set: 105
polyp-positive
videos and 306
polyp-negative

videos, test set: 50
polyp-positive
videos and 85

polyp-negative
videos) from 73

full length videos

CNN White-light
colonoscopy

Accuracy: 76.5%.
Sensitivity: 90.0%.
Specificity: 63.3%.

Urban et al[42] 2018 Detection of
colonic polyps

Retrospective 8641 images with
20 colonoscopy

videos

CNN White-light
colonoscopy with

NBI

Accuracy: 96.4%.
AUROC: 0.991

Klare et al[46] 2019 Detection of
colonic polyps

Prospective 55 patients Automated polyp
detection
software

White-light
colonoscopy

Polyp detection
rate: 50.9%.
Adenoma

detection rate:
29.1%

Wang et al[47] 2018 Detection of
colonic polyps

Retrospective Training set: 5545
images from 1290

patients.
Validation set A:

27113 images
from 1138
patients.

Validation set B:
612 images.

Validation set C:
138 video clips

from 110 patients.
Validation set D:
54 videos from 54

patients

CNN White-light
colonoscopy

Dataset A:
AUROC: 0.98 for
at least one polyp

detection, per-
image sensitivity:
94.4%, per-image
specificity: 95.2%.

Dataset B: per-
image sensitivity:
88.2%. Dataset C:

per-image
sensitivity: 91.6%,

per-polyp
sensitivity: 100%.
Dataset D: per-

image specificity:
95.4%

Tischendort et
al[48]

2010 Classification of
colorectal polyps

on the basis of
vascularization

features.

Prospective pilot 209 polyps from
128 patients

SVM Magnifying NBI
images

Accurate
classification rate:

91.9%

Gross et al[49] 2011 Differentiation of
small colonic
polyps of < 10

mm

Prospective 434 polyps from
214 patients

SVM Magnifying NBI
images

Accuracy: 93.1%.
Sensitivity: 95.0%.
Specificity: 90.3%.

Takemura et
al[50]

2010 Classification of
pit patterns

Retrospective Training set: 72
images.

Validation set:
134 images

HuPAS software
version 1.3

Magnifying
endoscopic
images with
crystal violet

staining

Accuracies of the
type I, II, IIIL, and
IV pit patterns of
colorectal lesions:

100%, 100%,
96.6%, and 96.7%,

respectively

Takemura et
al[51]

2012 Classification of
histology of

colorectal tumors

Retrospective Training set: 1519
images.

Validation set:
371 images

HuPAS software
version 3.1 using

SVM

Magnifying NBI
images

Accuracy: 97.8%

Kominami et
al[52]

2016 Classification of
histology of

colorectal polyps

Prospective Training set: 2247
images from 1262
colorectal lesion.
Validation: 118

colorectal lesions

SVM with logistic
regression

Magnifying NBI
images

Accuracy: 93.2%,
Sensitivity: 93.0%,
Specificity: 93.3%,
PPV: 93%, NPV:

93.3%

Byrne et al[53] 2017 Differentiation of
histology of
diminutive

colorectal polyps

Retrospective Training set: 223
videos, Validation

set: 40 videos.
Test set: 125

videos

CNN NBI video frames Accuracy: 94%,
Sensitivity: 98%,
Specificity: 83%
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Chen et al[54] 2018 Identification of
neoplastic or
hyperplastic

polyps of < 5 mm

Retrospective Training set: 2157
images. Test set:

284 images

CNN Magnifying NBI
images

Sensitivity: 96.3%,
specificity: 78.1%,
PPV: 89.6%, NPV:

91.5%

Komeda et al[55] 2017 Discrimination
adenomas from

non-adenomatous
polyps

Retrospective 1200 images from
the endoscopic

videos (10 times
cross validation)

CNN White-light
colonoscopy with

NBI and
chromoendoscopy

Accuracy in
validation: 75.1%

Mori et al[56] 2015 Discrimination of
neoplastic

changes in small
polyps

Retrospective Test set: 176
polyps form 152

patients

Multivariate
regression

analysis

Endocytoscopy Accuracy: 89.2%,
Sensitivity: 92.0%

Mori et al[57] 2016 Development of
2nd generation

model, which was
mentioned in

reference number
56

Retrospective Test set: 205 small
colorectal polyps
(≤ 10 mm) from

123 patients

SVM Endocytoscopy Accuracy: 89% for
both

diminutive(< 5
mm) and small (<

10 mm) polyps

Misawa et al[58] 2016 Diagnosis of
colorectal lesions

using
microvascular

findings

Retrospective Training set: 979
images,

validation set: 100
images

SVM Endocytoscopy
with NBI

Accuracy: 90%

Mori et al[59] 2018 Diagnosis of
neoplastic

diminutive polyp

Prospective 466 diminutive
polyps from 325

patients

SVM Endocytoscopy
with NBI and

stained images

Prediction rate:
98.1%

Takeda et al[60] 2017 Diagnosis of
invasive

colorectal cancer

Retrospective Training set: 5543
images from 238
lesions. Test set:

200 images

SVM Endocytoscopy
with NBI and

stained images

Accuracy: 94.1%
Sensitivity: 89.4%,
Specificity: 98.9%,
PPV: 98.8%, NPV:

90.1%

Maeda et al[61] 2018 Prediction of
persistent
histologic

inflammation in
ulcerative colitis

patients

Retrospective Training set:
12900 images.Test
set: 9935 images

SVM Endocytoscopy
with NBI

Accuracy: 91%,
Sensitivity: 74%,
Specificity: 97%

AI: Artificial intelligence; CNN: Convolutional neural network; NBI: Narrow band image; AUROC: Area under receiver operating characteristic; SVM:
Support vector machine; PPV: Positive predictive value; NPV: Negative predictive value.

inherent bias such as selection bias cannot be excluded in this situation. Therefore, it is
crucial to meticulously validate the performance of AI before the application of AI in
real  clinical  practice.  To  properly  verify  the  accuracy  of  AI,  physicians  should
understand the effects  of  overfitting and spectrum bias  (class  imbalance)  on the
performance of AI, and try to evaluate the performance by avoiding these biases.

Overfitting occurs when a learning model tailors itself too much on the training
dataset and predictions are not well generalized to new datasets[66] (Table 5). Although
several methods were used to reduce overfitting in the development of DL models,
they did not guarantee the resolution of this problem. In addition, datasets that were
collected  by  case-control  design  are  particularly  vulnerable  to  spectrum  bias.
Spectrum  bias  occurs  when  the  dataset  used  for  model  development  does  not
adequately represent the range of patients who will be applied in clinical practice
(target population)[67].

Because overfitting and spectrum bias may lead to overestimation of the accuracy
and generalization, external validation using unused datasets for model development,
collected in a way that minimizes the spectrum bias, is mandatory. For more robust
clinical verification, well-designed multicenter prospective studies with adequate
inclusion/exclusion  criteria  that  represent  the  target  population  are  needed.
Furthermore, DL technology has its own “black box” nature (lack of interpretability or
explainability),  which  means  the  decision  mechanism  of  AI  is  not  clearly
demonstrated (Figure 2). Because interpretability is important in that it can provide
safety  measures,  help  to  detect  bias,  and  establish  social  acceptance,  further
investigation to solve this issue should be performed. However, there have been some
methods to complement “black box” characteristics, such as the attention map and
saliency region[68].

It is obvious that the efficiency and accuracy of ML increases as the amount of data
increases; however, it is challenging to develop an efficient ML model owing to the
paucity of  human labeled data given the issue of  privacy with regard to private
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Table 5  Summary of clinical studies using artificial intelligence in the capsule endoscopy

Ref. Published year Aim of study Design of study Number of
subjects Type of AI Outcomes

Leenhardt et al[62] 2019 Detection of
gastrointestinal

angiectasia

Retrospective 600 control images
and 600 typical

angiectasia images
(divided equally into

training and test
datasets)

CNN Sensitivity: 100%,
specificity: 96%,
PPV: 96%, NPV:

100%.

Zhou et al[63] 2017 Classification of
celiac disease

Retrospective Training set: 6 celiac
disease patients, 5
controls. Test set:
additional 5 celiac
disease patients, 5

controls

CNN Sensitivity: 100%,
specificity: 100% (for

test dataset)

He et al[64] 2018 Detection of
intestinal

hookworms

Retrospective 440000 images CNN Sensitivity: 84.6%,
specificity: 88.6%

Seguí et al[65] 2016 Characterization of
small intestinal

motility

Retrospective 120000 images CNN Mean classification
accuracy: 96%(training set: 100000,

test set: 20000)

AI: Artificial intelligence; CNN: Convolutional neural network; PPV: Positive predictive value; NPV: Negative predictive value.

medical  records.  To  overcome  this  issue,  data  augmentation  strategies  (with
synthetically modified data) have been proposed[69]. Spiking neural networks, which
more closely mimic the real mechanisms of neurons, can potentially replace current
ANN  models  with  more  powerful  computing  ability,  although  no  effective
supervised learning method currently exists[70].

The precision of diagnosis or classification using AI does not always mean efficacy
in real clinical practice. The actual benefit of the clinical outcome, the satisfaction of
physicians, and the cost effectiveness beyond the academic performance must be
proven  by  sophisticated  investigation.  Finally,  the  acquisition  of  reasonable
regulations from responsible authorities and a reimbursement policy are essential for
integrating AI technology in the current healthcare environment. Moreover, AI is not
perfect. That’s why “Augmented Intelligence” emerged emphasizing the fact that AI
is  designed  to  improve  or  enhance  human  intelligence  rather  than  replace  it.
Although the aim of applying AI in medical practice is to improve the workflow with
enhanced precision and to reduce the number of unintentional errors, established
models with inaccuracy or exaggerated performance are likely to cause ethical issues
owing to misdiagnosis or misclassification. Moreover, we do not know the impact of
AI  application  on  the  doctor-patient  relationship,  which  is  an  essential  part  of
healthcare  utilization and the practice  of  medicine.  Therefore,  ethical  principles
relevant to AI model development should be established in the current period when
AI research begins to increase.

CONCLUSION
Since AI was introduced in the 1950s, it has been persistently challenged in terms of
statistical or image analyses in the field of gastroenterology. Recent evaluation of big
data and computer science enabled the dramatic  development of  AI technology,
particularly DL, which showed promising potential. Now, there is no doubt that the
implementation of AI in the gastroenterology field will progress in various healthcare
services. To utilize AI wisely, physicians should make great effort to understand its
feasibility and ameliorate the drawbacks through further investigation.
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Figure 2

Figure 2  Interpretability-accuracy tradeoff in classification algorithms of machine learning.
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